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Abstract 21 

The ability to quantify structural changes of the endoplasmic reticulum, ER, is crucial for 22 

understanding the structure and function of this organelle. However, the rapid movement and 23 

complex topology of ER networks make this challenging. Here, we construct a state-of-the-art 24 

semantic segmentation method we call ERnet for the automatic classification of sheet and 25 

tubular ER domains inside individual cells. Data are skeletonised and represented by 26 

connectivity graphs, enabling a precise and efficient quantification of network connectivity. 27 

ERnet generates metrics on topology and integrity of ER structures and quantifies structural 28 

change in response to genetic or metabolic manipulation. We validate ERnet using data 29 

obtained by various ER imaging methods from different cell types, as well as ground truth 30 

images of synthetic ER structures. ERnet can be deployed in an automatic high-throughput and 31 

unbiased fashion and identifies subtle changes in ER phenotypes that may inform on disease 32 

progression and response to therapy.  33 

 34 

 35 

Introduction 36 

 37 
The endoplasmic reticulum (ER) is the largest membranous structure in eukaryotic cells and 38 

acts as a platform for protein synthesis and quality control and for various organelle-39 

interactions1. The ER consists of distinct domains including sheets and tubules, and features 40 



growth tips and tubular connections, so called three-way junctions. Perturbations to the ER 41 

structure and dynamics caused by genetic defects or metabolic stress have been associated with 42 

a variety of diseases2, such as hereditary spastic paraplegias (HSPs) and Niemann Pick Disease 43 

type C (NPC). Hence, to understand the role of ER in diseases, it is important and necessary to 44 

characterise ER morphology comprehensively, which may provide powerful phenotypes to 45 

screen drugs against ER associated disorders. However, given the extent of the ER network 46 

and its complexity, the precise and quantitative measurement of ER topology and movement 47 

has remained challenging.  48 

 49 

The ER network in a single cell consists of thousands of interconnected tubules that undergo 50 

constant rearrangements via processes including continuous tubular elongation, contraction, 51 

and fusion. Furthermore, there are rapid transitions between sheet and tubular domains with 52 

distinct putative functions3. Recently, capabilities have emerged to reveal such dynamic 53 

changes in ER topology in live cells, at sub-wavelength resolution4. Structured illumination 54 

microscopy (SIM), for example, can be used to resolve details of ER topology and its rapid 55 

remodelling process5-7. However, the data have only been interpreted qualitatively, without 56 

attempts to quantify ER topology or its structural changes precisely. Compared to other 57 

organelles, such as mitochondria and lysosomes, which are structurally simpler organelles that 58 

are often well separated from one another, the ER consists of highly convoluted and structurally 59 

connected domains. The task is further complicated by the fact that the signal to noise ratio of 60 

images obtained during live cell microscopy is often poor, while a clear differentiation of the 61 

organelle from its background is required to ensure successful segmentation into tubular and 62 

sheet domains. For moving structures, and time lapse imaging, this becomes a formidable task. 63 

 64 

A number of machine learning-based methods have been developed for the segmentation of 65 

cells8, mitochondria9-10, and nuclei11, which provide robust and precise classification of cell 66 

structures.  However, to date, thresholding remains the standard method of use for ER 67 

segmentation12-14. Thresholding lacks both sensitivity and specificity, making quantitative 68 

conclusions hard to draw, especially in situations where image quality is compromised by noise. 69 

Alternative methods are based on labour intensive manual labelling of image data to generate 70 

specialised datasets for training of machine learning algorithms. These approaches do not 71 

generalise well to work with changing experimental setups or varying sample types15 72 

(Extended Data Fig. 1). An additional challenge for ER segmentation can be seen in temporal 73 



consistency. Conventional segmentation is performed on a frame-by-frame basis, and 74 

segmented structures in sequential (time-lapse) images lose temporal continuity and thereby 75 

cause artefacts16. Currently, there is no ER segmentation method capable of taking dynamic, 76 

spatial and temporal topology changes into consideration.  77 

 78 

To address these difficulties, we developed ERnet, a deep learning software that automatically 79 

segments ER, classifies its domains into tubules and sheets, and quantifies structural and 80 

dynamic features in image sequences obtained from live cells. ERnet is trained with image 81 

datasets to model the domain knowledge of ER structures, i.e., the shapes of tubules and sheets. 82 

As a result, it enables feature specific segmentation with enhanced robustness, specificity, and 83 

sensitivity regardless of the pixel intensity in the images. ERnet works on 2D data, but the 84 

quantitative results accurately describe the 3D structure of the organelle. After segmentation, 85 

ERnet quantifies topological features of the ER and recognises subtle changes in the ER 86 

structure and dynamics for various stress conditions, including gene knockout/knockdown, 87 

ATP depletion and calcium depletion etc. To validate the method, we tested the segmentation 88 

accuracy of ERnet on in vitro models subjected to different genetic and metabolic 89 

manipulations, including cells mimicking phenotypes of HSP and NPC. Two phenotypes were 90 

identified as sensitive readouts of the ER response in these models, namely the degree of 91 

fragmentation of ER networks and the heterogeneity in tubule connections. Both are indicators 92 

for the functional state of the ER network, and can be used, e.g., to quantify the degree of 93 

disorganisation, shrinkage, and collapse of ER structures in models of disease. We show the 94 

versatility of ERnet by application to widefield imaging, confocal, and super-resolution 95 

microscopy data and test its performance in the presence of image noise. Furthermore, the 96 

method works in multiple cell lines. Minimal, or no retraining is required between different 97 

use scenarios. We provide ERnet as a user friendly, open-source software package with a 98 

graphical user interface (Extended Data Fig. 2 and user manual) to make it a broadly accessible 99 

tool for biologists and to promote ER-related research in basic science and clinical applications. 100 

 101 

 102 

 103 

 104 

 105 

 106 



Results 107 

 108 

Design and workflow of ERnet 109 

 110 

The general design of ERnet is schematised in Fig. 1a. First, the reconstructed sequential 111 

images of the ER were segmented in ERnet, followed by the classification of ER structures 112 

into tubules and sheets. The tubular structure was further skeletonised using a surface axis 113 

thinning algorithm17. After this, the nodes and edges of the skeletonised ER were identified to 114 

plot a topology graph via a graph theory-based module18.  In essence, the topology graph is a 115 

representation of ER tubules and junctions that provides a visual cue on the degrees of ER 116 

network connectivity and fragmentation (for an introductory explanation of graph theory 117 

concepts, see Extended Data Fig. 6). 118 

 119 

Instead of relying on the commonly applied convolutional neural networks (CNN), our model 120 

builds upon a Vision Transformer architecture19 which outperforms a comparable state-of-the-121 

art CNN with higher classification accuracy and requires 4 times fewer computational 122 

resources. Key to our method is that, rather than paying attention to the spatial position of the 123 

nodes, it focuses on the ER’s network features, e.g. the connectivity between nodes. This means 124 

that metrics such as number of ER fragments and the clustering of nodes into subregions can 125 

be extracted to provide quantitative metrics of ER topology and health. 126 

 127 

To reduce the computational cost associated with the large data volumes generated by time 128 

sequenced imaging data, ERnet makes use of the backbone architecture of the Swin-129 

Transformer reported in Liu et al. 202120. Here, image frames in a temporal sequence are 130 

processed as 3D blocks, which permits the model to focus on key features that persist not only 131 

over the spatial, but also over temporal domains (Fig. 1b). These attributes make the method 132 

fast to execute and also very responsive to changing ER phenotypes.  133 

 134 

Quantitative segmentation and analysis of ER topology  135 

 136 

The ER is a highly dynamic structure and at any instance thousands of tubules move and change 137 

position, direction, and network connections. To quantify these intracellular changes, we first 138 

tested the performance of ERnet using SIM images of COS-7 cells. Fig. 2a shows a single 139 



frame of the ER (grey) from a set of sequential images captured from a COS-7 cell expressing 140 

mEmerald-Sec61b5. The performed segmentation successfully identified the whole ER 141 

structure, differentiated it from the cytosol background and further classified it into tubular 142 

(cyan) and sheet domains (yellow) (Fig. 2a). Then, the tubular ER was skeletonised from the 143 

whole structure and the nodes (tubule junctions, shown in red) and edges (tubules, green) were 144 

identified as two key topological components to map the network connectivity via the Python 145 

package Graph-tool18.  146 

 147 

SIM provide high spatial-temporal resolution of ER structures thus suitable for live cell 148 

imaging. A single pixel on the camera frame has a length scale of 42 nm in real space, almost 149 

a quarter of the average width of an ER tubule (~160 nm, measured as the average width on 150 

SIM images taken). This means that misclassification of a few, or even just one, image pixels 151 

can mean the difference between identification of a tubule as connected, or as disrupted. This 152 

leads to errors in the classification of network features, and vice versa to a bias when 153 

quantifying the network connectivity. In disease models, this could lead to erroneous 154 

phenotypes. The semantic segmentation of individual pixels from SIM images ensures the 155 

structural integrity of networks identified and prevents information loss, an improvement of 156 

traditional algorithms used in the past. Figs. 2a and b show how the method performs. A clear 157 

segmentation of ER structure (Fig. 2b) is achieved in regions containing dense ER tubule 158 

networks, as can be seen from the enlarged region indicated by the white box in Fig. 2a. This 159 

permits the distinction of tubules and their junctions in confined regions, measuring less than 160 

300 nm across (highlighted by yellow dashed lines) with good structural detail. The segmented 161 

ER was then skeletonised (middle panel of Figs. 2a and b) and classified into edges (green 162 

tubules, right panel, Figs. 2a and b) and nodes (red spots, right panel, Figs. 2a and b). Finally, 163 

ERnet quantified the number of edges and nodes (top plot, Fig. 2c) and the percentage of areas 164 

covered by tubules and sheets (bottom plot, Fig. 2c), respectively, across the whole ER. Here, 165 

ER tubules were defined as linear branched structures and sheets as flat membrane cisternae as 166 

shown in Figs. 2a and d. Morphological features, such as the percentage of tubules/sheets 167 

among the whole ER, reflect ER status3 and provide indications for possible ER defects. ER 168 

stress induced by an absence of the GTPase Rab7, which is known to modulate lysosome-ER 169 

contact sites, leads to the enlargement of ER sheets and the reduction of tubular domains in the 170 

cell periphery21. On the other hand, a depletion of protrudin, an ER reshaping protein, induces 171 

HSP associated ER dysfunctions by disrupting the sheet-to-tubule balance22. Therefore it is 172 



expected that the topological features of the ER, such as its connectivity, assortativity, or 173 

clustering coefficients, change for different phenotypes and with disease progression, a topic 174 

that is further explored in subsequent sections. It is worth highlighting that, although the ER 175 

tubular network underwent stark morphology changes (Supplementary Video 1) and 176 

demonstrated fluctuations in the number of nodes and edges (top panel, Fig. 2c) within 177 

individual recordings, its tubule and sheet percentages among the whole ER remained stable 178 

(bottom panel, Fig. 2c), which suggests that the overall connections do not change in the 179 

absence of a stimuli. 180 

 181 

In the canonical model of ER structures, ER tubules radiate from sheets towards the cell 182 

periphery4, and the two structures are thought not to overlap. However, we observed that 183 

tubular structures also reside on the ER sheets themselves (Fig. 2d and Supplementary Video 184 

2), which in what follows we refer to as ‘sheet-based tubules’ (SBTs), and which are clearly 185 

distinguished by ERnet as seen in Fig. 2d and Supplementary Videos 2 and 3. Like peripheral 186 

tubules, SBTs undergo rapid elongations and contractions, which can either lead to new tubular 187 

connections (blue arrows), or separations (grey arrows) (bottom panel, Fig. 2d). A subsequent 188 

3D reconstruction of SIM image sections further validated that such tubules are directly 189 

attached to the sheets and are not the result of a projection view artefact (Fig. 2e, Extended 190 

Data Fig. 3, Supplementary Video 4). Analysis of 500 cells showed that this phenomenon is a 191 

common feature of the ER network (Fig. 2f).  192 

 193 

In silico validation of ERnet  194 

 195 

To examine the accuracy of ERnet, we generated synthetic ground truth data on which the 196 

performance of the method could be tested. First, we generated data to test semantic 197 

segmentation performance. To do this, we used real SIM data of ER networks on which we 198 

applied the well-established Trainable Weka segmentation machine learning algorithm15. This 199 

produced ground truth images for which ER structures were classified into tubules, sheets, and 200 

SBTs (Fig. 3a).  201 

 202 

The same SIM images on which the above Weka approach was used to generate the ground 203 

truth data were then processed by ERnet and the results compared pixel-by-pixel. The ground 204 

truth test demonstrated a pixel accuracy for ERnet segmentation of between 92 and 99 % 205 



compared to the ground truth data (Fig. 3c). In another test, we used the segmented images 206 

obtained with the Trainable Weka algorithm and fed this as input to ERnet. In this case again, 207 

the result was nearly identical to the ground truth.  208 

 209 

In addition to the ground truth test for semantic segmentation, we also tested the accuracy of 210 

the connectivity analyses. To do this, we generated ground truth data of ER tubular domains 211 

by creating synthetic ER skeletons. We then widened and blurred the skeletons and added 212 

image noise to mimic ER structures recorded with optical microscopy (for details on this 213 

process, see Extended Data Fig. 4a and descriptive caption). After this, the synthetic images 214 

were processed by ERnet to identify nodes and edges and derive metrics for ER connectivity 215 

(Figs. 3d and e). ERnet reached accuracies ranging from 96 to 99 % for the identification of 216 

nodes and edges (Fig. 3f). Even in dense regions of the tubular network (zoomed in regions, 217 

Fig. 3e), ERnet still achieved a high precision to capture nodes and edges with little difference 218 

found between the ERnet result and the ground truth data. Additionally, we quantified the 219 

differences in the connectivity metrics obtained from ERnet and ground truth data (Fig. 3f). 220 

Since the assortativity metric ranges over very small scales, e.g. from -0.05 to 0.08, even minor 221 

changes in connectivity can lead to large fluctuations of the former. Nevertheless, observed 222 

changes in metrics are still significantly smaller than those associated with the varying 223 

phenotypes reported in the following context (Fig. 6).  224 

 225 

Next, we tested the performance of ERnet on ground truth images in which we added variable 226 

levels of noise (Extended Data Fig. 4). The purpose was to provide a metric with which a user 227 

can decide upfront, whether a given dataset obtained on a microscope is of sufficient quality to 228 

trust the ERnet output. We found that ERnet produced repeatedly reliable outputs for both 229 

connectivity and topology features for image data featuring signal-to-noise ratios better than 230 

ca. 5 (Extended Data Fig. 4). By analysing the SNR obtained with a given experimental setup, 231 

users can objectively assess the quality of the segmentation results, irrespective of where and 232 

how the data were obtained.   233 

 234 

ERnet performs on various cell types and imaging modalities. 235 

To demonstrate the versatility and robustness of ERnet in different research scenarios, we 236 

validated the method on a on a range of datasets obtained by us and others. Fig. 4 presents the 237 

analysis of images obtained using different microscopy techniques including widefield, 238 



confocal, and Airyscan microscopy. Even though ERnet’s precision may depend on the spatial 239 

resolution of the corresponding images, it performed well for all imaging techniques with all 240 

the tubules and sheets clearly classified and quantified (Source Data Fig. 4). Furthermore, we 241 

also performed validation tests for varying cell types commonly used in cell biology research, 242 

such as HEK, CHO, SH-SY5Y cells, and primary cultures of hippocampal neurons and glial 243 

cells derived from embryonic rats (Source Data Fig. 4). Further data from plant cells13 and 244 

publicly available data sets23-24 published by other authors using different experimental setups 245 

are shown in Extended Data Fig. 5.  Although the specific ER phenotypes varied among the 246 

cell types, ERnet was able to robustly identify the corresponding tubular and sheet domains 247 

and performed subsequent quantitative analyses following segmentation. For none of these 248 

scenarios the model had to be retrained and no pre-processing of the raw data was necessary 249 

before segmentation by ERnet, demonstrating the generality of the model and its ease of 250 

application.   251 

 252 

ERnet provides detailed connectivity data on ER networks. 253 

 254 

ERnet can be used to quantify the connectivity of edges and nodes before plotting a 255 

corresponding connectivity graph (Fig. 5a). The connectivity graph highlights that the network 256 

of the ER largely constitutes of three-way junctions (red nodes, Fig. 5a) while the ER edges 257 

are capped with growth ends (green nodes, Fig. 5a).  258 

 259 

To assess the integrity of the ER, we defined each disconnected ER region as a fragment. 260 

Although the  number of fragments during ER reshaping fluctuates (Fig. 5b), ERnet reveals 261 

that in a typical healthy cell, the majority of all edges and nodes are contained in a single large 262 

fragment at all times (over 92% of all the 3000 nodes and 95% of all the 4000 edges in the 263 

shown example). As quantitative parameters, we defined node and edge assembly ratios (the 264 

number of nodes or edges in the largest fragment divided by the total number of nodes or edges, 265 

respectively), see Fig. 5c. Per definition, these values range from close to 0 (fully fragmented 266 

ER) to 1 (fully connected). Additionally, ERnet quantified the degrees of the ER nodes, i.e., 267 

how many edges (tubules) connect to each node (junction). As shown in Fig. 5d, three-way 268 

junctions are the most abundant and represent 66% of all junction types in this example. 269 

Despite the prevailing model of ER morphology, where three-way junctions interconnect to 270 

form the whole ER tubular network, ERnet also identified nodes connected with more than 271 



three edges (tubules), i.e., multi-way junctions. The presence of multi-way junctions indicates 272 

the heterogeneous connectivity of ER tubules that are organised in a higher order of complexity 273 

than previously assumed.  274 

 275 

Next, the assortativity and clustering coefficients (Figs. 5e and f), that describe connectivity 276 

patterns of nodes, were calculated based on the above metrics. The assortativity coefficient 277 

measures the tendency of nodes to connect with others of the same degree25. In a network with 278 

a high assortativity coefficient most nodes are connected in a similar way with their neighbours 279 

(e.g. via 3 way junctions).  The clustering coefficient on the other hand reflects the distribution 280 

of nodes within the whole network (e.g. clusters of multiway junctions may be separated from 281 

other clusters by junctions of lower degree). For a graphical explanation of these concepts, the 282 

reader is referred to Extended Data Fig. 6.   283 

 284 

Assortativity coefficients range from -1 (fully heterogeneous network in connectivity, i.e. nodes 285 

only connect with those of different degrees) to +1 (fully homogeneous network in connectivity, 286 

i.e. nodes only connect with those of same degree). Similarly, for clustering coefficients, 1 287 

describes a network in which all the nodes and edges are clustered while 0 refers to no clustering. 288 

Fig. 5e shows the ER as a weak assortative network, which suggests a tendency, albeit a weak 289 

one, of nodes to connect with nodes of the same degree. In Fig. 5f, we show how the degree of 290 

clustering can change over time in an ER network. Tubules and junctions reorganise themselves 291 

rapidly, both within localised and global domains. Frequent events include the merging of 292 

multiple tubules forming clusters of nodes, but these then disassemble transiently. Overall, the 293 

data indicate that the network features a high degree of structural homogeneity and local 294 

clustering is not a dominating feature to affect the overall phenotype.  295 

 296 

To further investigate the structural dynamics of the ER, we tracked the lifetime of multi-way 297 

junctions and their transitions from multi-way to three-way junctions. Figs. 5g and h show the 298 

rapid transitions between three-way (yellow arrows) and multi-way junctions (blue arrows) 299 

driven by ER tubule reshaping. As shown in these cases, the formation of four or five-way 300 

junctions need simultaneous connections of more than three tubules at the same junction, which 301 

occurs with a lower chance than the formation of a three-way junction that only requires the 302 

connection of three tubules. Additionally, any movement of a tubule away from its multi-way 303 

junction can lead to the collapse of this junction and the generation of at least two three-way 304 



junctions. Therefore, as shown in Fig. 5i, the average lifetime of a multi-way junction is much 305 

shorter, i.e., less than a third (9.0 s vs 30.8 s) of that of a three-way junction.  306 

 307 

We also examined whether our 2D network approach is valid to segment ER structures, which 308 

are 3 dimensional in nature. We performed two different tests in both COS-7 and U2OS cells, 309 

which are the canonical models in fluorescence microscopy-based studies of the ER, and for 310 

which ERnet was developed.  For these flat cell types we could confirm that a 2D analysis is 311 

sufficient to represent the ER network topology (Extended Data Fig. 7).  312 

 313 

ERnet can characterise complex ER phenotypes.  314 

 315 

ER morphological defects caused by mutations in genes encoding ER-reshaping proteins or by 316 

metabolic perturbations have been linked to a variety of human disease1,2,4. However, the exact 317 

phenotypical ER disruption under these conditions has not yet been sufficiently characterised. 318 

Using ERnet, we first analysed the ER morphological defects in stress models mimicking the 319 

ER phenotypes in two neurodegenerative diseases, namely HSPs and NPC. The inherited 320 

neurological disorder HSPs can be characterised by progressive lower-limb weakness and 321 

muscle stiffness, which are caused by mutations in genes encoding ER reshaping proteins such 322 

as atlastin (ATL)26 and protrudin27. We used ERnet to examine the ER morphology defects in 323 

individual cells of different models by measuring two topological features, i.e., the degree of 324 

ER tubule fragmentation and the heterogeneity in these tubular connections. Compared with 325 

control cells, an ATL knock-out (KO)28 leads to a collapse of the ER network integrity. Such 326 

ER fragmentation was clearly revealed in ATL KO cells by the increasing number of fragments 327 

and a 20-fold reduction of the node assembly ratio (90% in control vs. 4.5% in ATL KO) (Fig. 328 

6a and Supplementary Video 5 and 6). ERnet also highlighted that the lack of ATL significantly 329 

altered the connectivity in ER tubular network, as witnessed by a reduced percentage of three-330 

way junctions among all the nodes (22% vs. 65% in control) and by the disorganised 331 

connectivity (-0.25 in assortativity). These measurements provide quantitative rather than 332 

descriptive evidence of ATL’s role in ER tubular network formation, which has previously 333 

been reported to be crucial for the fusion of ER membranes and thus the formation of 334 

continuous networks26. With these quantitative analyses, we can compare morphological 335 

defects caused by different treatments. In another model of HSPs, depletion of protrudin 336 

(Extended Data Fig. 8) also resulted in ER tubular network fragmentation (350 fragments) 337 



(Supplementary Video 7) and in disorganised connectivity, however, to a lesser extent. A 338 

further metric suitable for the comparison of ER health under different treatments is the size of 339 

the ER, which is revealed by the connectivity graph. An ATL KO cell that was more 340 

fragmented than a protrudin KD cell suffered from a more severe shrinkage of the ER with a 341 

smaller number of nodes and edges (Fig. 6a), indicating that ER membranes may be degraded 342 

or recycled in response to stresses.  343 

 344 

Next, we induced cholesterol accumulation in lysosomes by U18666A administration to the 345 

cell, which induces a blockage of the cholesterol transfer from lysosomes to the ER in NPC29. 346 

The accumulation of cholesterol in lysosomes leads to lysosome deposition in perinuclear 347 

regions and, therefore, affects the ER structure and distribution3. However, the exact ER 348 

morphological defects have not yet been characterised. ERnet revealed that the ER of 349 

U18666A-treated cells features a disassortative network (-0.34) and its low node assembly ratio 350 

(2.6%) suggests a highly fragmented structure (Fig. 6a and b, Supplementary Video 8), which 351 

highlights that lysosomal defects can strongly affect the ER and thus provides for a useful tool 352 

with which to improve an understanding of organelle dysfunction in NPC.  353 

 354 

Finally, we tested the performance of ERnet in cells upon ER collapse under metabolic 355 

manipulations that significantly affect the overall homeostasis inside the cell. SIM video 356 

showed that the ER largely loses its dynamic reshaping capabilities upon the administration of 357 

store-operated calcium entry (SOCE) inhibitor SKF9636530 (Supplementary Video 9). In the 358 

connectivity graph, the ER became largely fragmented and featured as a disassortative network 359 

(Fig. 6a and b). Compared with SKF96365, NaN3 depletes ATP31 thus capping support for all 360 

the energy consuming processes inside the cell, including ER tubule elongation, retraction, and 361 

membrane fusion. Therefore, ATP depletion by NaN3 was expected to significantly affect the 362 

structural dynamics of the ER. ERnet revealed the level of ER network fragmentation resulting 363 

from a lack of ATP (Fig. 6a and b, Supplementary Video 10); however, the phenotypes were 364 

not equivalent to those observed upon depletion of ER reshaping proteins: for example, the 365 

node assembly ratio in ATP depleted cells was found to be nearly 4-fold of that in ATL KO 366 

cells (0.19 vs 0.05).   367 

 368 



Overall, while ERnet provides a quantitative assessment of overall network topology it is also 369 

sensitive enough to detect subtle changes in local ER morphology, valuable attributes in the 370 

investigation and differentiation of ER-related phenotypes of disease.  371 

 372 

Discussion 373 

 374 

A measurement of cellular organelle properties such as shape, position, and mobility provides 375 

a quantitative basis for analysing the structure and function of organelles in both fundamental 376 

and therapeutic research. Here, we introduce ERnet, a versatile tool that performs robust and 377 

precise segmentations and analyses of ER structures under a variety of conditions.  378 

 379 

The accuracy of ERnet’s semantic segmentation algorithm is a result of its model design. In 380 

contrast to state-of-the-art CNN models commonly used for image segmentation, ERnet is 381 

constructed in a Vision Transformer architecture that outperforms CNNs in terms of image 382 

classification accuracy and requires much smaller computational resources19, 32. Another 383 

advantage of our design is a capability for temporal domain analyses of objects in sequenced 384 

image data. We integrated two attention mechanisms: multi-head self-attention33 and channel 385 

attention34 into the Transformer architecture. These mechanisms greatly enhance the learning 386 

ability of ERnet in classifying ER structures in the spatio-temporal domain. While machine 387 

learning methods have previously been implemented for denoising images of ER structures35; 388 

reconstructing ER structures based on electro-microscopy images36; and identification ER 389 

stress marker-whorls37, ERnet is capable of video-rate image segmentation and analysis of live 390 

cells, further extending the deep learning toolbox for biomedical research.  391 

 392 

Through application of ERnet, we were able to characterise and quantify the structural features 393 

of dynamic ER networks. First, we found that the dominance of three-way junctions is a 394 

necessity to produce a continuous ER network that can spread throughout the cell. Whilst we 395 

observed a prevalence of three-way junctions, we found that 20% of healthy ER furthermore 396 

consists of multi-way junctions (degree > 3). In contrast, all the stress manipulations of ER 397 

morphology, including models of HSPs and NPC, resulted in the fragmentation of ER 398 

structures to varying extents (Fig. 6).   399 



Nixon Abel et al., 2016 and Pain et al., 2019 also made use of microscopy data in the analysis 400 

of ER dynamics. However, their work focused on a very different set of ER phenomena than 401 

what we present here. Nixon Abel et al, 2016 analysed the transient dynamics of individual 402 

tubules (e.g. lateral tubule oscillations). Pain and colleagues designed AnalyzER to extract 403 

metrics of plant ER tubules, such as their width, length, and cross-sectional area.  In contrast, 404 

our work focuses on global network topology and integrity, which are key features associated 405 

with physiological and stress states. Our aim is to provide a robust and powerful tool for the 406 

investigation of therapeutic strategies against ER associated disease. Apart from this, ERnet, 407 

driven by deep learning to classify ER structures, can identify subtle changes in the whole ER 408 

and display the difference in quantitative plots. The connectivity graph is a unique feature of 409 

ERnet. It is a visual tool to display the connected parts of the ER and provides for a rapid visual 410 

cue on the degree of network integrity.   411 

An advantage of the use of deep learning in biological imaging is that it facilitates the discovery 412 

of novel biological phenomena. The sensitivity of ERnet to changing structural features led to 413 

the identification of SBTs. These ER components share similar structures and dynamics with 414 

the tubules that radiate from the sheet domains towards the periphery of the cell, however, their 415 

existence in the sheet domain greatly extends the coverage of the tubular ER towards the cell 416 

centre and even close to the nucleus. We note that SBTs are evident also in data presented in 417 

previous reports, such as Schroeder and colleagues38 (see for example Figs. 1E and H; Fig. 3B; 418 

Fig. 4A), but the phenomenon was not recognised specifically. In our method, SBTs are 419 

classified in addition to sheets and tubules on their own. Whilst ERnet can be used with any 420 

imaging technique, conventional or superresolved, its ability to detect and classify SBTs does 421 

depend on signal-to-noise ratio and image resolution. Therefore, some differences are expected 422 

in output produced from very different imaging methods. We also note that ER topology can 423 

vary significantly from cell to cell, and do not recommend conclusions to be drawn from data 424 

that are not representative of the whole cell population. How the sheet-based tubules are 425 

regulated in both physiological and pathological conditions will be an important question for 426 

future studies.  427 

Like all segmentation and classification methods, including those performed by humans, ERnet 428 

is necessarily limited by the quality of the input data. We found that for signal to noise ratios 429 

above around 5, ERnet reliably quantifies topology structures for any microscopy method of 430 

appropriate image resolution. Because we optimised ERnet for high throughput analaysis the 431 



algorithm treats ER networks as 2 dimensional structures for computational efficiency. Whilst 432 

we saw no problems with this for the cell types we analysed, one needs to be cautious when 433 

applying the method to highly 3-dimensional networks. ERnet could be extended to 3 434 

dimensions and integrated with further organelle analysis tools, for example methods for the 435 

characterisation of lysosomes and mitochondria, to permit comprehensive investigations of 436 

organelle-organelle interactions and their role in the development, ageing, and degeneration of 437 

cells.  438 

We believe our work demonstrates an efficient tool for precise structure segmentation and 439 

multi-parameter analysis of ER phenotypes. Its user-friendly graphical interface and automatic 440 

batch processing capabilities obviate the need for manual annotation.  441 
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Figure Legends 471 

 472 
 473 
 474 
Fig. 1: Workflow of ER structure segmentation and ERnet construction.  475 
 476 

a. The processing pipeline of ER segmentation and analysis. Time-lapse SIM images were 477 
first segmented by ERnet to classify the tubules and sheets. The tubular network of ER 478 
after segmentation was further skeletonised and the nodes and edges were identified to 479 
plot the connectivity graph. Using graph theory-based methods, we quantified the 480 
metrics of the ER network features that describe the topology and dynamics.  481 

b. The Transformer based architecture of ERnet. A moving window loads adjacent frames 482 
(Xt-2 to Xt+2) as inputs from the time-lapse images into ERnet. A shallow feature 483 
extraction module then projects the input into a feature map which is followed by a 484 
sequence of residual blocks denoted with Window Channel Attention Block (WCAB). 485 
Inside each WCAB, there is a sequence of Swin Transformer Layers (STLs). For 486 
details, see Methods. 487 
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 495 

 496 
 497 
Fig. 2: Semantic segmentation of ER and classification of tubules and sheets.  498 

 499 
a. An example of a segmentation result from video-rate SIM images of the ER. From left 500 

to right: 1) SIM image, 2) segmentation of ER tubular (cyan), sheet (yellow) and sheet-501 
based tubule (magenta) region, 3) skeletonisation of the tubular domain, and 4) 502 
identification of nodes (red spots) and edges (green lines) based on the skeleton 503 
structure. Scale bar: 5 µm. 504 

b. Zoomed-in regions of the above panel. The yellow dashed circles indicate nodes that 505 
are closely positioned but can still be identified by ERnet. Scale bar: 2 µm. 506 

c. Quantitative analysis of the ER shown in (a). Top panel: quantification of edges and 507 
nodes of the ER tubules of the time-lapse frames. Bottom panel: percentage of the ER 508 
tubules (cyan) and sheet (yellow) of the time-lapse frames (1.5s/frame). See Source 509 
Data Fig. 2c. 510 

d. A representative frame from time-lapse images shows the structure of sheet-based 511 
tubules (1.5s/frame). Top left panel: a SIM image of the ER structure. Top right panel: 512 

Segmentation SkeletonSIM image
a

b

Nodes and Edges 

d

100

0

50

%
of

ER
st

ru
ct

ur
e

edges

nodes

3000

2000No
de

sa
nd

ed
ge

s

c

45 90 (s)0

0

5μm

1.5 3.0 s

e

f

5μm

1μm

1μm

100

0

% of ER structure

T S SBT



segmentation of the three ER structures: SBTs (magenta), sheet (yellow), tubules (cyan). 513 
Bottom panel: three sequential frames showing the dynamic reshaping of sheet-based 514 
tubules from the above green boxed region. Blue arrows indicate a continuously 515 
elongating sheet-based tubule and grey arrows indicate a retraction. Scale bars: 5 µm 516 
(top) and 2 µm (bottom). See Source Data Fig. 2d for quantitative analysis.  517 

e. Volumetric view of 3D reconstruction of the sectioning SIM showing that the SBTs 518 
(magenta) are embedded in sheet domains (yellow). Scale bar: 2 µm (bottom). 519 

f. Violin plots of the percentages of tubules (T), sheets (S) and sheet-based tubules (SBT) 520 
in COS-7 cells (N=500), showing that the presence of the sheet-based tubules is a 521 
common feature of the ER network. In the violin plots, the white dot represents the 522 
median value of the data; the thick bar represents the interquartile range and the thin 523 
bar represents the rest data distribution. See Source Data Fig. 2f.  524 
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 568 
 569 
Figure 3. Ground truth test for segmentation and connectivity.  570 
 571 

a. Comparison between ground truth data and ERnet data for ER tubular (cyan), sheet 572 
(yellow), and SBT (magenta) domains. Comparisons were repeated three independently 573 
with similar results shown in (c).  574 
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b. Comparison of each channel for the image data above.  575 

c. Quantification of the pixel differences from the three image channels. F1-F10 are 576 
frames 1 to 10, respectively, in sequentially recorded ER images. See Source Data Fig. 577 
3c. 578 

d. Comparison of ground truth data (synthetic ER tubular network) and ERnet results. The 579 
top right inset and framed in a magenta box presents the whole field of view of the 580 
ground truth data which was an input into ERnet. 581 

e. A zoomed in region of the highlighted sections in (a) showing that the connectivity 582 
revealed by ERnet is nearly identical to the GT. Red spots: nodes; green lines: edges.  583 

f. Comparison of the connectivity metrics. GT data: ground truth data. Number in x axis 584 
indicate the image sample number. See Source Data Fig. 3f. 585 
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 621 
Fig. 4: Robust performance of ERnet in versatility test. 622 
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 623 
 624 

a. A variety of cell lines with different ER morphologies were imaged by different 625 
microscopy techniques to investigate the robustness and versatility of ERnet. ER 626 
structures of COS-7, HEK, CHO, SH-SY5Y, primary cultures of hippocampal neurons 627 
and glial cells were tested, as well as images acquired by widefield, confocal and 628 
Airyscan microscopy (1.5s/frame).  Scale bars: 20 µm.  629 
 630 

b. The topology of an ER tubular network of the COS-7 cell from the confocal image 631 
shown in (a) is represented by a connectivity graph. Nodes of different degrees are 632 
labeled with different colours: green (degree 1), light blue (degree 2), red (degree 3), 633 
dark blue (degree >3). Bottom right: a zoomed-in region of the black boxed part in the 634 
connectivity graph, demonstrating the complex connectivity revealed by ERnet from 635 
confocal microscopy image. The following analysis of Fig. 4c and d is based on this 636 
image data.  637 

 638 
c. Quantitative analysis of the ER structure of the above image data reveals the topology 639 

features of ER tubular network. Top: percentage of the ER tubules (cyan), sheet 640 
(yellow), and SBTs (magenta) of the time-lapse frames (43.5 s at 1.5 s/frame). Middle 641 
and bottom: changes of assortativity and clustering coefficients in time-lapse images. 642 
See Source Data Fig. 4c and d. 643 
 644 

d. Quantitative analysis of the connectivity of the ER tubular network in the above cell. 645 
Top: quantification of the nodes of different degrees, showing a dominance of third-646 
degree nodes (three-way junctions). Middle: number of components (ER fragments) in 647 
time-lapse images. Bottom: changes of the node/edge ratio over time.  648 
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 673 
 674 
Fig. 5: Quantitative analysis by ERnet reveals the complex connectivity of ER tubular 675 
network.  676 
 677 

a. The topology of an ER tubular network is represented by a connectivity graph. i: a 678 
representative region of multi-way junctions (dark blue spots), ii: a polygonal structure 679 
organized by three-way junctions and tubules, iii: a representative region of ER tubular 680 
growth tips (green spots).  681 
 682 

b-f. Quantitative analysis of the cell shown in (a) over a time window of 45 s at 1.5s/frame. 683 
See Source Data Fig. 5-f.  684 
 685 
b. Number of components (ER fragments) in time-lapse images.  686 
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c. Changes of the node or edge assembly ratio over time.  688 
 689 

d. Quantification of the nodes of different degrees, showing a dominance of third-degree 690 
nodes (three-way junctions). Same colour scheme as in (a).  691 

 692 
e-f. Changes of assortativity and clustering coefficients in time-lapse images.  693 
 694 
g-h. Examples of transitions between three-way (yellow arrows) and multi-way junctions   695 
       (yellow arrows: three-way, blue arrows: four-way, green arrows: five-way) junctions.   696 
       Scale bar: 1 µm. 697 

 698 
i. Quantification of the lifetime of junctions (nodes) with different degrees. Data are 699 

presented as mean ± SEM， ***P < 0.001, Tukey’s one-way ANOVA. N=12 events 700 
per condition per experiment from three independent experiments and 36 events per 701 
condition are analysed in total. P value: growth tip vs multi-way: 0.8947, growth tip vs 702 
three-way: 0.0001, three-way vs multi way: 0.0006. See Source Data Fig. 5i.  703 
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 738 
 739 
Fig. 6: Quantitative analysis of ER phenotypic characteristics in disease associated 740 
models. 741 
 742 

a. Connectivity graphs of ER structures in models mimicking phenotypes of HSPs and 743 
NPC and metabolic stress induced by calcium and ATP depletion. Nodes of different 744 
degrees are labeled with different colours: green (degree 1), light blue (degree 2), red 745 
(degree 3), dark blue (degree >3). Note that the graphs represent data from the whole 746 
field-of-view imaged in the microscope. The connectivity graphs are symbolic 747 
reductions of ER networks for easy visualisation of network topology. The graphs 748 
should not be mistaken for actual spatial representations of ER networks. Highly 749 
connected networks (controls, left column) appear more amorphous than strongly 750 
fragmented networks (stressed cells, middle columns). Raw image data are presented 751 
in Video 5-11 (1.5s/frame).  752 
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 753 
b. Topological features of the ER tubular network in above conditions were quantitatively 754 

analysed by ERnet. The effects on ER structures from different treatments can be 755 
directly visualised and compared by plotting the distribution of node assembly ratio (y 756 
axis) and assortativity coefficient (x axis). The analysis of ER phenotype, such as that 757 
in ATL KO cells, demonstrated a severe fragmentation and altered connectivity in the 758 
numerical data plot. See Source Data Fig. 6b.  759 

  760 
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 900 
 901 
 902 
 903 
 904 
 905 

Methods 906 

Cell culture 907 

COS-7 cells were purchased from the American Type Culture Collection (CRL-1651, ATCC). 908 
COS-7 cells were grown in T75 or T25 flasks or six-well plates by incubation at 37°C in a 5% 909 
CO2 atmosphere. Complete medium for normal cell growth consisted of 90% Dulbecco’s 910 
modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS) and 1% streptomycin. 911 
Cells were kept in logarithmic phase growth and passaged on reaching 70 to 80% confluence 912 
(approximately every 3 to 4 days). Medium was changed every 2 or 3 days. For structured 913 
illumination microscopy (SIM) imaging experiments, COS-7 cells were plated onto Nunc Lab-914 
Tek II Chambered Coverglass (Thermo Fisher Scientific, 12-565-335) to achieve ∼70% 915 
confluence before transfection.  916 

COS-7 cells were transfected with mEmerald-Sec61b-C1 (Addgene #90992, gifted by Jennifer 917 
Lippincott-Schwartz, Janelia Research Campus) as indicated with Lipofectamine 2000 918 
according to the manufacturer’s protocol 24 to 48 hours before imaging. Cells were stained 919 
with SiR-Lysosome at 1 μM for 4 hours before imaging. Cells were imaged in a microscope 920 
stage top micro-incubator (OKO Lab) with continuous air supply (37°C and 5% CO2). Cells 921 
were treated with U18666A (662015, Sigma) at 10 μM for 24 hr to block cholesterol transfer 922 
from lysosomes to ER before imaging. Cells were treated with SKF-96365 (S7809, Sigma) at 923 
100 μM for 3 hr to deplete Calcium before imaging. Cells were treated with NaN3 (0.05% w/v) 924 
and 2-deoxy-glucose (20 mM) for 2 hr to deplete ATP before imaging. SH-SY5Y cells (CRL-925 
2266, ATCC) were cultured and images as previously described39. ATL KO model28 was 926 
constructed by deleting ATL2 and ATL3 using CAS9/CRISPR system in COS-7 cells (ATL1 927 
is not detectable in COS-7 cells), a gift from Prof. Junjie Hu, Chinese Academy of Sciences, 928 
China. CHO-K1 (CCL-61, ATCC) cells were purchased from ATCC and were cultured in 929 



Ham's F-12 Nutrient Mixture medium supplemented with 10% FBS, 2 mM L-Glutamine and 930 
100 U/mL Penicillin-Streptomycin (Pen/Strep). Cells were transfected with pFLAG_ER 931 
mCherry40. U2OS cells (HTB-96, ATCC) were cultured in DMEM supplemented with 10% 932 
FBS, 2 mM L-Glutamine and 100 U/mL Pen/Strep. Cells were transfected with pFLAG_ER 933 
mCherry. Primary tissues, including hippocampal neurons and glial cells, were isolated from 934 
postnatal day 1 rats (Sprague–Dawley rats from Charles River) and cultured as described 935 
before41. HEK 293T cells (CRL-3216, ATCC) were cultured and imaged as described before42. 936 

 937 
 938 
siRNA transfection and Western blot 939 
 940 
Protrudin were depleted using SMARTpool: ON-TARGETplus Human ZFYVE27 (118813) 941 
siRNA – SMARTpool (Catalog#: L-016349-01-0005), Horizon. Negative siRNA control 942 
(MISSION siRNA Universal negative control, Cat#SIC001) was purchased from Sigma-943 
Aldrich. COS-7 cells were plated in both glass-bottom Petri dishes (for imaging) and six-well 944 
plates (for Western blot validation). Cells were transfected with 20 nM siRNA oligonucleotides 945 
and 20 nM negative control siRNA using Lipofectamine RNAiMax (13778075, Thermo Fisher 946 
Scientific) according to the manufacturer’s protocol. After 6 hours of siRNA transfection, the 947 
cells were washed and the medium was replaced with complete culture medium. Twenty-four 948 
hours after the siRNA transfection, cells were transfected with plasmid DNA indicated in 949 
Results using Lipofectamine 2000 (Invitrogen). On the day of imaging, cells were stained with 950 
Sir-Lysosome. Cells in glass Petri dishes were imaged 24 hours after DNA transfection. 951 
 952 
Cells in six-well plates were harvested for Western blot validation 72 hours after siRNA 953 
transfection. Protein concentration was measured using a bicinchoninic acid (BCA) protein 954 
assay kit. Immunoblotting was performed by standard SDS–polyacrylamide gel 955 
electrophoresis/Western protocols. Primary antibody concentrations were as follows: anti-956 
Protrudin at 1:5000 (Proteintech, Cat#12680-1-AP, Lot R34447); GAPDH (glyceraldehyde-3-957 
phosphate dehydrogenase) at 1:30,000 (Cat#G8795, Sigma-Aldrich); secondary antibodies 958 
(Amersham ECL Rabbit IgG, HRP-linked whole antibody, NA934, Lot 17457635, GE 959 
Healthcare Life Sciences; Amersham ECL Mouse IgG, HRP-linked whole antibody 960 
(NA931VS, Lot 17234832, GE Healthcare Life Sciences) were used at 1:3000 for all rabbit 961 
antibodies and for all mouse antibodies. The signal was detected with SuperSignal West Pico 962 
Chemiluminescent Substrate. 963 

Widefield and Structured illumination microscopy 964 

SIM imaging was performed using a custom three-color system built around an Olympus IX71 965 
microscope stage, which we have previously described43. Laser wavelengths of 488 nm 966 
(iBEAM-SMART-488, Toptica), 561 nm (OBIS 561, Coherent), and 640 nm (MLD 640, 967 
Cobolt) were used to excite fluorescence in the samples. The laser beam was expanded to fill 968 
the display of a ferroelectric binary Spatial Light Modulator (SLM) (SXGA-3DM, Forth 969 
Dimension Displays) to pattern the light with a grating structure. The polarization of the light 970 
was controlled with a Pockels cell (M350-80-01, Conoptics). A 60×/1.2 numerical aperture 971 
(NA) water immersion lens (UPLSAPO 60XW, Olympus) focused the structured illumination 972 
pattern onto the sample. This lens also captured the samples’ fluorescent emission light before 973 
imaging onto an sCMOS camera (C11440, Hamamatsu). The maximum laser intensity at the 974 
sample was 20 W/cm2. Widefield images and raw SIM images were acquired with the 975 
HCImage Live software (Hamamatsu) to record image data to disk and a custom LabView 976 



2016 program (freely available upon request) to synchronize the acquisition hardware. 977 
Multicolour images were registered by characterising channel displacement using a matrix 978 
generated with TetraSpeck beads (Life Technologies) imaged in the same experiment as the 979 
cells. COS-7 cells expressing mEmerald-Sec61b-C1 (ER marker) and stained with SiR-980 
Lysosome (lysosome marker) were imaged by SIM every 1.5 s (including imaging exposure 981 
time (20-30ms for each channel) of both channels) for 60 frames. 982 
 983 
Reconstruction of the SIM images with LAG SIM 984 
 985 
Resolution-enhanced images were reconstructed from the raw SIM data with LAG SIM, a 986 
custom plugin for Fiji/ImageJ available in the Fiji Updater. LAG SIM provides an interface to 987 
the Java functions provided by fairSIM44. LAG SIM allows users of our custom microscope to 988 
quickly iterate through various algorithm input parameters to reproduce SIM images with 989 
minimal artifacts; integration with Squirrel45 provides numerical assessment of such 990 
reconstruction artifacts. Furthermore, once appropriate reconstruction parameters have been 991 
calculated, LAG SIM provides batch reconstruction of data so that a folder of multicolour, 992 
multi-frame SIM data can be reconstructed overnight with no user input. 993 
 994 
AiryScan imaging 995 
 996 
AiryScan imaging was performed using a LSM 880 confocal microscope (Zeiss). A Zeiss Plan-997 
Apochromat 63×/1.40 DIC M27 Oil objective was used. For visualisation of ER structure, ER 998 
mCherry was excited by a diode-pumped solid-state (DPSS) 561 nm laser (1% intensity) and 999 
detected using the AiryScan detector. Bit depth was set at 16 bits. Using the Fast-Airyscan 1000 
mode, live-cell time-lapse images were acquired every 1 second (60 frames) with an image 1001 
size of 1364 × 1244 pixels. Cells were kept in a controlled environment (37°C, 5% CO2) during 1002 
imaging. Following acquisitions, images were deconvoluted using the Airyscan processing. 1003 
Image processing was performed in software ZEN 2.3 SP1 FP3 (black) (ver.14.0.25.201). 1004 
 1005 
Confocal Imaging 1006 
 1007 
A part of confocal imaging was performed using a STELLARIS 8 confocal microscope (Leica). 1008 
A HC PL APO CS2 63x/1.40 OIL objective was used. For visualisation of ER structure, ER 1009 
mCherry was excited by 587 nm of white light laser (WLL) with 3% intensity and detected 1010 
using the HyD S3 detector (detection range: 592-750 nm). Bit depth was set at 16 bits. Live-1011 
cell time-lapse images were acquired every 1.5 seconds (90 frames) with an image size of 512 1012 
× 512 pixels. Cells were kept in a controlled environment (37°C, 5% CO2) during imaging. 1013 
 1014 
ERnet construction and training 1015 
 1016 
For the segmentation of the sequential endoplasmic reticulum (ER) images, a spatio-temporal 1017 
shifted window vision transformer neural network is trained and used. The proposed model is 1018 
inspired by the previous models Vision Transformer19, its more efficient shifted window 1019 
variant Swin20, and adaption to image restoration SwinIR46. We also combine the multi-head 1020 
self-attention (MSA) mechanism33  with a channel attention mechanism34 in the ERnet, a design 1021 
which makes the model more adaptive to different phenotypes of ER. Swin introduced the 1022 
inductive bias to self-attention called shifted window multi-head attention (SW-MSA) which 1023 
can be compared to the inductive bias inherent in convolutional networks. SwinIR introduced 1024 
residual blocks to the Swin transformer to help preserve high-frequency information for deep 1025 
feature extraction. The Video Swin transformer extended the SW-MSA to three dimensions, 1026 



such that spatio-temporal data can be included in the local attention for the self-attention 1027 
calculation. Further to this, the success of the channel attention mechanism47 inspired the 1028 
inclusion of this other inductive bias in addition to 3D local self-attention following the SW-1029 
MSA approach. 1030 

The inputs to the model have the dimension 𝑇 × 𝐻 ×𝑊 × 𝐶 , where 𝑇  is 5 for ERnet (5 1031 
adjacent temporal frames) and 𝐶 is 1 (grayscale inputs). A shallow feature extraction module 1032 
in the beginning of the network architecture, shown in Fig. 1, projects the input into a feature 1033 
map, 𝐹! , of 𝑇 × 𝐻 ×𝑊 × 𝐷  dimension, where the embedding dimension, 𝐷 , is a 1034 
hyperparameter. The feature map is passed through a sequence of residual blocks denoted 1035 
Window Channel Attention Block (WCAB) 1036 

𝐹" = 𝐻#$%&(𝐹"'(), 𝑖 = 11, . . , 𝑛 1037 

Inside each WCAB is a sequence of Swin Transformer Layers (STLs), in which multi-head 1038 
self-attention is calculated using local attention with shifted window mechanism. Inputs to STL 1039 
layer is partitioned into )

*
× +,

-!  3D tokens of 𝑃 ×𝑀. × 𝐷  dimension. For a local window 1040 
feature, 𝑥 ∈ ℝ*×-!×0, query, key and value matrices, {𝑄, 𝐾, 𝑉} ∈ ℝ*-!×0, are computed by 1041 
multiplication with projection matrices following the original formulation of transformers. 1042 
Attention is then computed as 1043 

Attention(𝑄, 𝐾, 𝑉) = SoftMax(𝑄𝐾)/√𝑑 + 𝐵)𝑉, 1044 

where 𝐵 ∈ ℝ*!×-!×-! is a relative positional bias found to lead to significant improvements 1045 
in classification performance. STLs are joined in a way similar to the residual blocks, although 1046 
the use of SW-MSA is alternated with a version without shifted windows, W-MSA, ensuring 1047 
that attention is computed across window boundaries, which would not have been the case 1048 
without SW-MSA. 1049 

After the final STL, the 𝑚-th layer, in a WCAB, a transposed 3-dimensional convolutional 1050 
layer is used to project the 3D tokens back into a 𝑇 × 𝐻 ×𝑊 × 𝐷 feature map, 𝐹",2. A channel 1051 
attention module is then used on 𝐹",2  to determine the dependencies between channels 1052 
following the calculation of the channel attention statistic. The mechanism works by using 1053 
global adaptive average pooling to reduce the feature map to a vector which, after passing 1054 
through a 2D convolutional layer, becomes weights that are multiplied back onto 𝐹",2 such that 1055 
channels are adaptively weighed. A residual is then obtained by adding a skip connection from 1056 
the beginning of the 𝑖 -th WCAB to prevent the loss of information, i.e., low-frequency 1057 
information, and the vanishing gradient problem. A fusion layer combines the temporal 1058 
dimension and the channel dimensions. For the final upsampling module, we use the sub-pixel 1059 
convolutional filter to expand the image dimensions by aggregating the fused feature maps. 1060 

The model is trained by minimising a multi-class cross-entropy loss function 1061 
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1
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where 𝑘 and 𝑗 are iterators over a total of 𝐾 unique classes, and 𝑓";	7,8+ (𝑘) is a function equal to 1063 
1 if the target class for the pixel at (𝑥, 𝑦) of the 𝑖th image is 𝑘 and equal to 0 otherwise. In this 1064 



paper, we study the segmentation of background, tubules, sheets, and sheet-based tubules and, 1065 
therefore, 𝐾 = 4 in the equation above. 1066 

The training data is obtained by acquiring experimental data using structured illumination 1067 
microscopy (SIM). A total of 20 sequential stacks of different samples are acquired, where 1068 
each stack consists of 60 SIM images reconstructed with ML-SIM. The super-resolved SIM 1069 
outputs are then segmented by manually finetuning a random forest model in the Weka plugin 1070 
for ImageJ on an image-by-image basis.  1071 

ERnet has been trained with the Adam optimiser and a cross-entropy loss function using a 1072 
learning rate of 1e-5 that is halved after 30,000 iterations. A total of 65,000 iterations were 1073 
made, which equals 100 epochs of the training dataset. A Nvidia A100 GPU was used with a 1074 
batch size of 10. Training samples were randomly cropped to 128x128, while inference was 1075 
performed with 1024x1024 inputs. For ERnet, the WCAB number, STL number, window size, 1076 
embedding size D and attention head number are set to 6, 6, 8, 96 and 6, respectively. The other 1077 
hyperparameters are further specified below: 1078 
 1079 
Implementation details 1080 
 1081 
- Implementation: Training/archs/swin3d_rcab3_arch.py 1082 
- Patch size: (3,4,4) 1083 
- Window size: (2, 8, 8) 1084 
- MLP ratio: 2 1085 
- No. of Swin transformer layers: 5 1086 
- Depths of Swin transformer layers: (6, 6, 6, 6, 6) 1087 
- Embedding dimension: 192 1088 
- Attention head number: (8, 8, 8, 8 , 8) 1089 
- Batch size: 10 1090 
- Image size: 128 1091 
- Number input channels: 1 1092 
- Number output channels: 4 1093 
- Data workers: 4 1094 
- Validation images: 70 1095 
- Training images: 650 1096 
- Number of epochs: 100 1097 
- Learning rate: 0.0001 1098 
- Learning scheduler: Reduced by 0.5 per 50 epochs 1099 
 1100 
 1101 
Network analysis methods 1102 
 1103 
To quantify the structural changes in the ER, methods from network analysis are applied48-49. 1104 
We represent the ER structure of tubules through an undirected and unweighted graph. All 1105 
tubule junctions are represented by nodes, and the tubules by edges.  1106 
 1107 
Networks are built in a python routine and their metrics are measured through the python 1108 
package graph-tool18 and network x50. We measure the size of the network through the number 1109 
of nodes: 𝑁, and edges: 𝐸, within the system. The number of edges attached to one node is 1110 
called the nodes degree: 𝑘, and the distribution of the degrees is one of the most fundamental 1111 
parts of the analysis of network structures.  1112 



 1113 
To quantify the structural arrangements of the ER, we focus on primary network connectivity 1114 
metrics. Firstly, we measure the network density, 𝑑, between nodes and edges (see Eq. (2)). 1115 
Other metrics that describe the network connectivity are the global clustering coefficient (see 1116 
Eq. (2)) and the network assortativity (see Eq.(3)). The global clustering coefficient describes 1117 
the tendency of the network to build triangles, by relating triplets to each other. Three nodes 1118 
connected to each other through three edges are a 𝑐𝑙𝑜𝑠𝑒𝑑	𝑡𝑟𝑖𝑝𝑙𝑒𝑡, while three nodes connected 1119 
to each other through two edges are called an 𝑜𝑝𝑒𝑛	𝑡𝑟𝑖𝑝𝑙𝑒𝑡 51. The network assortativity 1120 
describes the likelihood of nodes connecting with nodes of similar properties; here specifically, 1121 
as is common, a node degree. Assortative mixing is contrasted to disassortative mixing where 1122 
nodes tend to connect to others of dissimilar propertie52. The assortativity coefficient, 𝑟, is 1123 
described in Eq.(3), where 𝑒"; is the fraction of edges linking a node with type 𝑖 to nodes of 1124 
type 𝑗, 𝑎"  is the sum over 𝑒";  for all 𝑗 and 𝑏"  is the sum over 𝑒";  for all 𝑖 . An assortativity 1125 
coefficient of 𝑟 = 0  indicates no mixing preference, whereas positive values indicate 1126 
assortative and negative values disassortative tendencies.  1127 
 1128 

𝑑 =
2𝐸

𝑁(𝑁 − 1) 
(1) 

𝐶𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑙𝑜𝑠𝑒𝑑	𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠  
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(3) 
 

 1129 
Additionally, we include macroscopic network arrangements by counting the number of 1130 
network components. Networks may be entirely connected or composed of many distinct 1131 
components53. For networks evolving over time, network components outline merging or 1132 
splitting behaviour. In networks with many components, the most characteristic topological 1133 
features are often exhibited in the largest component54.  1134 

Ground truth test of connectivity analysis 1135 

First, we generate a random network and use triangulation and tessellation to obtain a fully 1136 
connected network. Using cubic spine interpolation (third panel), we generate a backbone that 1137 
mimics a connected ER tubular network. This dataset can then be processed to mimic 1138 
microscopic imaging data through addition of noise and PSF blurring.The noise level is a 1139 
parameter defined here as a scaling factor of the standard deviation of a Gaussian noise source, 1140 
ranging from 0 to 20. The SNR values follow a more standardised definition given by the ratio 1141 
of the mean of the signal and the standard deviation of the background. SNR for random noise 1142 
N is defined as:  1143 

SNR=𝑬[𝑺
𝟐]

𝑬[𝑵𝟐]
 1144 

If the noise has expected value of zero, the denominator is its variance, the square of its standard 1145 
deviation 𝜎N.  1146 

Data visualization 1147 



Videos of time-lapse imaging and analysis were performed using Fiji (NIH). The connectivity 1148 
graphs in the figures are re-plotted by a Python module named “connectivity graph.py”. 1149 
Instructions of using this module is provided inside the file. Colours of the segmented ER 1150 
domains, including tubules, sheets and sheet-based tubules, are displayed in greyscale format 1151 
from ERnet, which can be changed based on user’s preference.   1152 

Statistical analysis 1153 

Statistical significance between two values was determined using a two-tailed, unpaired 1154 
Student’s t test (GraphPad Prism 8.2.1). Statistical analysis of three or more values was 1155 
performed by one-way analysis of variance with Tukey’s post hoc test (GraphPad Prism). All 1156 
data are presented as the mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 1157 
0.0001. 1158 
Statistical parameters including the exact value of n, the mean, median, dispersion and 1159 
precision measures (mean ± SEM), and statistical significance are reported in the figures and 1160 
figure legends. Data are judged to be statistically significant when P < 0.05 by two-tailed 1161 
Student’s t test. In the figures, asterisks denote statistical significance as calculated by 1162 
Student’s t test (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).  1163 
 1164 
 1165 
 1166 
 1167 
Data availability 1168 
All data needed to evaluate the conclusions in the paper are present in the Source Data files. 1169 
All the datasets used to train and test the model are publicly accessible at figshare repository: 1170 
https://figshare.com/articles/dataset/ERnet_datasets/21975878/1.  1171 
 1172 
Code Availability 1173 
The ERnet model is written in Python. The software and Colab versions of ERnet are also 1174 
freely available online through GitHub at https://github.com/charlesnchr/ERnet-v2.  1175 
 1176 
 1177 
Methods only references 1178 
 1179 

39. Michel, C.H., Kumar, S., Pinotsi, D., Tunnacliffe, A., George-Hyslop, P.S., Mandelkow, E., Mandelkow, 1180 
E.M., Kaminski, C.F. and Schierle, G.S.K. Extracellular monomeric tau protein is sufficient to initiate 1181 
the spread of tau protein pathology. Journal of Biological Chemistry, 289(2), pp.956-967 (2014). 1182 
 1183 

40. Avezov, E., Konno, T., Zyryanova, A., Chen, W., Laine, R., Crespillo-Casado, A., Melo, E.P., Ushioda, 1184 
R., Nagata, K., Kaminski, C.F. and Harding, H.P. Retarded PDI diffusion and a reductive shift in poise 1185 
of the calcium depleted endoplasmic reticulum. BMC biology, 13(1), pp.1-15 (2015). 1186 
 1187 

41. Middya, S., Curto, V. F., Fernández-Villegas, A., Robbins, M., Gurke, J., Moonen, E. J., ... & Malliaras, 1188 
G. G.. Microelectrode arrays for simultaneous electrophysiology and advanced optical 1189 
microscopy. Advanced Science, 8(13), 2004434 (2021). 1190 
 1191 

42. Lu, M., Williamson, N., Mishra, A., Michel, C. H., Kaminski, C. F., Tunnacliffe, A., & Schierle, G. S. 1192 
K. Structural progression of amyloid-β Arctic mutant aggregation in cells revealed by multiparametric 1193 
imaging. Journal of Biological Chemistry, 294(5), 1478-1487 (2019). 1194 
 1195 

43. Young, L. J., Ströhl, F., & Kaminski, C. F. A guide to structured illumination TIRF microscopy at high 1196 
speed with multiple colors. JoVE (Journal of Visualized Experiments), (111), e53988 (2016). 1197 



 1198 
44. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. and Huser, T. Open-source image reconstruction 1199 

of super-resolution structured illumination microscopy data in ImageJ. Nature communications, 7(1), 1200 
pp.1-6 (2016). 1201 
 1202 

45. Culley, S., Albrecht, D., Jacobs, C., Pereira, P.M., Leterrier, C., Mercer, J. and Henriques, R. Quantitative 1203 
mapping and minimization of super-resolution optical imaging artifacts. Nature methods, 15(4), pp.263-1204 
266 (2018). 1205 
 1206 

46. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. Swinir: Image restoration using swin 1207 
transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1833-1208 
1844) (2021). 1209 
 1210 

47. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y. Image super-resolution using very deep residual 1211 
channel attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 1212 
286-301) (2018). 1213 
 1214 

48. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. Complex networks: structure and 1215 
dynamics. Phys Rep. ; 424(4–5): 175–308 (2006). 1216 
 1217 

49. Costa L. da F., Rodrigues F.A., Travieso G., Villas Boas P.R. Characterization of complex networks: A 1218 
survey of measurements. Am J Enol Vitic. 38(4): 293–297 (1987). 1219 
 1220 

50. Hagberg, A., Swart, P. and S Chult, D. Exploring network structure, dynamics, and function using 1221 
NetworkX (No. LA-UR-08-05495; LA-UR-08-5495 (2008). 1222 
 1223 

51. Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 45(2): 167–256 (2003). 1224 
 1225 

52. Cimini G., Squartini T., Saracco F., Garlaschelli D., Gabrielli A., Caldarelli G. The statistical physics of 1226 
real-world networks. Nat Rev Phys. 1(January): 58–71(2019). 1227 
 1228 

53. Albert, R. Scale-free networks in cell biology. J Cell Sci 118(21): 4947–4957 (2005). 1229 
 1230 

54. Strogatz, S. H. Exploring complex networks. Nature, 410(6825), 268-276 (2001). 1231 
 1232 
 1233 
 1234 
 1235 
 1236 
 1237 
 1238 
 1239 


