Practical problems that are frequently encountered in applications of covariance
structure analysis are discussed and solutions are suggested. Conceptual, statisti-
cal, and practical requirements for structural modeling are reviewed to indicate
how basic assumptions might be violated. Problems associated with estimation,
results, and model fit are also mentioned. Various issues in each area are raised, and
possible solutions are provided to encourage more appropriate and successful
applications of structural modeling.
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he methodology of theory testing via structural equation

models, which is accepted today as a major component
of applied multivariate analysis, is historically relatively new,
having been developed in a general and widely accessible form
only during the past decade (see Bentler, 1986a, for a review). The
process has several basic steps that are probably well known: A
model containing random vectors and parameters is developed
on the basis of substantive theory, the assumptions underlying the
model are used to develop the covariance or moment structure
implications of the data, the fixed and free parameters of the
model as well as any constraints are imposed, and a statistical
method, such as maximum likelihood (ML) or generalized least
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squares (GLS), is used to estimate the unknown parameters based
on a nonlinear optimization method, thus permitting the empiri-
cal adequacy of the model to be assessed on the basis of the degree
of fit of the model to appropriate sample data. In practice, of
course, path diagrams are used to make developing and specify-
ing the model relatively easy, and a general computer program,
such as LISREL (Joreskog, 1977; Joreskog and Sérbom, 1984) or
EQS (Bentler, 1985), which permits a wide range of models and
estimation methods to be applied to one’s particular model and
data, is used to generate the parameter estimates and tests of fit.
Many conceptual elaborations are needed to be able to imple-
ment smoothly and appropriately the approach to model building
and evaluation summarized above. These important details
include not only issues surrounding the translation of substantive
theory into a form that can be tested by structural modeling, but
also technical details such as mathematical and statistical topics
relevant to algebraic model structures, concepts in multivariate
analysis, the requirements of a particular computerized proce-
dure, and so on. The first goal of this article is to review the basic
assumptions that are needed to assure the appropriate use of
structural modeling. Some difficulties that occur, and possible
solutions, are discussed. The second goal of this article is to
address some further issues that arise in practice, and give sugges-
tions on how to handle these problems. We shall assume that the
reader has a general familiarity with structural modeling. See
Bentler (1987a) or Long (1983) for introductory presentations.

REVIEW OF BASIC ASSUMPTIONS

Although structural models can be quite easy to set up, esti-
mate, and evaluate with modern computer programs, their out-
put should always be viewed with a certain amount of skepticism:
there are many ways in which the methods can fail to reach the
lofty goal of evaluating a causal hypothesis. We shall discuss three
types of difficulties: conceptual, statistical, and practical.
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CONCEPTUAL REQUIREMENTS

It is quite easy to get carried away with the beautiful simplicity
with which path diagrams can capture a theory, and with the
awesome stacks of computer printouts that epitomize alternative
theory-guided views of one’s data, thereby losing sight of the
fundamental issue of whether some basic conditions for struc-
tural modeling have been met. Even the best possible model fit
may not protect one from meaningless results.

Obviously, any model will be tested against data obtained from
some sample of subjects. An important question that should be
answered affirmatively prior to engaging in structural modeling is
whether the sample at hand comes from a population that is
relevant to the theoretical ideas being evaluated. If the sample
cannot be defended as coming from a relevant population, any
obtained results may be uninformative about a theory. Thus it is
important to know whether the theory one is evaluating should
hold for males as well as females, only for a given ethnic group, or
only with adolescents. For example, theories of cognitive growth
may be relevant only to children or adolescents, but not to young
adults. An example of a questionable choice of sample is given in
the study of models of female orgasm by Bentler and Peeler
(1979). A surprisingly large part of their sample had never had
sexual intercourse, and thus did not have a good experiential
basis for responding about orgasmic feelings. Luckily, their key
findings were validated in a more mature sample (Newcomb and
Bentler, 1983).

A closely related issue, easily forgotten in the details of the
modeling process itself, is whether the data that might be
obtained are gathered under appropriate conditions of measure-
ment (appropriate in relation to the theory under investigation).
In the case of opinion surveys, for example, confidentiality of
responses may be a requisite to having valid responses to sensitive
questions. When evaluating physiological functioning, certain
conditions may be called for, such as obtaining urine samples
after an appropriate fasting period. When evaluating intelligence
in children, appropriately standardized conditions of testing have
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been recognized as important for many years. However, the
fairness of a particular type of test to the ethnic sample being
tested, for example, to youngsters who are not native English
speakers, may be a question to ponder.

Another important issue involves whether a structural theory is
attempting to describe cause-effect sequences that occur over
time. The lag required for an antecedent variable to have an effect
must be considered. For example, in a model designed to assess
the maximum effect of aspirin on relief of pressure headaches, if
an antecedent variable is the taking of aspirin, and the consequent
variable is relief from headache pain, a contemporaneous mea-
sure of relief from pain must be obtained at the causal lag that is
appropriate to the maximum expected effect of aspirin: An
immediate measure, or one delayed by 24 hours, is likely to show
no effect even if one exists at, say, 30 minutes. Whether “instan-
taneous” causation, with simultaneous mutual influences of vari-
ables on each other, makes sense in a model will depend on one’s
philosophy (e.g., Strotz and Wold, 1960) as well as statistical
considerations (e.g., Bentler and Freeman, 1983). A related
general point is that longitudinal, or panel, studies may be
required to evaluate certain causal sequences. Although some
exogenous variables (such as age, sex, race, and so on) may be
able to be measured at any time point and still be appropriately
incorporated into a model that assumes these variables occur
“prior” to others, as causal sequence may not be unambiguously
able to be established in many models without incorporating
across-time measurement (e.g., Baumrind, 1983). Gollob and
Reichardt (1987) have gone so far as to state that cross-sectional
models, based on data at one time point only, will virtually always
yield biased results on causal effects that are presumed to operate
across time. In essence, they argue that a prior measure of the
consequent variable is necessary in order to interpret effects of
other variables on this consequent variable. A related question is
whether a more dynamic, differential-equation type of model is
more appropriate to the concepts at hand than the standard
model (Arminger, 1986).
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An additional conceptual requirement for valid evaluation of
theories via structural modeling lies in having theoretically
appropriate operationalizations of variables. A given task de-
signed to measure intelligence may not, for example, be appro-
priate as a variable in a model designed to evaluate Piaget’s theory
of intellectual functioning. His theory requires specialized assess-
ments, perhaps of such constructs as conservation (Goldschmid
and Bentler, 1968), in which equal quantities of water are poured
into a narrow and a wide glass, and children are asked whether the
narrow and wide glasses have the same amount of water in them
(they look unequal).

A final requirement relates to the previous issue, particularly in
relation to the use of measured variables as indicators of latent
variables. Does a latent variable make sense in a given domain—
whether or not a latent variable model fits statistically? In general,
a latent variable makes sense when its indicators are logical
(theoretical) consequences of the latent variable, not causally
related to each other, and correlated sufficiently highly to suggest
a common core concept. For example, education, income, and
housing quality are from one perspective indicators of a single
latent construct. That is, it is easy to conceive of a dimension of
social class that has the “haves” at one end, and the “have-nots” at
the other end. Increases in the cost of gold, increases in the cost of
housing, and increases in the cost of goods over a particular time
span would seem to be obvious candidates to be indicators of a
latent construct of inflation. However, theory must support the
existence of a latent variable for such a construct to make sense in
a given model. Thus for some purposes education and income
may best not be considered as indicators of social class, since
education may be causally related to income. And then, if the
construct is meaningful, the particular variables chosen as opera-
tionalizations of the construct may be lousy, casting doubt on
whether the meaning of the construct has been captured in the
operationalizations. Thus a verbal report measure of perceived
pressure on the job may, or may not, adequately capture a key
idea in a particular theory of stress. And even if it does, the way
the respondent’s reply is coded into a score may destroy its
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meaningfulness. In addition, it may well be that the latent space is
properly thought of as multidimensional, and a rationale for
choosing only a given aspect of such a space may be needed in
particular applications. For example, the concept of a single
common factor latent variable was introduced by Spearman
(1904) in his theory of general intelligence, but recent theory
emphasizes a multidimensional construct. Thus performance on
college or graduate school entrance examinations will usually
contain measures of quantitative as well as verbal skills. The use
of a single summary score, the total across both measures, may be
justified primarily for practical predictive purposes (see Thorn-
dike, 1985). However, in the prediction of engineering skills, the
quantitative score may be more critical. And in developing a
structural model with latent variables, a wide enough range of
indicators of quantitative skills—say, geometric reasoning, alge-
braic manipulation, and computational skills (depending on
one’s theory)—would be desired to assure that the broad con-
struct is well represented. Having an adequate number of indica-
tors also minimizes computational problems (e.g., Anderson and
Gerbing, 1984; Boomsma, 1983, 1985).

STATISTICAL REQUIREMENTS

In addition to conceptual requirements associated with struc-
tural modeling, there are technical conditions that must be met
for the results to be meaningful. Violation of these conditions
may make the statistics involved, such as chi-square tests or
standard errors, be of questionable quality or possibly downright
misleading.

Independence of observations. Current statistical theory used
in structural modeling is based on the assumption that data have
been gathered from independent observations (cases, subjects,
sampling units). It is assumed that responses given by one person
will not in any way influence the responses given by another
person. In many surveys or telephone interviews, this condition is
easy to meet. However, it may also be easy to violate: For exam-
ple, one may obtain data from a single subject across time, with
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“observations” referring to repeated measures on the individual.
In that case, serial correlation among the responses are quite
likely. For example, a mood state that may influence a response at
a given time may also influence the response 15 minutes later;
however, dependence due to mood fluctuation may not be a
problem if the measures are a week apart. Lack of independence
may also crop up in innocuous situations: scores from twins may
be analyzed, or data may be taken from best friends. It has been
argued (e.g., Freedman, 1985) that such a data-gathering design
makes the statistical results doubtful since the basic assumption
of independence may be violated. Currently, except for special-
ized regression models, no methods exist for appropriately taking
such dependence into account, or of evaluating the assumption by
statistical means. Logical arguments must be used.

Identical distributions. The basic theory of structural modeling
holds that the same process that describes influences of variables
on each other is operating in each and every individual observa-
tion or case. (Typically, this condition is described simultane-
ously with the previous one, under the heading of “i.i.d.” assump-
tions: independent and identically distributed observations.)
Stated differently, it is assumed that the path diagram accurately
reflects a process that is homogenous across all observations. If
such an assumption is false, it is likely that other assumptions—
such as a normality assumption—may be violated, which, in turn,
may show up in a model not fitting the data. Deviations from a
normality assumption can be tested by several means, including
Mardia’s (1970) test based on multivariate kurtosis that is availa-
ble in the EQS program. EQS also calculates case contributions
to Mardia’s test, and these contributions can be used to locate
outlying individuals regardless of the distribution. A few extreme
outliers are unlikely to be described by a structural model that
describes all the remaining observations. Outliers can also be
detected by other means (e.g., Comrey, 1985).

Ifitis suspected that the process theory is different for identifi-
able subpopulations, such as males or females, it would be
appropriate to perform the analysis separately in these popula-
tions, based, perhaps, on different models. Actually, the homo-
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geneity assumption can be evaluated in part by a multiple-group
or multiple-population model (Bentler, Lee, and Weng, 1987; Lee
and Tsui, 1982; Sérbom, 1982), in which key features that differ-
entiate models for different groups can be evaluated.

Simple random sampling. Existing methods in structural
modeling are based on the assumption that each of the units or
cases in the population has an equal probability of being included
in the sample to be studied. In particular, the statistics such as
standard errors are appropriate estimators of population param-
eters only under this assumption. The reason that this is so
involves the fact that unadjusted means, variances, and covari-
ances are treated as data to be structurally modeled, and these
must be consistent estimators of the corresponding population
parameters. When more complex sampling designs are used, the
usual covariances as inputs to structural modeling are inappro-
riate, and the sample means, variances, and covariances must be
adjusted to estimate appropriately and consistently the popula-
tion parameters. This can be accomplished by procedures that
give cases differential weight in computations. When such
adjustments are needed but not implemented, one must be certain
that one understands that the results of modeling will generalize
to a population similar to that observed in the sample, but not
necessarily to the general population. In some circumstances this
drawback may not be crucial, since there is no intent to generalize
results to a given population. For example, if the population itself
cannot be well defined, then drawing a sample from the popu-
lation is very difficult if not impossible. To illustrate, the popu-
lation of cocaine users is easy to conceive, but it is virtually
impossible to draw a random sample from the population since
most users go to great lengths not to be publicly identified due to
legal consequences.

The random sample assumption is usually a reasonable one in
practice, although certain data bases are obtained using other
methods of sampling. For example, some studies oversample
subgroups (such as high-risk subgroups, or subgroups of special
interest) that might be critical for a given purpose. More typically,
nonrandom samples may occur due to relatively uncontrollable
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conditions such as the almost inevitable volunteer bias. Thus
females are frequently more available and/or cooperative as
research subjects, as compared to males, leading to differential
representation of the sexes unless special efforts are undertaken.
When such differential representation of different groups is
encountered, it may be desirable to evaluate the extent to which
the grouping accounts for variance in the responses. If this
percentage is trivial, analyzing all subjects together is not a sig-
nificant problem. When variables behave quite differently in
different groups, it may be necessary to run a multiple-groups
structural model to see the similarities and differences of results
across groups. Although recent research has been directed toward
developing methods to adjust for biased sample selection (e.g.,
Bowden, 1986), some controversy exists about whether it is pos-
sible to adjust for selection bias (e.g., Little, 1985).

Functional form. The structural models emphasized in this
review assume that all relations among variables are linear. This
assumption must not only be conceptually appropriate to the
theoretical questions being addressed, it should be true empiri-
cally as well. It is probably a reasonable assumption when the
variables are multivariate normally distributed, or are approxi-
mately so distributed after some normalizing transformations.
The assumption may be less reasonable if the variables are arbi-
trarily distributed. In contrast to the case of regression, where
numerous diagnostics exist to evaluate assumptions of the model
(e.g., Chatterjee and Hadi, 1986), structural modeling diagnostics
are virtually nonexistent. Regression diagnostics can, of course,
be used equation-at-a-time in multiple-equation path or simul-
taneous equation models. However, these diagnostics cannot be
applied to latent variable models since case scores for the latent
variables cannot be determined precisely.

One way to approach the validity of the linearity assumption
would be to embed strictly linear models in more complete mod-
els that permit nonlinearities, for example, polynomial relations
among variables, or interactions between latent variables. If the
nonlinear components do not add appreciably to model fit, these
could be ignored and the linearity assumption could be accepted.
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However, while a general theory for such methods has been
developed (Bentler, 1983), existing implementations have been
quite specialized (e.g., Etezadi-Amoli and McDonald, 1983;
Heise, 1986; Kenny and Judd, 1984; Mooijaart and Bentler,
1986a), and no general computer program is available for use.
Thus the use of linear relations is currently based largely on
implementability, supported more by successful experience with
such models than with evidence that linearity is usually well-
justified in social research. Two practical reasons that may be
cited for not worrying unduly about linearity is that nonlinear
models often do not hold up well in new samples (e.g., Wiggins,
1972), and that nonlinear relations may be approximated by more
complex linear models.

The place where nonlinearity is most likely to occur in a
predictable manner, and where some progress has been made
toward developing methods, has been in models employing cate-
gorical variables. Categorical variables raise not only the linearity
issue, but also a question about the continuous nature of vari-
ables. Continuity will, of course, never be observed in sample
data, because the largest number of different scores that could be
obtained is the number of subjects in the study. But many vari-
ables, such as income, can be seen to be continuous, at least in
theory. In practice, they may be categorical because only a few
levels of a variable are scored: Individuals may be asked whether
they earn less than $5,000, between $5,000 and $15,000, and so on.
Other variables, on the other hand, such as sex, may be intrinsi-
cally categorical. The methods reviewed in this article are based
on the assumption of continuity of dependent variables. Inde-
pendent observed variables, however, may be categorical.

Olsson (1979), Muthen and Kaplan (1985), and others have
argued that the use of categorical variables with methods based
on the assumption of linearity and continuity yields distortion of
results. One approach to rectifying the problem is to nonlinearly
map a categorical variable into a latent continuous variable, and
then to develop linear structures for the continuous variables. For
instance, tetrachoric, polychoric, or polyserial correlations (e.g.,
Lee, 1985c; Lee and Poon, 1986) can be used to describe the
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relations between two underlying continuous variables that, in
turn, nonlinearly generate the categorical variables. These indexes
of association may be used in structural modeling (e.g., Muthen,
1984; Lee, Poon, and Bentler, 1987). Other approaches are also
being developed (e.g., Aitkin and Rubin, 1985; Arminger and
Kusters, 1986; Bock and Aitkin, 1981; Bye et al., 1985). However,
it has not been verified that these theoretically more appropriate
methods generally work better in practice. For example, Collins
et al. (1986) found that tetrachorics could yield quite misleading
results when compared to the use of technically less appropriate
ordinary correlation coefficients with binary variables.

We suggest adopting the following practices for the near
future. Continuous methods can be used with little worry when a
variable has four or more categories, but with three or fewer
categories one should probably consider the use of alternative
procedures. If the categorization induces marked nonnormality
in variables, a distribution-free method of estimation is called for
(see next section). Of course, one should recognize that some
distortion will occur in a purely linear model as a result of using
categorical variables, yielding a degradation in fit. But this disad-
vantage must be weighed against the difficulties associated with
categorical variable methodology, especially, the restricted num-
ber of variables that one will be limited to (this is an even worse
problem than with distribution-free procedures), and the neces-
sity, with many of today’s methods, of having to make the strong
assumption of multivariate normality of the latent continuous
variables. (Nonparametric approaches are being developed, how-
ever; see, for example, Bye et al., 1985.) Thus categorical variable
methodology itself has drawbacks, including a lack of software,
that may outweigh the drawbacks of its theoretically less appro-
priate competitors. Of course, in some situations it may also not
make any sense to believe that a continuous variable lies behind a
categorical variable. In that case other methods, such as log-
linear or latent-class methods, are more appropriate. See Clogg
and Eliason’s (this issue) or Bonett et al. (1985).

Distribution of variables. Within methodologies for continu-
ous variables, a decision must be made about the distributional
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form of the variables. Distribution-free methods (Browne, 1982,
1984; Chamberlain, 1982; Bentler, 1983; Bentler and Dijkstra,
1985), of course, do not require such a choice, but they become
computationally impractical with models having more than 20-30
variables. Furthermore, their statistics tend to be questionable in
small samples, say with less than 200 subjects (Harlow, 1985;
Tanaka, 1984). Distributions that are not normal, but in which
the variables have a symmetric shape but tails that are heavier or
lighter as compared to the normal, are called elliptical if the
variables have homogeneous shape or kurtosis (see, e.g., Bentler
and Berkane, 1985; Berkane and Bentler, 1987a, 1987b). Then the
theory of Browne (1982, 1984), Tyler (1983), Bentler (1983), and
Bentler and Dijkstra (1985) can be used to correct the normal
theory statistics to lead to appropriate test statistics and standard
errors. Distribution-free and elliptical estimators are built into
the EQS program (Bentler, 1985). Recent results imply that with
some specialized models, such as exploratory factor analysis, the
observed variables may in fact not need to be normally distributed
and yet, normal theory estimators, standard errors of loadings,
and the test statistic may remain correct. This occurs provided
that the errors are normally distributed (Amemiya, 1985; Browne,
1985; Mooijaart and Bentler, 1986b; Satorra and Bentler, 1986).
These results generalize to a wider class of linear structures when
factors are normal and errors are independently distributed
(Satorra and Bentler, 1986). Unfortunately, diagnostics to evalu-
ate the relevance of these theories to robustness of statistics in
particular applications remain to be developed. Bentler et al.
(1986) have made a start in this direction by providing a means for
evaluating the distribution of latent variables. However, no
diagnostic tests are currently computerized. In the meantime, one
can be reassured by simulation evidence that indicates that
normal theory ML estimators are almost always acceptable even
when data are nonnormally distributed (Harlow, 1985; Muthen
and Kaplan, 1985; Tanaka and Bentler, 1985). It is the x2 and
standard errors that become untrustworthy under violation of
distributional assumptions. If one utilizes fit indexes (e.g., Bentler
and Bonett, 1980) in addition to statistical criteria for evaluating
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fit, one’s conclusions ought to be reliable.

The use of higher-moment data, such as skewness or kurtosis,
to be modeled is a new development (Bentler, 1983). Such
methods promise more efficient (lower variance) statistical esti-
mators. However, only sporadic applications of such a theory
have been made so far (e.g., Kenny and Judd, 1984; Mooijaart,
1985; Mooijaart and Bentler, 1986a; Heise, 1986).

Covariance structures. Current implementations of structural
modeling are based on a statistical theory derived from the distri-
bution of sample means and covariances, and not the distribution
of sample-standardized variables having unit variance. Thus the
practice of substituting correlation for covariance matrices in
analysis is only rarely justified, since the associated statistics will
usually be inappropriate (e.g., Bentler and Lee, 1983). While
methods have been developed for the structural analysis of corre-
lation matrices (Bentler and Lee, 1983; Lee, 1985a), they are not
available in current publicly distributed computer programs.

Large sample size. The exact distribution of estimators and test
statistics used in structural modeling is not known. The statistical
theory is based on “asymptotic” theory, that is, the theory that
describes the behavior of statistics as the sample size becomes
arbitrarily large (goes to infinity). In practice, samples can be
small to moderate in size, and the question arises whether large
sample statistical theory is appropriate in such situations. Even
this problem has proven to be hard to study analytically or
theoretically, and empirical evidence based on studies with artifi-
cial data and models—so-called Monte Carlo studies—have had
to be used instead. This research is relatively recent (e.g., Ander-
son and Gerbing, 1984; Bearden et al., 1982; Boomsma, 1983,
1985; Gerbing and Anderson, 1985; Geweke and Singleton, 1980;
Harlow, 1985; Muthen and Kaplan, 1985; Tanaka, 1984; Velicer
and Fava, 1987) and has involved only a few types of models,
sample sizes, and estimators. Definitive recommendations are not
available.

An oversimplified guideline that might serve as a rule of thumb
regarding the trustworthiness of solutions and parameter esti-
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mates is the following. The ratio of sample size to number of free
parameters may be able to go as low as 5:1 under normal and
elliptical theory, especially when there are many indicators of
latent variables and the associated factor loadings are large.
Although there is even less experience on which to base a recom-
mendation, a ratio of at least 10:1 may be more appropriate for
arbitrary distributions. These ratios need to be larger to obtain
trustworthy z-tests on the significance of parameters, and still
larger to yield correct model evaluation chi-square probabilities.
It should also be noted that computational problems during
optimization are an inverse function of sample size (e.g., Ander-
son and Gerbing, 1984; Boomsma, 1983; Gerbing and Anderson,
1987; MacCallum, 1986). While estimating a given model in a
large sample may pose no problem, the same model estimated in a
small sample may yield such problems as inadequate convergence
behavior, boundary or Heywood solutions in which parameters
go outside of the permissible range (the classical example being
negative variance estimates), inability to impose constraints
among parameters, and problems with estimation of standard
errors (which may become inappropriately large or very small).
Identified model. Although a recent general statistical theory
has been developed for models containing parameters that are not
“identified” (Shapiro, 1986), essentially all implementations of
structural modeling assume that a model has been specified such
that, if the model were true, a single set of parameters 6 can
reproduce the population covariance matrix. Thatis, 3 = 3(6). In
contrast, an “underidentified” model will have many different sets
of parameters that can equally well reproduce the population
covariance matrix. Thus 3 = %(6,) = %(0.), where 6 and 6, are
different vectors. Parameter identification is a very complex
topic, but it can help to think of the uniqueness of parameters as
synonymous with identification: A model that does not have
identified parameters may have many sets of parameters that can
equivalently well account for the data. An example of the com-
plexity of identification was recently given by Bollen and Jores-
kog (1985), who showed that previous authors were incorrect to
conclude that a factor model is identified if it has factor loadings
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that are unique with respect to rotation of factors. Such a model
may still not be identified, that is, have unique parameters.

The issue of identification can be readily understood in the
context of setting the metric in models with latent variables.
Suppose one has a model that includes equations of the form V1 =
S5*F1+.2*%V2+El, where V1 and V2 are observable variables and
F1 and El are hypothetical variables. Although the scale or
variance of every measured variable such as V2 is known in the
population (in a sample, it may have to be estimated), this is not
true of hypothetical constructs such as factors or errors in vari-
ables. The previous equation can be equivalently written as V1 =
(10 X .5)*(.1F1) + (10 X .2)*(.1V2) + 10(.1E1), where we have
multiplied each coefficient by 10 but then compensated by multi-
plying each variable by .1. Are we permitted to make such a
transformation? When we examine V2 first, it becomes apparent
that we would be creating a new measured variable V2 whose
variance is .1 X .1 =.01 times as large as the variable we actually
have (rescaling by a constant has the effect that the variance is
changed by the square of the constant). But V2 has a certain
variance and the revised equation would imply that it has a
different variance: We are not permitted to make such a trans-
formation. Thus measured variables by themselves create no
problem of identification, whereas the situation is quite different
for constructs. Since F1 and E1 are hypothetical, with no fixed
scale, we could never detect if we replaced the constructs by
constructs that are .1 as big (have .01 as much variance). This
problem is solved by adopting an arbitrary identification condi-
tion that would not permit the rescaling we have illustrated. The
best single way of identifying the scale of a latent variable is to fix
a path from that variable to another variable at, say, 1.0. When a
variable is an independent variable, another way is to fix the
variance of the variable at some known value. This is usually done
in factor analysis, where factors are fixed to have unit variance.
So, we might fix the variance of F1 at 1.0: Then we could not
rescale F1 since it would then have a different variance that we do
not permit. And we might fix the path from E1 to V1 at 1.0: Then
we could not change the implicit 1.0 coefficient in the equation
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either. Forgetting to fix the scale of unmeasured variables is
perhaps the single most frequently made error in applications of
structural modeling.

The second most frequently made identification error also
involves latent variables. In particular, every latent factor that is
meant to account for correlations among some indicators must
not only have its scale fixed, but in general it must have effects on
(paths to) three or more indicators of that factor. Models with one
indicator for a factor will never work (except when a factor is
synonymous with a measured variable, that is, the factor is not
really a factor). Models with only two indicators will usually run
into trouble. While there are exceptions to this rule, particularly
when the factor also has nonzero covariances with other factors
or variables, such situations must be evaluated quite carefully.
Residual variables, such as the E1 variable above, do not need
multiple indicators.

Parameter identification may require substantially more care
than simply fixing the scale of unmeasured variables or having
enough indicators of a factor. Some models require careful atten-
tion to particular equations, which may be problematic for addi-
tional reasons, or to sets of equations, which may permit several
rather than a single solution, or to sets of constraints, which may
be redundant (they are not permitted to be so). The most widely
known problem involves a “nonrecursive” model, in which two
(or more) variables are involved in two-way causation, where a
variable is not only an antecedent of other variables, but also a
consequent of those same variables. Such models are generally
underidentified unless there also exist additional variables that
influence, or are influenced by, one but not the other of the
variables involved in two-way causation.

A phrase that will frequently be found in discussions of identi-
fication involves “overidentification.” This is almost always a
desirable state of affairs, and refers to a situation where there are
fewer parameters in the model than data points. The data to be
analyzed are usually p* = p(p + 1)/2 variances and covariances of
p variables, and any interesting (testable) model will have fewer
than p* free parameters to be estimated. This difference between
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p* and the number of parameters yields the degrees of freedom
associated with the model fit. If a model has more than p*
parameters, it will be underidentified and cannot be tested. A
model that has exactly p* parameters will usually be “just-
identified,” meaning that the parameters are simply transforma-
tions of the data, and, hence, the model cannot be tested or
rejected. Since there may exist several different sets of parameters
that are transformations of the data, just-identified models may
not be unique (see, e.g., Bollen and Joreskog, 1985). Further-
more, a model with less than p* parameters, which is thus nomi-
nally overidentified, may nonetheless in particular parts of the
model be underidentified (e.g., by an absence of a fixed scale for
factors) and hence be not routinely testable until the problem is
eliminated.

The theory of identification primarily deals with local, rather
than global, uniqueness of parameters. That is, there may exist
conceptually quite different parameterizations that reproduce the
population covariances equally well. For example, in some mod-
els, the direction of certain paths can be completely turned
around without affecting the goodness of fit of the model. This
topic has hardly been studied. Some interesting examples of this
phenomenon, along with a set of rules for generating equivalent
path models, are given by Steltzl (1986).

Underidentified models will generally yield statistics that are
not strictly correct. While the chi-square value may be trustworthy
if an optimum function value was attained, the degrees of
freedom may well be understated and thus the p-value (probabil-
ity) of the model may be too low. If an optimum function value
(usually, a minimum) was attained, the computed estimates can
be relied upon to reproduce 2, appropriately, but only the identified
parameters and their standard errors, or identified functions of all
parameters, should be interpreted.

Nested model comparisons. There is little agreement on
methods for evaluating the relative merits of two models that are
not “nested” or hierarchically related (see Leamer, 1978). Thus an
evaluation of the statistical necessity of sets of parameters is
limited, under current statistical theory, to a comparison of mod-
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els in which one model is a subset of the other model, for example,
some free parameters in the model are set to zero in a second
model. Although current practice is based on the chi-square
difference test for making model comparisons, two other equally
correct methods exist. Buse (1982) provides an introduction to
the key ideas involved in the use of three statistics appropriate to
such a purpose: Wald, Lagrange Multiplier, and likelihood ratio
tests. Bentler and Chou (1986) and Bentler (1986b) develop these
theories for structural modeling.

Increasing the constraints in the more general model will result
in a decrease in the number of free parameters, an increase in the
number of degrees of freedom, and a consequent increase in the
goodness-of-fit x* value. The impact of increasing constraints can
be investigated through the Wald (1943) test (Bentler and Dijk-
stra, 1985; Lee, 1985b), in which only the more general model
needs to be estimated. The second approach is to release con-
straints in the more restricted model, thus increasing the number
of free parameters and decreasing the degrees of freedom. Adding
new parameters will decrease the goodness-of-fit x” test. The
statistical theory for this method is known as the Lagrange Mul-
tiplier (LM) theory and has been discussed by Aitchison and
Silvey (1958), Silvey (1959), and Lee and Bentler (1980). The
application of LM theory requires estimation of only the more
restricted model. The third approach is the likelihood ratio
approach, or its equivalent. In this approach, both the restricted
and less-restricted models are estimated, and the significance of
the model-differentiating parameters is investigated by a chi-
square difference test. Then x* and degrees of freedom are
obtained by calculating the difference between the two goodness-
of-fit x* tests, as well as their degrees of freedom. This is currently
the standard approach to model comparison.

A priori structural hypotheses. The statistical theory used in
structural modeling is based on the fundamental premise that the
model itself has been specified completely prior to any analysis of
data, that is, the model represents an a priori set of hypotheses.
Although one may not know the values of the free parameters of
the model (and hence may estimate them in a sample), the entire
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structure (the particular equations, and variances and covari-
ances of independent variables) should be theoretically derived. If
the data are examined, and structural hypotheses are formed after
such data snooping, the statistical theory may become incorrect
because one may then be capitalizing on chance associations in
the data. The effects of capitalizing on chance are particularly
acute in small samples, as shown by MacCallum (1986). Adding
parameters to an incomplete model on the basis of data snooping
can lead to accepting an incorrect true model.

A less serious situation occurs when dropping nonsignificant
parameters on the basis of the data, as in backward stepping in
regression. It appears that the Wald test for dropping parameters
will be more robust than the Lagrange Multiplier test for adding
parameters when these tests are data-driven rather than a priori.
This is because the Wald test is asymptotically independent of the
fit of the more complete model (Steiger et al., 1985). The compar-
able situation does not occur for the LM test: It depends upon the
restricted model.

No parameters on boundary. The statistics of structural model-
ing assume also that the true parameters are, in the population, in
the “interior” of the legitimate parameter space. This assumption
is unimportant when dealing with parameters such as regression
coefficients that could, theoretically, take on any value. The
assumption becomes important when dealing with variances,
which must be assumed to be nonnegative. While this is a per-
fectly natural assumption, estimated variance parameters are
sometimes on the boundary (zero) or even in improper regions of
the space (negative) and hence not in the interior of the parameter
space (e.g., Gerbing and Anderson, 1987). If the population value
of the variance is also zero, the model fit tests will be wrong. In
that case, a correction to the test statistic as proposed by Shapiro
(1985) must be made. However, because it is difficult to know
when a population rather than the estimated variance is precisely
zero, Shapiro’s theory is hard to apply. Thus the researcher must
recognize that an assumption is being made, and be prepared to
reexamine the assumption when confronted with problematic
results.
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PRACTICAL REQUIREMENTS

The above conceptual and statistical issues create a number of
demands for careful design, data gathering, and analysis in struc-
tural modeling. In implementing such requirements, additional
practical matters immediately arise. We can review a few of these.

It is easy to become too grandiose when executing a structural
model. Most valuable substantive theories are quite complex, and
itis easy to hope that most of the complexity can be studied in the
context of a single structural model. Rarely is this possible: the
data are almost always far more complex than even the best
theory, and it is easy to become frustrated in not being able to fit
one’s model to data. Although one’s theory may capture a sub-
stantial amount of variation in the data (say, by nonstatistical fit
indexes, see Bentler and Bonett, 1980, and Wheaton, this
volume), statistical tests can lead to model rejection when only a
few effects in the data have been overlooked. In large samples, in
particular, even the best model may not fit, since the sample-size
multiplier that transforms the fit function into a x> variate will
multiply a small lack of fit into a large statistic. To avoid such
frustration, without a great deal of knowledge about the variables
under study, it is wisest to analyze relatively small data sets, say,
20 variables at most.

On the other hand, it must be recognized that one of the
greatest weaknesses in structural modeling lies in excluding key
variables that may influence a system. When important control or
causal variables are omitted from a model, the parameter esti-
mates of the model will be biased and misleading conclusions can
be drawn from an analysis (e.g., Reichardt and Gollob, 1986).
Thus one is, in principle, always subject to the criticism of having
omitted a key variable. One can only do one’s best at ensuring that
plausible causal variables are included in a model. But every
attempt to include such variables in a model yields a larger model.
In turn, this leads to the practical inability to fit models to data
noted above. The researcher will have to balance practicality with
the ideal of a single, comprehensive model.

Analyzing models with latent variables is an especially de-
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manding problem, since models often do not fit only because a
poor measurement structure has been hypothesized for the data.
Bentler and Bonett (1980) developed a specification test that
evaluates the fundamental adequacy of the measurement model,
but it has rarely been used. Ideally, the basic factor structure of
the data—how many factors, which variables are good indicators
of which factors, the factor intercorrelations—should already be
well-known, based on exploratory factor analyses on similar data
bases. In that case, generating a complete model that includes a
reasonable measurement structure is much easier. Determining
the factor structure using structural modeling is a rather difficult
and unattractive procedure. It frequently requires so much data
snooping to lead one to worry about the quality of any final
results.

In the ideal situation, the researcher has in mind not only a
single, large structural model, but also a series of submodels that
would shed light on key features of the large model. As noted
above, nested models can be compared: If the fit of the more
restricted model is about as good as that of the more general
model, the restrictions can probably be accepted (i.e., the simpler
model is chosen and the more complex, rejected). Since there are
many possible sequences of submodels that might be entertained,
comparing models is an art and requires a good deal of thought.

ISSUES ENCOUNTERED IN PRACTICE

When utilizing structural modeling methods, one will fre-
quently find some problems emanating from the statistical
results. These problems may make the results difficult to interpret
or even misleading, and hence an awareness of alternative actions
that might be taken is valuable. In addition to the problems that
are basically created by the estimation procedure, we will also
discuss the issues of model improvement.

PROBLEMS IN ESTIMATION

Incomplete data. Although there is no requirement in theory
that data used for covariance structure analysis should be com-
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plete, that is, that every case should have a score on every vari-
able, current methods were really designed to deal with complete
data only. In theory, all that is needed for structural modeling to
be appropriate is that the sample covariance matrix S be a con-
sistent estimator of the population matrix and have an asymptot-
ically normal distribution with a known or estimable sampling
covariance matrix. Alternatives to the standard matrix can be
used. Direct calculation of the sample covariance matrix in fact
becomes problematic with missing data, so that programs from
general packages such as BMDP may need to be used as prepro-
cessors prior to submitting a job to the current version of EQS.
LISREL does have an option for dealing with missing data. Its
missing data option may, however, create a problematic sample
covariance matrix, as noted below.

A number of recent developments promise better ways of
dealing with missing data. For example, Little (1986) has de-
veloped a procedure for estimating a sample covariance matrix
that is likely to be more robust to outliers than standard methods.
Lee (1986) and Van Praag et al. (1985) have provided methods
that optimally use all available information during estimation.
These methods, however, are not currently available in canned
programs.

Covariance matrix not positive definite. Given that a sample
covariance matrix to be used in EQS or LISREL exists, one of the
first actions of the programs could be to reject the input matrix
for analysis. Often this occurs because the input matrix is not
positive definite. This can occur for two major reasons. First,
there may be linear dependencies among the input variables, in
which case the matrix will be singular. Second, the matrix may
not be a covariance matrix of real numbers, in which case the
matrix will have one or more negative eigenvalues.

Linear dependencies reflect redundancies among variables.
Although it may be possible to use an estimation method such as
least squares that will accept a singular input matrix, it would
generally be desirable to find those variables that are a linear
combination of other variables, say, by regression or principal
components analysis, and remove them from the input. The
reduced matrix then should be acceptable for analysis. Negative
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eigenvalues tend to occur if the covariance matrix is not com-
puted from raw scores, for example, if tetrachoric correlations are
used. They may also occur because a pairwise-delete option was
used in generating the covariance matrix (listwise deletion does
not have this problem, though it may reduce sample size exces-
sively). There is no generally accepted solution for this difficulty.
With missing data, it may be worthwhile to search for outliers in
the data, since they may create the problem. Otherwise, it may be
necessary to modify the offending entries in the matrix. This can
be done by smoothing procedures, for example, by changing
negative eigenvalues to a small positive value, or by using special
estimators (Theil and Laitinen, 1980). However, the optimality
properties of such procedures are not known.

Nonconvergence. This is a common problem that is easy to
observe because most computer programs will provide a warning
to the user if this has occurred. In covariance structure analysis,
parameters are estimated through an iterative process. In other
words, the estimates are improved and changed from one itera-
tion to the next until they have stabilized, indicating that they can
no longer be improved to obtain a smaller function value. Itera-
tive procedures have a built-in convergence criterion to determine
if the change in estimates is so trivial that the iterative process can
be terminated. The iterative process can be said to have converged
when the change in estimates is smaller than the convergence
criterion, and if appropriate derivatives of the fit function are
equal to zero. The values updated at the final iteration are the
parameter estimates at the solution. However, an infinite or
arbitrarily lengthy iterative process may occur if the change in
parameter estimates is always large compared to the convergence
criterion. This may occur if the model is very nonlinear (e.g., a
nonrecursive model), if the model is extremely bad for the data to
be modeled (i.e., there are large residuals s;; — 0; even with optimal
estimates), if the start values for the parameters are very poor, if
unreasonable equality constraints are being imposed, or if critical
parameters are underidentified. Corrections for these problems
have been mentioned above, or are obvious (e.g., attempt to use
good start values, and fix identification problems). The simplest
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solution, increasing the number of iterations, sometimes yields a
convergent solution.

In theory, it may be possible to converge to different solutions,
that is, to different local minima rather than a unique global
minimum of the function being optimized. In such a case, the
model should probably be suspect. However, in spite of the
theoretical possibility of local minima, they are very rarely
observed. In one case for which multiple solutions were claimed
(Rubin and Thayer, 1982), more careful analysis verified that
only one minimum actually existed (Bentler and Tanaka, 1983).

Verification that the model specified is the one desired is also a
good practice when convergence problems occur. It is easy to
make errors that affect estimation, for example, more parameters
are fixed at nonzero values than are needed for identification, or
inconsistent constraints are imposed. It is valuable to know how
the estimates should look at the solution (e.g., small, medium, or
large; positive or negative), because a theoretical view of the
model can highlight not only problems in job set-up, but also in
peculiarities of results. Even LISREL’s automatic start values
may occasionally yield nonsensical results for nonstandard mod-
els, and these can cause nonconvergence. If % is singular based on
initial estimates, further iteration may not be possible. This can
occur because error variances are too small (initially, the variance
of an error variable should be as large as possible, but less than
that of the corresponding measured variable) or the factor load-
ings, paths, or variances are too large. In general, the scale of
observed variables should be considered when determining the
appropriate size of parameters.

Empirical underidentification. Lack of parameter identifica-
tion will certainly contribute to failures of convergence, but there
isno 1:1 relation. Identified models may not converge, and under-
identified models may converge. A more difficult problem to spot
is that of empirical underidentification, in which a model is
actually theoretically identified under most conditions but some
special data-related problem occurs that makes the model under-
identified (Kenny, 1979; Rindskopf, 1984). This may showup asa
nonconvergence problem, as a problem with the information
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matrix (see below), or a problem with some parameter estimates.

In general, a latent variable model that has only two indicators
of a factor will be underidentified since three indicators (another
factor may serve as an indicator of the factor as well) are needed at
a minimum. So if a factor has three indicators, one may be
tempted to conclude that there can be no problem. However, as
noted by Kenny (1979) and McDonald and Krane (1979), if one
factor loading is identically equal to zero the model will not be
identified. Although one may assume that one’s estimates will not
be zero precisely, in fact some estimates may approach zero and
the consequences of underidentification will be felt. These conse-
quences include, for example, “Heywood” cases in which an error
variance goes negative (in LISREL) or is held to the boundary (in
EQS), and cases in which parameter estimates become very
unstable, that is, have very large standard error estimates. Inade-
quacy of indicators may arise in many guises: It is possible that
other paths from a factor, or covariances with the factor, serve the
role as a third indicator to identify a factor. For example, a two
factor model with two indicators of each factor (and no complex
loadings) will be identified as long as the covariance or correla-
tion between the factors is nonzero. But in practice it may
approach zero, creating serious difficulties. It is always important
to have as many indicators of a factor as possible, subject to
practicality, especially indicators having high loadings on their
factors (e.g., Gerbing and Anderson, 1985, 1987; Velicer and Fava,
1987). In the context of questionnaire studies, additional indica-
tors can often be created by breaking down a composite measured
variable (say, a total score across many items) into a number of
subscores. Since such subscores will tend to be less reliable than
the composite, this procedure is most beneficial when the sub-
scores are also reliable.

Singular information matrix. The covariance matrix of the
parameter estimates is given by the inverse of a particular matrix
that is called, in maximum likelihood theory, the information
matrix. A similar matrix is used in all methods. Thus, to obtain
standard errors, this matrix must be positive definite, and invert-
ible. When this matrix is close to singular, some of the standard
error estimates may be meaningless (very small, or arbitrarily
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large) because they are generated from a numerically unstable
matrix. A singular information matrix may also affect iterations,
since the updated parameter estimates hinge upon the matrix as
well. If the function is appropriately minimized, the x* value and
possibly nonunique estimates can be acceptable even if the stan-
dard errors are questionable.

Singularity is often caused by dependence among parameter
estimates, and EQS and LISREL will flag such dependencies.
These dependencies may arise: from model underidentification,
in which case the redundant parameters must be removed; from a
poor iterative path, in which case different start values must be
used; from inappropriateness of one’s model, in which case model
modifications must be made; or, possibly, from a poorly condi-
tioned set of input variables, in which the input variables must be
rescaled to have more similar variances or, more extremely, one
or more variables will have to be removed from the model. It may
also be caused by sheer numerical problems associated with
inadequate computer precision, which may happen to crop up in
aspecial model but not others due to some unknown combination
of events. In that case, little can be done by the user.

The above discussion has focused on the case of no equality
constraints among parameters. When constraints are also im-
posed, the covariance matrix of the parameter estimates must of
necessity be singular. The information matrix itself need not be
invertible, but a modified or augmented information matrix will
still need to be invertible. When a problem exists, EQS will give a
similar message in this situation, and the same action should be
taken to resolve the problem as noted above.

Inability to impose a constraint. When imposing a constraint
has the effect that a model will provide a very poor fit to data, it
may not prove possible to impose the constraint. EQS will print a
message to that effect if this happens. In that case, the constraint
must be relaxed and the model reestimated. The iterative process
in EQS also needs start values for parameters that meet the con-
straint. While EQS will adjust the user’s start values to meet this
condition, in unusual cases this may not be possible and the user
will have to make the correction.
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PROBLEMS WITH RESULTS

If it appears that an analysis has yielded an appropriate, con-
verged solution, and no condition codes to warn the user about
existing difficulties, it is still desirable to analyze the computer
output in some detail to determine whether or not more subtle
difficulties with the solution can be observed. These subtle prob-
lems, if encountered, suggest problems with the model in relation
to the data, rather than problems with the estimation method
itself.

Improper variances. The most frequently encountered prob-
lem involves variances that are estimated as negative or zero. In
LISREL, there are no constraints on variances, and they can be
estimated as negative. Such estimates are not only meaningless,
they are also inappropriate since, for example, true ML or GLS
solutions do not allow negative variances. In LISREL, one may
accept the solution as is, rerun the job with negative variances set
to zero, or reparameterize to yield nonnegativity (Rindskopf,
1983). Setting a negative variance to zero has the effect of chang-
ing the degrees of freedom inappropriately and alters the interpre-
tation of the results. In the EQS program, variances cannot go
negative unless the user has changed the program’s defaults. Thus
zero or boundary variances can occur. In both LISREL and EQS
the user must evaluate whether such a zero variance estimate
causes problems for the conceptual design of the study. A zero
error variance may imply that the measured variable is synon-
ymous with a factor, which may or may not make sense. A zero
residual in a prediction equation implies that a dependent vari-
able is perfectly explained by its predictors. If results such as these
do not make sense, it may be necessary to modify the design of the
study, for example, by adding variables to the input data so that
more indicators of a factor are created. If it can be assumed that
the zero variance observed in a sample represents the population
accurately, Shapiro’s (1985) theory indicates that the goodness-
of-fit chi-square test is not accurate. No alternative or more
accurate test value is, unfortunately, currently available in stan-
dard computer programs. On the other hand, if the results do
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make sense and these “Heywood” cases are isolated occurrences,
one need not worry too much, especially in large samples. Bound-
ary solutions can be conceived as indicators that the sample size
may be too small for an adequate reliance on large sample theory
in the given application, since boundary solutions become much
less likely with large samples (e.g., Boomsma, 1985; MacCallum,
1986). However, there may be no alternative to accepting the
results since a larger sample may not be available.

Improper solutions may also be a clue that a model has been
fundamentally misspecified, so it may be worthwhile to evaluate
this hypothesis by considering some quite different models, for
example, models with a radically different measurement struc-
ture. In some cases, improper solutions can arise from outliers in
the data, and deleting the offending cases may eliminate the
problem (e.g., Bollen, 1987). EQS provides methods for locating
and eliminating outliers. If none of these actions solves the
problem, we suggest that the model be accepted with the offend-
ing estimate held to the boundary. Usually it does not make sense
to eliminate the parameter corresponding to a negative or bound-
ary variance. It is true that fit will usually not be degraded
significantly by this practice, since negative estimates are usually
not significantly different from zero by z-test (Gerbing and And-
erson, 1987). Completely aside from the issue of doing data-based
model modification, eliminating a boundary parameter may
change a model’s form into an undesirable one. For example,ina
factor analysis model it usually does not make sense to assume
that a variable will be perfectly predictable from the factors, and
in a predictive equation it seems a priori unlikely that one should
be able to predict a given dependent variable perfectly.

Improper correlations. Covariance or correlation parameters
may also go outside the legitimate boundary. Correlations,
obviously, must lie in the interval of +1 to —1. Covariances, after
being transformed into correlations by dividing by standard devi-
ations, must have the same property; EQS forces this on the
solution when the variances are fixed, and correlations greater
than one do not then occur. Out-of-bounds correlations can be
obtained otherwise, as they can in LISREL where there are no
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constraints at all. Potential problems can be located as follows:
EQS prints out a standardized solution in which all covariances
have been transformed into correlations, while LISREL trans-
forms only some of its variables so that some hand calculation
may be necessary to determine whether any estimated covari-
ances or correlations are outside the legitimate range.

Correlations at the boundary as well as outside the legitimate
range imply that two variables are behaving as if they are identi-
cal. Even if other features of the solution are adequate, this
implies a problem with the model specification. A very high or
improper correlation between factors may occur if more than a
few variables have loadings on both factors. Adding indicators
that are affected by one but not another factor may help. Chang-
ing the causes and consequences of the factor may also help.

More generally, the covariance matrix of the independent vari-
ables should be positive definite. No program is currently able to
impose this feature on the estimates.

Problem path coefficients. In a completely standardized path
analysis solution (provided in EQS), path coefficients can be
interpreted as standardized regression coefficients (Wright, 1934).
Such coefficients should, generally, lie in the interval +1 to -1.
When a coefficient in an equation becomes very large, a specifica-
tion problem should be suspected. Large coefficients may signal
linear dependencies among the predictor variables in the equa-
tion, for example. It may be necessary to redefine the variables in
the equation, possibly by changing the predictor set. If some of
the predictors are factors, it may be desirable to alter their indica-
tors. More generally, causes or consequents of the affected vari-
ables may need to be changed.

Although there is no reason that the sign of a beta coefficient
must be the same sign as the correlation between predictor and
criterion variables, differing signs are usually taken as an indica-
tion of a “suppressor” effect. For example, when predicting col-
lege GPA from high school grades and SAT scores, since all
correlations are positive one would hesitate to see a significant
negative beta. Such effects can be located by checking the implied
correlation. They may arise due to multicollinearities, in which
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case they will probably be uninterpretable. Suppressor effects are
often not only hard to interpret, but in the area where they were
first studied, they were hard to replicate (Wiggins, 1972), and the
same appears to be true in structural models. Modifications in
model structure may make these paradoxical effects disappear.

Statistical discrepancies. Statistical functions and estimators
that have the same large sample distribution should yield chi-
square tests and estimates that are roughly similar. Thus normal
theory ML and GLS methods should yield equivalent results.
When large discrepancies are observed, one should be suspicious
about the adequacy of the structural model or the distributional
assumption. In EQS, several estimators are easily available in the
same run and can be compared, and when ML estimation is
obtained, a corresponding GLS (called RLS in the program)
chi-square statistic is printed out as well. Unfortunately, it is
sometimes hard to make changes that eliminate the discrepancies.
They should, at least, be reported.

PROBLEMS WITH MODEL FIT

Even when there are no problems with estimation, or unusual
features to the results, a specified model may simply not fit sample
data. The next step then is to improve the model. In general, there
are two ways to do this. One way is through adding constraints
and making the model more restricted. The other is through
releasing constraints and making the model less restricted, or
more general. In either approach, the proper constraints need to
be identified. It is essential that the constraints to be added or
dropped should be based on theory.

Typical problems. Perhaps the major problem that leads to the
need for model modification is lack of a priori knowledge about
the measurement structure of the variables. If at all possible, this
should be obtained from prior studies with different data. The
measurement structure can be wrong for several reasons: an
insufficient number of latent variables is hypothesized; a factor is
hypothesized for variables that do not correlate well among
themselves; or an extremely restricted cluster-type of loading
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structure is used, in which a factor directly influences only one
measured variable. A highly restricted loading structure will usu-
ally result in a relatively complex path structure for the latent
variables; in contrast, a less restricted loading structure may
permit a simpler path structure. A related problem that fre-
quently occurs, not only in measurement models but path models
as well, is that predictor independent variables, or criterion
dependent variable residuals, are not allowed to covary. A mea-
surement model with a highly restricted loading structure that
forces the factors to be uncorrelated will rarely be appropriate for
real data. A similar problem occurs when residuals in factors are
forced to be uncorrelated. Even if one has strong theory that
predicts lack of correlation, one should be immediately prepared
to evaluate the theory against data if the strong model does not fit.

Model modification. Bentler and Chou (1986) proposed two
statistical methods to obtain information concerning model
improvement. When imposing constraints, both the fit function
and the degrees of freedom will increase, but it is hoped that the
loss of fit is minimal. When releasing constraints, on the other
hand, both the fit function, and degrees of freedom will decrease.
Here, it is hoped that the gain in fit is maximal. It is hoped,
therefore, that the x* can drop significantly with only a slight
decrease in degrees of freedom. The two theories for these
methods have been mentioned previously. The Wald (W) theory
provides a multivariate test for dropping a set of free parameters,
and the Lagrange Multiplier (LM) theory yields comparable
information for releasing a set of constraints on parameters, or
adding free parameters. In both ML or GLS estimation proce-
dures, the Wald and Lagrange Multiplier theories yield statistics
with chi-square distributions, but Bentler and Chou also pro-
vided nonstatistical equivalents for least-squares estimates. These
tests have been implemented in the EQS program (Bentler,
1986b), as described next.

In the W test, only a multivariate test procedure is executed
since the univariate W test is the same as the square of the z-test
for each parameter estimate at the solution. Both univariate and
multivariate LM tests are performed in the EQS program. The
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univariate LM test is a special case of the multivariate LM test. It
offers a x* value for each fixed parameter in a set to be tested
multivariately. The concept behind this univariate test is the same
as that of model modification indices in LISREL. However, the
univariate test usually provides incomplete information. The uni-
variate statistics are obtained under the assumption that there is
no relationship between the various constraints. This is seldom
the case. A statistically significant LM test for freeing one fixed
parameter may not necessarily remain significant in the multivar-
iate test. Therefore, the information generated by the univariate
test can be misleading when several fixed parameters need to be
freed to get a well fitting model. We strongly recommend the
multivariate test for more adequate and efficient model improve-
ment. Of course, in the selection of constrained parameters to be
released in the multivariate LM test, a researcher should carefully
examine the theoretical basis for each parameter. In addition to
the specification of a parameter set, the theoretical importance of
each parameter, or parameter group, compared to others, might
also be considered.

The EQS program has been developed to allow parameters to
be added or dropped in a stepwise process. Free parameters are
dropped from the model one at a time in the W test, while fixed
parameters are freed one by one in the LM test. Statistically, the
W test is designed to drop the least important free parameters in
sequence, and the LM test adds parameters in order of multivar-
iate significance. These procedures can be recognized as variants
of the backward and forward stepwise approaches in multiple
regression analysis. The complete multivariate tests are obtained
at the last step.

Several options on parameter set selections and testing proce-
dures have been implemented in EQS, using the Bentler-Weeks
(1980) model matrices @, vy, and 8. Each matrix is composed of
several submatrices, depending on the type of variable combina-
tions involved. For example, in the covariance matrix of inde-
pendent variables  we may be interested in correlations between
factors, or in correlations between errors (or even in such unusual
correlations as between errors in variables and disturbances in
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equations). Or, we may be interested in specific subparts of the
regression coefficient matrices -y (dependent on independent vari-
ables) or 8 (dependent on dependent variables). A parameter, free
or fixed, can be from any of these submatrices. Three types of LM
testing procedure are available: sequential, simultaneous, and
separate. After the set of fixed parameters is specified, these
parameter matrices may be grouped in a predetermined order.
The sequential procedure will use this order to prioritize param-
eters in the test. All the parameters in a submatrix (e.g., factor
correlations) that are significant (at a previously assigned level)
will be included in the test before the next matrix (e.g., correlated
errors) can be considered. The significance of a parameter is
defined in terms of the increment of x* contributed by that
parameter. Since these groups of parameters are tested sequen-
tially, a more significant parameter from a group with lower
priority may not get into the test process earlier than a
less significant parameter from a higher priority group. The
sequential procedure is especially useful when some groups of
parameters are theoretically more important than others. In the
simultaneous procedure, all parameters are considered for inclu-
sion on an equal basis. In the separate procedure, separate LM
tests are provided for each group of parameters. These results
must then be combined subjectively by the researcher. These
options are not available in the W test, in which all free param-
eters are automatically included and parameters are dropped on a
simultaneous basis, that is, the least statistically significant
parameter will be excluded from the model first. The multivariate
LM and W tests can be specified to include or exclude parameters
in a sequence that is wholly given by the researcher, or in a
sequence that is determined by the empirical size of the increment.

From a theoretical point of view, of course, some parameters
might need to remain fixed or freed, no matter what a W test or
LM test might find. The user can specify which free parameters
should not be considered in the W test and which fixed param-
eters should be excluded from the LM test. One example is that
causal paths involving variables ordered in time have only one
direction. A path from a variable at time two to a variable at time
one would always be undesirable.
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Model modification based on theory yields appropriate statis-
tical tests under typical assumptions usually associated with chi-
square tests (e.g., Lee and Bentler, 1980; Bentler and Dijkstra,
1985; Lee, 1985b; Satorra, 1986). If empirical model modification
is done using a search procedure to locate the best changes, on the
other hand, the probability values given for the statistics may be
incorrect and the “true” model may not be found (see, e.g.,
MacCallum, 1986). One way to establish some validity to the
resulting model is to compare the final adjusted model with the
originally specified model, for example, by correlating parameter
estimates for common parameters across solutions, as is done in
most research in our laboratory. This does not address the ques-
tion of whether newly added parameters are inadequate, but can
provide some reassurance regarding the stability of the original
parameterization across alternate specifications. Thus if the
correlation is in the high .9s, the final solution at least contains
most of the same information as the initial solution. Thus the
initial solution was basically incomplete. On the other hand, if the
correlation is lower, the added parameters also destroy the ade-
quacy of the initial parameterization, suggesting greater prob-
lems than simple incompleteness of the initial model. Ideally, of
course, one would cross-validate any final model (Cliff, 1983;
Cudeck and Browne, 1983).

CONCLUSION

This article has provided a summary of various practical issues
in structural modeling. These were addressed from the viewpoint
of workers engaged in the theory as well as applications of struc-
tural modeling. Evidently, we believe the method to be valuable in
social research. However, we would be remiss in not pointing out
that some individuals are highly skeptical about the value of
structural models. Cliff (1983), for example, has a favorable view
toward the theory, but feels that the theory is easily misused when
researchers forget basic principles of research. Freedman (1985,
1987) is more extreme in his evaluation. He considers the assump-
tions underlying the method to be inherently implausible, and the
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entire field to have essentially no value. As might be expected on
the basis of our previous discussion, Freedman’s arguments have,
in our opinion, no solid foundation (Bentler, 1987b).
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