

On Fixed Points of Digraphs Over Lambert Type Map

Tayyiba Sabahat* **, Sufyan Asif**¹ **, Asif Abd ur Rehman**2†¶

¹ Department of Mathematics, University of the Punjab, Lahore, Pakistan, Pakistan

Subject Classification: 05C25, 11E04, 20G15

Journal Info:

Submitted: June 15, 2022 Accepted: September 16, 2022 Published: September 20, 2022

Abstract Define $f(y) = y^2 h^y$, where $h \in (Z/mZ)$, the discrete Lambert Type Map(DLTM). For a set of pairs of vertices and edges DLTM diagraphs are obtained in which the vertices are allocated are from a whole range of residues modulo a fixed integer and edges are built when *f*(*y*) = *v*(*mods^k*) is solvable in *t* and in terms of diophantine equation as well. In this paper we proposed new results for digraphs over Lambert type map for fixed point and for multiple order.

Keywords Fixed Point, Discrete Lambert Type Map, Residues

[*Correspondence A](email1@example.com)uthor Email Address: sabahattayyiba@gmail.com

1 Introduction

It is well-known that the solution of exponential type function under congruence is not always easy. In fact, it is always a challenging problem in number theory. To find the solution of equations in which unknown appearing in exponential terms, the Lambert function *W*(*z*)*e W*(*z*) is helpful and have been used frequently by many researchers. These functions already have been studied in [4,5] and in [17] as well. This is, sometime defined as well, *z = W(z)e^{W(z)},* where z is a complex number. Before finding the fixed point, one should understand the meanings of fixed point with respect to the environment, we are using for. For a detail understanding of fixed points and integer classes, we suggest to read the references [1-3], [4,5,17],[18-20] and then [6-16], so that the reader could enjoy the reading of our proposed results.A graph is an ordered pair G(V, E) which consists on two sets V and E, where V is set of points named as set of vertices taking as the residues of any given fixed integer and E is a set of edges, obtained by using DLTM and a graph in which edges have direction is called directed graphs or digraphs

Definition 1. *Graph A graph is an ordered pair G*(*V*, *E*) *which consists on two sets V and E, where V is set of points named as set of vertices and E is a set of edges.*

Definition 2. *Digraph A graph in which edges have direction is called directed graphs or digraphs.*

2 Fixed Point.

: A number β is said to be fixed point of DLTM iff $\beta^2g^\beta\equiv\beta$ (modm) for a positive integer m. The following results *are elaborating fixed points and image structures for specific numbers.*

Theorem 1. If $h \equiv 1$ mod s and $h + x = s^2 + 2$ then x is fixed point of the graph (h, s²). In this case, 0 and x are *the only two fixed points.*

Proof.

Let
$$
h + x = s^2 + 2
$$
 (1)

then
$$
x = s^2 + 2 - h
$$
 (2)

As *h* ≡ 1 mod *s*, so there must exist an integer *t* such that *h* = 1 + *ts*. Putting in equation (2.1.2),

$$
x = s2 + 2 - (1 + ts)= s2 + 2 - 1 - ts= 1 - ts (mod s2)or x = 1 - ts (mod s2) (3)
$$

Now using equation (2.1.3) in $f(x) = x^2 h^x \mod 2^2$, we get

$$
f(x) \equiv ((1 - ts)^2 (1 + ts)^{(1 - ts)}) \mod s^2
$$

\n
$$
\equiv ((1 + t^2 s^2 - 2ts)(1 + ts(1 - ts) + terms involving s^2)) \mod s^2
$$

\n
$$
\equiv ((1 + t^2 s^2 - 2ts)(1 + ts - t^2 s^2 + terms involving s^2)) \mod s^2
$$

\n
$$
\equiv ((1 - 2ts)(1 + ts)) \mod s^2
$$

\n
$$
\equiv (1 - 2ts + ts - 2t^2 s^2) \mod s^2
$$

\n
$$
\equiv (1 - ts) \mod s^2
$$

\n
$$
\equiv x \mod s^2
$$

This completes the proof.

The Figure 2.1 depicts the above result.

Theorem 2. *Let f be a discrete Lambert Type Map. For an odd prime s, if h* = *s* – 2, *then h is always a fixed point of f*.

Proof. Let $f(t) = t^2 h^t \pmod{s}$ and $h = s - 2$.

$$
f(s-2) \equiv ((s-2)^2(s-2)^{s-2}) \pmod{s}
$$

\n
$$
\equiv (s-2)^{2+s-2} \pmod{s}
$$

\n
$$
\equiv (s-2)^s \pmod{s}.
$$
 (4)

Now by Euler's Theorem, we know that $a^s \equiv a (mod s)$. But then the equation (2.1.4) yields,

$$
f(s-2) \equiv (s-2)(mod~s).
$$
 (5)

Hence *s* – 2 is a fixed point.

 \Box

 \Box

Figure 1. Shows the diagraph $G(6, 5^2)$

3 Multiplicative Order

Let g be any fixed integer and integer m > 0*. Recall that a multiplicative order modulo m is a least positive integer* β *such that g*^β ≡ 1 mod *m*. *This is denoted by Ordmg* = β. *By incorporating this definition, some other foxed points of the DLTM can be calculated. These are given in the following theorems as under:*

 ${\sf Theorem 3.}$ Let f be a DLTM. If Ord $_{\sf s^k}$ h = s $^{k-1}$, $\,$ > 1, then the diagraph G(h, s k) have two fixed points namely <code>O</code> *and s*² – *s* + 1. *Also, all multiples of s maps on zero and make an independent component.*

Proof. Since *Ord^s ^kh* = *s k*–1 , *k* > 1, so in particular *Ords*+1²*h* = *s* + 1. Consider

$$
f(s^2 - s + 1) = ((s^2 - s + 1)^2(s + 1)^{(s^2 - s + 1)}) \mod s^2
$$
 (6)

As (s + 1, s²) = 1, so by Eular's Theorem, we have (s + 1) $^{\phi({S^2})}$ \equiv 1 mod s². Putting in equation (2.2.1). we get

$$
f(s^2 - s + 1) \equiv ((s^2 - s + 1)^2(s + 1)) \mod s^2
$$

\n
$$
\equiv (1 - s)^2(1 + s) \mod s^2
$$

\n
$$
\equiv ((1 - 2s + s^2)(s + 1)) \mod s^2
$$

\n
$$
\equiv (1 - 2s)(1 + s) \mod s^2
$$

\n
$$
\equiv s + 1 - 2s^2 - 2s \mod s^2
$$

\n
$$
\equiv 1 - 2s^2 - s \mod s^2
$$

\n
$$
\equiv (1 - s) \mod s^2
$$

\n
$$
\equiv (1 - s + s^2) \mod s^2
$$

so (s^2 – s + 1) is fixed point. Also, it can easily be seen that $f(s^2\beta)\equiv(s^2\beta)^2g^{s^2\beta}\equiv 0$ mod s^2 \Box

Figure 2.2 depicts the digraph G(12, 11² *),where* |12| = 11 *and all multiple of 11*<*121 maps on zero. It has 4 cycles and the numbers 0 and 111 are the only fixed points.*

Proposition 1. *Let f be a DLTM and s be any odd prime. Ord^s ^kh* = 2 *if and only if h* = *s ^k* – 1 *for any integer k. In this case, 0 is only fixed point of the map.*

Figure 2. Shows the diagraph $G(12, 11^2)$

Proof. Let $Ord_{s^k}h = 2$. Then 2 is the least positive integer such that $h^2 = 1$ (*mod s^k*). This means that *h* ² = 1 (*mod s^k*) or

$$
h2 \equiv (-1)2(mod sk)
$$

\n
$$
\equiv sk - 1)2 (mod sk)
$$

\nor
$$
h2 \equiv (sk - 1)2 (mod sk)
$$

This surely gives $h = s^k - 1$. Conversely, if we assume $h = s^k - 1$, then

$$
h2 \equiv (sk - 1)2 (mod sk)
$$

\n
$$
\equiv (-1)2 (mod sk)
$$

\n
$$
\equiv 1 (mod sk)
$$

 \Box

Also, note that for any vertex *h*, $h^2g^h\equiv g^h\not\equiv h$ (*mod s^k*). Thus, 0 is the only fixed point.

If we take s = 3, *k* = 3, *h* = 26, *then order of 26 is 2 mod 27, so Figure 2.3 elaborate Proposition 1.*

Proposition 2. *If t is a fixed point of n*, *then there must be some y in G*(*n*) *such that*

 $y \equiv h^t \pmod{n}$ and $ty \equiv 1 \pmod{n}$.

Figure 3. Shows the diagraph *G*(26, 27)

Proof. Let *t* be a fixed point of *G*(*n*)

$$
f(t) = t^2 h^t
$$

\n
$$
t \equiv t^2 h^t \pmod{n}
$$

\n
$$
t^2 h^t - t \equiv 0 \pmod{n}
$$

\n
$$
t(tg^t - 1) \equiv 0 \pmod{n}
$$

\n
$$
t \equiv 0 \pmod{n}
$$

\nor
$$
tg^t - 1 \equiv 0 \pmod{n}
$$

\nor
$$
tg^t \equiv 1 \pmod{n}
$$

This clearly shows that t and g^t are the multiplicative inverse modulo $n.$ Thus there must exist some integer *y* such that *y* ≡ *h t* (*mod n*) and this implies that *ty* ≡ 1 (*mod n*). This means that if *t* is a non-zero fix point then *t* –1 is also a fix point of *n*. Moreover, all units of *m* are the fixed of *m*. \Box

Corollary 1. *Let* α *be a fixed point of n, then either* $\alpha \equiv 0$ *or* α *is a unit of n.*

Proof. We know that, α , $\beta \in RRS$ *of s* are units if and only if

$$
\alpha\beta \equiv 1 \pmod{s}
$$

 $f(t)$ = $t^2 h^t$, when α is fixed point

$$
\alpha^2 h^{\alpha} = \alpha \pmod{s}
$$

$$
\alpha(\alpha h^{\alpha} - 1) = 0 \pmod{s},
$$

 $\alpha \equiv 0 \pmod{s}$ or $\alpha h^{\alpha} \equiv 1 \pmod{s}$. Now if $\alpha h^{\alpha} \equiv 1 \pmod{s}$, we take $h^{\alpha} = \beta$ for sake of convenience. There $\alpha h^{\alpha} \equiv 1 \pmod{5}$ yields the $\alpha \beta \equiv 1 \pmod{5}$ or α is a unit of *s*.

Corollary 2. An integer t is a fixed of $G(n) \Leftrightarrow th^t \equiv 1 \pmod{n}$

References

- *[1] B. Wilson, Power Digraphs Modulo n, Fibonacci Quart, 36 (1998) 229-239.*
- *[2] D.M. Burton, Elementary Number Theory. McGraw-Hill, 2007.*
- *[3] G. Chartrand and L. Lesnidk, Graphs and Digraphs, third edition, Chapman Hall, London, 1996.*
- *[4] JingJing Chen and Mark Lotts, Structure and Randomness of the Discrete Lambert Map, Rose-Hulman Undergraduate Mathematics Journal 13(2012) 1-12.*
- *[5] Mahmood, M. Khalid, and Lubna Anwar. "Loops in Digraphs of Lambert Mapping Modulo Prime Powers: Enumerations and Applications." Advances in Pure Mathematics 6, no. 08 (2016): 564.*
- *[6] Ali, S., Mahmood K., (2019), New numbers on Euler's totient function with apllications, Journal of Mathematical extension 14, 61-83.*
- *[7] Mahmood, M. K., Ali, S., (2019), On Super Totient Numbers, With Appli- cations And Algorithms To Graph Labeling. Ars Combinatoria, 143, 29-37.*
- *[8] Mahmood, M. K., Ali, S., (2017), A novel labeling algorithm on several classes of graphs, Punjab Univ. j. math, 49, 23-35.*
- *[9] Ali, S., Mahmood, M. K., Mateen, M. H., (2019), New Labeling Algorithm on Various Classes of Graphs with Applications, In 2019 International Con- ference on Innovative Computing (ICIC) (pp. 1-6), IEEE.62*
- *[10] Ali, S., Mahmood, M. K., (2021), A paradigmatic approach to investigate restricted totient graphs and their indices, Computer Science, 16(2), 793- 801.*
- *[11] Ali, S., Mahmmod, M. K., Falcn, R. M., (2021), A paradigmatic approach to investigate restricted hyper totient graphs, AIMS Mathematics, 6(4), 3761-3771.*
- *[12] Mateen, M. Haris, M. Khalid Mahmood, Daud Ahmad, Shahbaz Ali, and Shajib Ali. "A Paradigmatic Approach to Find Equal Sum Partitions of Zero-Divisors via Complete Graphs." Journal of Chemistry 2022 (2022).*
- *[13] Mateen, M. Haris, M. Khalid Mahmood, Shahbaz Ali, and M. D. Alam. "On Symmetry of Complete Graphs over Quadratic and Cubic Residues." Journal of Chemistry 2021 (2021).*
- *[14] Mateen, M. Haris, Muhammad Khalid Mahmmod, Doha A. Kattan, and Shahbaz Ali. "A novel approach to find partitions of Zm with equal sum subsets via complete graphs." AIMS Mathematics 6, no. 9 (2021): 9998- 10024.*
- *[15] Ali, Shahbaz, Ral M. Falcn, and Muhammad Khalid Mahmood. "Local fractional metric dimension of rotationally symmetric planar graphs arisen from planar chorded cycles." arXiv preprint arXiv:2105.07808 (2021).*

 \Box

- *[16] Ali, Shahbaz, Muhammad Khalid Mahmood, and Kar Ping Shum. "Novel classes of integers and their applications in graph labeling." Hacettepe J. Math. Stat 1 (2021): 1-17.*
- *[17] M. K. Mahmood, L. Anwar, The Iteration Digraphs of Lambert Map Over the Local Ring mathbbZ/pkmathbbZ, Iranian Journal of Mathematical Sci- ences and Informatics (In Press)*
- *[18] M.A Malik and M.K Mahmood, On simple graphs arising from exponential congruences, Journal of Applied Mathematics Doi:10.1155/2012/292895.*
- *[19] M.K. Mahmood and F. Ahmad, A classification of cyclic nodes and enu- merations of components of a class of discrete graphs, Appl. Math. Inf. Sci 9(2015)103-112.*
- *[20] M.K. Mahmood and F. Ahmad, An informal enumeration of squares of 2k using rooted trees arising from congruences, Util. Math. 105(2017)41-51.*