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Abstract Define f (y) = y2hy , where h ∈ (Z/mZ), the discrete Lambert Type
Map(DLTM). For a set of pairs of vertices and edges DLTM diagraphs are obtained
in which the vertices are allocated are from a whole range of residues modulo
a fixed integer and edges are built when f (y) = v(modsk) is solvable in t and in
terms of diophantine equation as well. In this paper we proposed new results for
digraphs over Lambert type map for fixed point and for multiple order.
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1 Introduction
It is well-known that the solution of exponential type function under congruence is not always easy. In fact,
it is always a challenging problem in number theory. To find the solution of equations in which unknown
appearing in exponential terms, the Lambert function W(z)eW(z) is helpful and have been used frequently
by many researchers. These functions already have been studied in [4,5] and in [17] as well. This is, some-
time defined as well, z = W(z)eW(z), where z is a complex number. Before finding the fixed point, one should
understand the meanings of fixed point with respect to the environment, we are using for. For a detail
understanding of fixed points and integer classes, we suggest to read the references [1-3], [4,5,17],[18-20]
and then [6-16], so that the reader could enjoy the reading of our proposed results.A graph is an ordered
pair G(V, E) which consists on two sets V and E, where V is set of points named as set of vertices taking
as the residues of any given fixed integer and E is a set of edges, obtained by using DLTM and a graph in
which edges have direction is called directed graphs or digraphs
Definition 1. Graph A graph is an ordered pair G(V , E) which consists on two sets V and E, where V is set of
points named as set of vertices and E is a set of edges.

Definition 2. Digraph A graph in which edges have direction is called directed graphs or digraphs.
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2 Fixed Point.
: A number β is said to be fixed point of DLTM iff β2gβ ≡ β(modm) for a positive integer m. The following results
are elaborating fixed points and image structures for specific numbers.

Theorem 1. If h ≡ 1 mod s and h + x = s2 + 2 then x is fixed point of the graph (h, s2). In this case, 0 and x are
the only two fixed points.

Proof.

Let h + x = s2 + 2 (1)
then x = s2 + 2 – h (2)

As h ≡ 1 mod s, so there must exist an integer t such that h = 1 + ts. Putting in equation (2.1.2),
x = s2 + 2 – (1 + ts)

= s2 + 2 – 1 – ts
≡ 1 – ts (mod s2)

or x ≡ 1 – ts (mod s2) (3)
Now using equation (2.1.3) in f (x) = x2hx mod s2, we get

f (x) ≡ ((1 – ts)2(1 + ts)(1–ts)) mod s2
≡ ((1 + t2s2 – 2ts)(1 + ts(1 – ts) + terms involving s2)) mod s2
≡ ((1 + t2s2 – 2ts)(1 + ts – t2s2 + terms involving s2)) mod s2
≡ ((1 – 2ts)(1 + ts)) mod s2
≡ (1 – 2ts + ts – 2t2s2) mod s2
≡ (1 – ts) mod s2
≡ x mod s2

This completes the proof.
The Figure 2.1 depicts the above result.

Theorem 2. Let f be a discrete Lambert Type Map. For an odd prime s, if h = s–2, then h is always a fixed point
of f .
Proof. Let f (t) = t2ht(mod s) and h = s – 2.

f (s – 2) ≡ ((s – 2)2(s – 2)s–2) (mod s)
≡ (s – 2)2+s–2)mod s)
≡ (s – 2)s(mod s). (4)

Now by Euler’s Theorem, we know that as ≡ a(mod s). But then the equation (2.1.4) yields,
f (s – 2) ≡ (s – 2)(mod s). (5)

Hence s – 2 is a fixed point.

60



VFAST Transactions on Mathematics

1

0

5 10 15 20

6

2

19

3

4

11

16

7

14

9

12

13

17

18

23

8

24

2122

Figure 1. Shows the diagraph G(6, 52)

3 Multiplicative Order
Let g be any fixed integer and integer m > 0. Recall that amultiplicative order modulom is a least positive integer
β such that gβ ≡ 1 mod m. This is denoted by Ordmg = β. By incorporating this definition, some other foxed
points of the DLTM can be calculated. These are given in the following theorems as under:

Theorem 3. Let f be a DLTM. If Ordskh = sk–1, k > 1, then the diagraph G(h, sk) have two fixed points namely 0
and s2 – s + 1. Also, all multiples of s maps on zero and make an independent component.
Proof. Since Ordskh = sk–1, k > 1, so in particular Ords+12h = s + 1. Consider

f (s2 – s + 1) = ((s2 – s + 1)2(s + 1)(s2–s+1)) mod s2 (6)
As (s + 1, s2) = 1, so by Eular’s Theorem, we have (s + 1)ϕ(s2) ≡ 1 mod s2. Putting in equation (2.2.1). we get

f (s2 – s + 1) ≡ ((s2 – s + 1)2(s + 1)) mod s2
≡ (1 – s)2(1 + s) mod s2
≡ ((1 – 2s + s2)(s + 1)) mod s2
≡ (1 – 2s)(1 + s) mod s2
≡ s + 1 – 2s2 – 2smod s2
≡ 1 – 2s2 – smod s2
≡ (1 – s) mod s2
≡ (1 – s + s2) mod s2

so (s2 – s + 1) is fixed point. Also, it can easily be seen that f (s2β) ≡ (s2β)2gs2β ≡ 0 mod s2
Figure 2.2 depicts the digraph G(12, 112),where |12| = 11 and all multiple of 11<121 maps on zero. It has 4
cycles and the numbers 0 and 111 are the only fixed points.

Proposition 1. Let f be a DLTM and s be any odd prime. Ordskh = 2 if and only if h = sk – 1 for any integer k.
In this case, 0 is only fixed point of the map.
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Figure 2. Shows the diagraph G(12, 112)

Proof. Let Ordskh = 2. Then 2 is the least positive integer such that h2 = 1 (mod sk). This means that
h2 = 1 (mod sk) or

h2 ≡ (–1)2(mod sk)
≡ sk – 1)2 (mod sk)

or h2 ≡ (sk – 1)2 (mod sk)
This surely gives h = sk – 1.
Conversely, if we assume h = sk – 1, then

h2 ≡ (sk – 1)2 (mod sk)
≡ (–1)2 (mod sk)
≡ 1 (mod sk)

Also, note that for any vertex h, h2gh ≡ gh ̸≡ h (mod sk). Thus, 0 is the only fixed point.
If we take s = 3, k = 3,h = 26, then order of 26 is 2 mod 27, so Figure 2.3 elaborate Proposition 1.

Proposition 2. If t is a fixed point of n, then there must be some y in G(n) such that
y ≡ ht (mod n) and ty ≡ 1 (mod n).
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Figure 3. Shows the diagraph G(26, 27)

Proof. Let t be a fixed point of G(n)
f (t) = t2ht
t ≡ t2ht (mod n)

t2ht – t ≡ 0 (mod n)
t(tgt – 1) ≡ 0 (mod n)

t ≡ 0 (mod n)
or tgt – 1 ≡ 0 (mod n).

or tgt ≡ 1 (mod n).
This clearly shows that t and gt are themultiplicative inversemodulo n. Thus theremust exist some integer
y such that y ≡ ht (mod n) and this implies that ty ≡ 1 (mod n). This means that if t is a non-zero fix point
then t–1 is also a fix point of n. Moreover, all units ofm are the fixed ofm.
Corollary 1. Let α be a fixed point of n, then either α ≡ 0 or α is a unit of n.
Proof. We know that, α,β ∈ RRS of s are units if and only if

αβ ≡ 1 (mod s),
f (t) = t2ht , when α is fixed point

α2hα = α (mod s)
α(αhα – 1) = 0 (mod s),
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α ≡ 0 (mod s) or αhα ≡ 1 (mod s).
Now if αhα ≡ 1 (mod s), we take hα = β for sake of convenience.
There αhα ≡ 1 (mod s) yields the αβ ≡ 1 (mod s) or α is a unit of s.
Corollary 2. An integer t is a fixed of G(n)⇔ tht ≡ 1 (mod n)
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