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Abstract

Deep generative models show promise for de novo
protein design, but their effectiveness within spe-
cific protein families remains underexplored. In
this study, we evaluate two 3D rigid-body gener-
ative methods, score matching and flow match-
ing, to generate monomeric protein backbones
in SE(3) space. Our goal is to provide new in-
sights and build confidence in the broader appli-
cability of deep generative models for protein de-
sign. The optimal amino acid sequences were pre-
dicted from the generated backbones, followed by
side-chain homology modeling. Results demon-
strated high structural integrity, with conserved
key residues aligning with known proteins. Struc-
tural phylogenetic analysis shows evolutionary
links between the generated samples and their
protein family members. Further molecular dy-
namics simulations and protein-ligand docking
confirm the dynamic stability and functional po-
tential of these samples, with ligand binding in-
ducing conformational changes consistent with
those in wild-type proteins.

1. Introduction
Protein functions and specificity are determined by their
complex structures. Over the past 60 years, we have pro-
gressed from viewing protein design as unattainable to
achieving complete artificial design and synthesis (Koren-
dovych & DeGrado, 2020; Huang et al., 2016), with ex-
panding applications across industries (Arunachalam et al.,
2021; Kingwell, 2024; Barclay & Acharya, 2023). How-
ever, precise design remains challenging due to the nonlinear
complexity of protein folding and the sensitivity of function
to slight changes, still demanding significant resources.
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With the rapid growth of protein structure databases (Ja-
masb et al., 2024; Berman, 2000), various in silico de novo
protein design methods, particularly deep generative mod-
els (Watson et al., 2023; Ingraham et al., 2023; Wu et al.,
2022), have emerged. Approaches such as diffusion-based
score matching (SM) (Yim et al., 2023), and flow matching
(FM) (Bose et al., 2023), show competitive performance for
generating monomeric protein backbones in SE(3)1 space.

While many methods show novelty, diversity, and des-
ignability in generated structures, few studies assess their
functionality or evolutionary relevance, leaving the observed
novelty and diversity potentially as mere hallucinations (Ji
et al., 2023). Unclear biological functionality, unknown
stability, and the lack of validation connecting these struc-
tures to known functions limit the broader application and
advancement of generative methods.

This study evaluates the effectiveness of SM and FM meth-
ods across four well-studied protein families (β-lactamases,
cytochrome c, GFP, and Ras). After determining optimal
amino acid sequences and conducting side-chain homology
modeling, we assess the functional relevance and evolution-
ary potential of the design, aiming to build confidence in
deep generative approaches for protein design.

Our key contributions are: (1) We present a deep generative
model pipeline for early-stage de novo protein design, with
a robust evaluation protocol adaptable to a wider range of
protein structure generation methods. (2) Despite sequence
dissimilarity, generated samples show structural similarity
to experimentally determined proteins in their families, con-
serving key residues linking to functions. (3) Structural
phylogenetic analysis of both experimental and generated
proteins reveals evolutionary relationships, showing the po-
tential of structural phylogenetics. (4) Molecular dynamics
(MD) simulations and protein-ligand docking show the dy-
namic stability and functional potential of generated sam-
ples. These samples form binding pockets akin to wild-type
(WT) proteins, with conserved residues that bind family-
specific ligands at low energies. For instance, generated
KRas-like structures exhibit switch region flexibility and
GTP/GDP-dependent conformational shifts similar to WT.
(5) FM samples show greater flexibility, diversity, and nov-
elty, while SM better captures conserved regions, offering

1Special Euclidean group. See more in Appendix A.1.
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insights for model selection and optimization in future work.

2. Background: Protein Backbone Generation
In this section and Appendix A, we review the key concepts
behind Yim et al. (2023) and Bose et al. (2023)’s approaches
for backbone generation, using SM and FM on SE(3).

Protein backbone representations. Molecules can be in-
tuitively represented as atomic point clouds; however, for
macromolecules, this approach often leads to high dimen-
sionality and data sparsity. A more compact, fragment-
based representation involves using backbone rigid groups
from AlphaFold (Jumper et al., 2021). For each amino acid
residue i ∈ [1, N ], its group consists of the backbone atoms
[N,Cα,C,O]i (Figure 1A). The goal is to learn how the
rigid transformation (or frame) Ti acts on the idealized co-
ordinates, so that the transformed coordinates match the
actual coordinates. For simplicity, Ti ∈ SE(3) decomposes
into a rotation matrix Ri ∈ SO(3) and a translation vector
xi ∈ R3. An extra dihedral angle ψi ∈ SO(2) is introduced
between the Cα and C bond to optimize the positioning of
the backbone oxygen (O).

SE(3) score matching. Let Tt = [T1,t, . . . ,TN,t] be
the manifold of N frames at time t. The forward process
gradually perturbs the distribution T0 ∼ p0, pushing it
toward a simple distribution pT , such as a Gaussian, by
introducing a stochastic process independently in rotation
and translation spaces (Equation (4)). The reverse process
approximately reconstructs p0 by iteratively calculating the
gradient of the log probability density (or the score)∇ log p
along a reverse path (Equation (5) and Equation (6)). Since
this score function is typically intractable in practice, a
network s(θ, t, ·) is trained to approximate the conditional
score ∇ log pt|0 at time t ∼ U(0, T ) (Vincent, 2011).

SE(3) flow matching. The flow from pT to p0 is defined
as a set of continuously differentiable, time-indexed vector
fields {ut}, where FM learns the time evolution of ut to
gradually transport the data from pT to p0. Because ut

is generally intractable, Lipman et al. (2022) introduced
conditional FM, training a neural network v(θ, t, ·) to ap-
proximate ut|0 (Equation (13)). When the optimal transport
condition is satisfied, it provides a smooth and efficient trans-
formation path, improving training stability and reducing
computational complexity (Pooladian et al., 2023).

3. Evaluations of Generated Structures
3.1. Data

We generated monomeric proteins across a range of families,
covering diverse fold types and functions. These proteins

include both natural and engineered mutations while pre-
serving conserved core functional regions.

β-lactamases. β-lactamases are enzymes that deactivate
β-lactam antibiotics by hydrolyzing their β-lactam ring,
contributing significantly to bacterial resistance (Lee et al.,
2016). Using β-lactamase inhibitors can restore antibiotic
efficacy by blocking this reaction (Behzadi et al., 2020).
Since their discovery, β-lactamase diversity has rapidly ex-
panded due to the evolution of bacterial resistance, making
them ideal for protein modeling studies. For this study,
we gathered structural data on 1,578 unique monomeric β-
lactamases and their variants across Ambler classes (A, B,
C, and D) from the BLDB (Naas et al., 2017) and the Protein
Data Bank (PDB) (Berman, 2000). Class A β-lactamases
are the most prevalent, with conserved active-site residues
Ser70, Glu166, and Asn170 coordinating the hydrolytic wa-
ter for deacylation (Tooke et al., 2019; Brown et al., 2009).
Figure 1C shows the wild-type β-lactamase TEM1 (1BTL)
alongside its acylated E166N intermediate (1FQG).

Cytochrome c. Cytochrome c is a water-soluble protein
(∼ 12 kDa) essential for ATP synthesis in mitochondria and
intrinsic apoptosis (Kashyap et al., 2021; Ow et al., 2008).
It also serves as an independent marker for apoptosis in
several cancers (Li et al., 2001; Way et al., 2004). Despite
variations across species, its core structure and function
are conserved. We obtained structural data for 498 unique
cytochrome c proteins and variants from the PDB.

Figure 1D shows horse cytochrome c, where a hydropho-
bic shell surrounds the heme group, with only ∼ 7.5% of
the surface available for electron transfer (Bushnell et al.,
1990). The hydrophobic environment and iron coordination
by His18 and Met80 maintain a high redox potential ( 260
mV) (Salemme, 1977). Phosphorylation occurs at Thr28,
Thr47, Tyr48, and Tyr97 (Hüttemann et al., 2011), while
Lys72, Lys73, and Lys87 bind phospholipids (Kagan et al.,
2009). The ATP-binding pocket includes Glu69, Asn70,
Lys88, and Lys72, Lys86, Lys87 (McIntosh et al., 1996).

Green fluorescent proteins (GFP). GFP, first isolated
from Aequorea victoria, emits green fluorescence under spe-
cific wavelengths. Its core structure is an 11-strand β-barrel
that encloses the chromophore (Figure 1E) (Remington,
2011). Various mutants have been engineered to enhance or
modify its properties, including enhanced GFP (Cormack
et al., 1996), superfolder GFP (Pédelacq et al., 2005), and
color variants like YFP (Ormö et al., 1996) and BFP (Glaser
et al., 2016). We collected structural data for 448 GFPs and
variants from the PDB to explore this diversity.

Ras. Ras proteins, a subgroup of the small GTPase super-
family, act as molecular switches, cycling between GTP-
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Figure 1. (A) Protein backbone and dihedral angles ψ and ϕ. (B) Ramachandran plots showing ψ and ϕ angle distributions for generated
protein backbones vs. experimental proteins. The top-right inset shows conformationally favored (light) and disallowed (dark) angle
regions. (C) Structural overlay of WT E. coli TEM1 (PDB: 1BTL; Jelsch et al. (1993); green) and its E166N acylated intermediate
(PDB: 1FQG; Brown et al. (2009); white) with penicillin (PNM). (D) Structure of the WT E. caballus heart cytochrome c (PDB: 1HRC;
(Dickerson et al., 1967)) with heme C (HEC). (E) Structure of A. victoria GFP and its chromophore (PDB: 4KW4; Barnard et al. (2014)).
(F) Structure of GDP-bound H. sapiens KRas protein (PDB: 4OBE; (Hunter et al., 2014)).

bound (active) and GDP-bound (inactive) states to regulate
cell proliferation, differentiation, migration, and apoptosis
(Ladygina et al., 2011; Simanshu et al., 2017; Weinmann
& Ottow, 2007). They play a key role in signaling from
the cell surface to downstream pathways. Mutations that
keep Ras proteins in an active state drive excessive cell
growth and malignancy, making Ras inhibition a promising
cancer treatment strategy (Singh & Lingham, 2002). We
focused on the most common cancer-related Ras proteins
(HRas, KRas, and NRas) (Cox, 2002) and obtained 511
experimental structures from the PDB.

In human KRas (Figure 1F), the switch I and II regions
form the key interface for interacting with effectors and
regulators (Pantsar, 2020). These regions are highly flexible,
with conformations depending on GTP or GDP binding.
Cancer-related mutations frequently occur in the P-loop and
switch II (Pantsar, 2020).

3.2. Training and Sampling

We trained the SM and FM (with OT) models on the de-
scribed protein families, using pretrained weights from Yim

et al. (2023) and Bose et al. (2023), with each model having
∼ 17 million parameters. The sequence length distributions
of the training proteins are shown in Figure 6. Each model
generated 50 backbone structures with target lengths of 270
amino acids for β-lactamases, 113 for cytochrome c, 238
for GFP, and 170 for Ras proteins.

3.3. Backbone Dihedral Angles

Due to steric hindrance and spatial repulsion, not all back-
bone dihedral angles in proteins are physically feasible or
energetically favorable. We analyzed the ϕ and ψ distribu-
tion in the generated structures using Ramachandran plots
(Ramachandran et al., 1963) (Figure 1B). Most data points
fall within the allowed and favored regions, with only a few
in the disallowed areas, and no significant geometric clashes
or unreasonable conformations were observed.

The dihedral angle distributions of the generated structures
align well with those of the experimental training proteins.
For instance, cytochrome c structures have sparse points
in the region −180◦ < ψ < −90◦ and 45◦ < ϕ < 180◦,
while GFP structures form four clusters there. SM samples
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are closer to the training data and concentrate in allowed
regions but show less diversity than FM samples.

3.4. Conserved Residue Consistency

In protein families or across species, certain residues are
highly conserved, typically to ensure structural stability and
support proper folding and function.

Determining the optimal amino acid sequence. Follow-
ing Yim et al. (2023), we used ProteinMPNN (Dauparas
et al., 2022) to predict ten sequences for each generated
backbone. We then modeled these sequences with EMSfold
(Rives et al., 2019) and compared them to the original back-
bone using the TMscore (Zhang, 2005). The sequence with
the highest TMscore was chosen as the optimal match.

Identifying conserved residues. The experimental pro-
tein sequences were aligned with each generated backbone’s
optimal sequence using Clustal Omega (Sievers et al., 2011).
Given these multiple sequence alignments (MSAs) and gen-
erated structures, ConSurf (Yariv et al., 2023) reconstructed
phylogenetic trees and applied Rate4Site (Pupko et al., 2002)
to calculate evolutionary rates for each position with an em-
pirical Bayesian method (Ashkenazy et al., 2016; Mayrose,
2004). The optimal predicted sequences for the generated
backbones showed conserved residues matching those in
the experimental sequences (Figure 8). FM samples dis-
played greater diversity than SM samples, suggesting higher
novelty, as noted in Section 3.5. Interestingly, this trend re-
verses in generated β-lactamases, possibly due to the greater
structural variability in the experimental β-lactamase train-
ing set (Figure 2B), to which SM models are more sensitive.
Section 3.6 further assesses the dynamic stability and ligand-
binding properties of these generated samples.

In Figure 2A, similar to the experimental proteins, the gen-
erated structures have higher residue conservation near bind-
ing pockets. For instance, in cytochrome c (1HRC) and
generated structures SM-1 and FM-0, conserved residues
cluster around the central heme C binding site. A similar
pattern is seen in 4OBE and the generated KRas proteins.

3.5. Structural Phylogenetics

In specific tasks, we aim to generate structures with dissimi-
lar sequences while preserving similar functions. However,
when sequence similarity falls below 30%, detecting ho-
mology and evolutionary relationships becomes challenging
(Puente-Lelievre et al., 2023). Structural comparison, being
more conserved (Illergård et al., 2009), is more effective for
uncovering evolutionary connections (Flores et al., 1993;
Puente-Lelievre et al., 2023; Moi et al., 2023).

Using Qscore in structural phylogenetics. Malik et al.
(2020) proposed the Qscore (Krissinel & Henrick, 2004) for
structural phylogenetics, as it accommodates indels and
combines alignment quality with length. Qscore compares
the positions of all Cα atoms among Nalign comparable
residues in pairwise comparisons. We construct structural
phylogenetic trees using 1−Qscore as a distance measure,
with higher values indicating greater structural similarity.
For any two structures with N1 and N2 residues, we align
and calculate Qscore using TM-align (Zhang, 2005) as:

Qscore =
N2

align

N1N2
× 1

1 +
(

RMSD
R0

)2 (1)

where Nalign is the number of aligned residues, RMSD is
the root-mean-square deviation of atomic positions, and R0

(set to 4Å) balances the contributions of RMSD and Nalign.

Using 3Di alphabet in structural phylogenetics. van
Kempen et al. (2023) developed Foldseek, which represents
protein tertiary interactions as sequences over a 20-state 3D
interaction (3Di) alphabet, simplifying structural alignments.
This 3Di alphabet reduces false positives and increases infor-
mation density by encoding conserved core regions more ef-
fectively. Leveraging Foldseek’s structural divergence met-
rics, Moi et al. (2023) constructed structural phylogenetic
trees based on rigid body alignment, local alignment with-
out superposition, and sequence alignment with structural
alphabets, showing that these trees outperform traditional
sequence-based trees across varied evolutionary timescales
(Moi et al., 2023).

Summary tree. Two methods were used to calculate pair-
wise structural distances between generated and experimen-
tal structures, creating a distance matrix for constructing
structural phylogenetic trees (Figure 7). After normaliz-
ing branch lengths, we generated a summary tree using
SumTrees (Moreno et al., 2024), shown in Figure 2B. To
ensure reliable Qscore calculations, residue count differences
between compared structures were limited to within 10%
(Malik et al., 2020). Thus, we included proteins with
residue counts of 243-297 for β-lactamases, 102-124 for cy-
tochrome c, 216-261 for GFP, and 166-187 for Ras proteins,
excluding class C β-lactamases (∼ 360 residues) from the
tree but retaining them for model training and analysis.

The summary tree illustrates the potential of structural
phylogenies, with each protein family clustering on dis-
tinct branches and subtypes (such as metallo-β-lactamases)
grouping closely. Generated structures mostly integrate
within small branches of experimental proteins, suggesting
a close structural relationship. However, the models may
not fully capture the specificity of class D β-lactamases, as
no generated samples clustered in this class.
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Figure 2. (A) Normalized evolutionary rates mapped onto structures, with black for rapidly evolving positions and orange for conserved
ones. Experimental structures are highlighted with bold outlines, and highly conserved residues are marked in red (exposed) and green
(buried). (B) Summary tree of two structural phylogenetic trees (Figure 7), constructed using Qscore and the 3Di alphabet. Protein family
members are grouped in semi-circular rings, with specific subtypes labeled in white. In beta-lactamases, different Ambler classes are
shown with colored backgrounds. Colored branches and nodes indicate generated protein structures.

SM samples form dense clusters, while FM samples show
greater diversity, positioning closer to the tree root but near
experimental proteins without creating new branches, indi-
cating higher novelty in FM outputs.

3.6. Molecular Dynamics

Structures that appear reasonable may, in fact, be unstable
due to molecular dynamics, water interactions, and entropy,
which are not considered during generation. To evaluate
the dynamic stability of the generated structures, we con-
ducted MD simulations under physiological conditions and
analyzed their time-dependent behavior.

Homology modeling of side-chains. We used homology
modeling to add side-chains to the protein backbone. After
determining the optimal sequence (Section 3.4), we selected
template proteins with at least 45% sequence identity and a
TMscore of 0.75 or higher using FoldSeek (van Kempen et al.,
2023). Sequences were aligned with Clustal Omega, and
MODELLER (Šali & Blundell, 1993) generated possible
side-chain conformations using statistical potentials and
rotamer libraries, with backbone fixed. We chose the final
side-chain arrangement based on lowest energy and minimal
steric clashes, verifying model quality with PROCHECK

(Laskowski et al., 1993; 1996) and WHAT CHECK (Hooft
et al., 1996), discarding low-quality models.

Simulation. After adding hydrogen atoms with Reduce2
from the computational crystallography toolbox (Grosse-
Kunstleve et al., 2002), we conducted MD simulations with
GROMACS (Abraham et al., 2015). The protein was placed
in an octahedral box with at least 15 Å from the edges,
using the CHARMM36 force field (July 2022) (Vanommes-
laeghe et al., 2009; Vanommeslaeghe & MacKerell, 2012;
Yu et al., 2012; Soteras Gutiérrez et al., 2016) for intermolec-
ular interactions. Following vacuum energy minimization,
the system was solvated, neutralized to 150 mM Na+ and
Cl−, and minimized again. The system was then heated
to 310 K under NVT2 conditions and equilibrated at 1 atm
under NPT3 conditions, followed by a 10 ns production run.
Details are provided in Appendix F.

Stability. Dynamic stability were analyzed as follows:

(1) Root mean square deviation (RMSD) of backbone atoms
over time, with stable proteins typically below 2Å, or up
to 3Å for larger, flexible proteins (Burton et al., 2012; Liu

2Constant number of particles, volume, and temperature.
3Constant number of particles, pressure, and temperature.
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Figure 3. Stability assessment of MD simulations across proteins using various metrics. (A, C-E) Distributions of (A) RMSD, (C) radius
of gyration (Rg), (D) potential energy, and (E) secondary structure counts throughout the simulation. Interquartile ranges and whiskers
show metric variation; high-quality structures have medians close to experimental values with narrow ranges. (B) Residue fluctuation
(RMSF) during simulation, where stable structures exhibit lower RMSF values and trends similar to the experimental structure.

et al., 2017; Wong & Wong, 2024). In Figure 3A, experi-
mental structures have RMSD within 2Å, while generated
structures average around 2.5Å, rarely exceeding 3Å. SM
samples show RMSD ∼ 0.3Å higher than FM samples. (2)
Root mean square fluctuation (RMSF) measures the fluc-
tuation of individual residues from their average positions,
with values below 3Å considered stable (Burton et al., 2012;
Oyewusi et al., 2024). Most residues in generated structures
stay under 3Å, except for the first and last ∼ 10 residues
(Figure 3B). (3) Radius of gyration (Rg) quantifies the spa-
tial distribution of a molecule’s atoms relative to its center
of mass. The generated structures are expected to be com-
pact, with Rg values close to experimental structures and
fluctuations around 1Å (Figure 3C). (4) The DSSP algo-
rithm assigns secondary structure to each residue based on
hydrogen bonds and geometry. In Figure 3D, the stability
in secondary structure elements over time suggests struc-
tural stability with no major conformational changes. (5)
Lower potential energy are generally more stable, with con-
tributions from bond, angle, dihedral, van der Waals, and
electrostatic energies. In Figure 3E, most generated samples
have lower potential energy than the experimental data.

3.7. Protein-ligand Docking

Using AutoDock Vina (Trott & Olson, 2009; Eberhardt
et al., 2021), we predicted optimal binding modes between
generated structures and their family-specific ligands. We
performed blind docking, scanning the entire protein surface
for potential ligand binding sites without prior knowledge
of binding pockets. The grid box covered the entire protein,
and identical configurations were applied to both gener-
ated and experimental structures to evaluate if deviations
in generated samples fell within an acceptable range, thus
assessing their functional viability. Details on simulation

settings are provided in Appendix G.

Docking on experimental structures closely matches known
binding modes, with ligand deviations (RMSD) around 1.5Å
and low binding energies (Figure 4). Successful docking
typically shows binding free energies (∆G) between -7 and
-10 kcal/mol, where lower values indicate stronger, more
stable interactions (P. & M. K., 2021; Nguyen et al., 2019).

The generated protein structures have pockets similar to the
experimental proteins (Figure 4). In most simulations, lig-
ands bind within 4Å of experimental positions and binding
energies below -6 kcal/mol. SM samples generally show
lower binding energies and RMSD values than FM samples.

β-lactamases binding to penicillin. Mutations at Glu166

and Asn170 in class A β-lactamases (Figure 1C) can form
a stable acyl-enzyme intermediate, disrupting deacylation
(Chen & Herzberg, 2001). Only asparagine and glycine at
position 170 preserve WT-like function (Brown et al., 2009),
and this conservation is retained in generated structures like
FM-4 (Figure 4A), suggesting they may retain the ability to
inactivate penicillin antibiotics.

Cytrochrome c binding to heme c. The generated cy-
tochrome c-like structures retain conserved residues found
in the WT (Figure 1D; 1HRC). SM-1 (Figure 4B) includes
phosphorylatable residues Tyr58, Thr59, and Tyr107, as well
as lysine residues Lys82, Lys83, and Lys96 involved in phos-
pholipid binding. Asn80 and these lysines form an ATP-
binding pocket-like structure. FM-0 shows heme iron coor-
dinated by two cysteines, which may form stronger covalent
bonds, potentially affecting electron transfer efficiency.
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Figure 4. Comparison of experimentally determined bindings (bold boxes) with predictions from blind docking simulations, using models
closest to experimental data. Ligands are shown in green (experimental data), cyan (predictions from experimental receptors), magenta
(predictions from SM samples), and yellow (predictions from FM samples). ∆G is in kcal/mol, with RMSD indicating deviation from
experimental ligand positions (in Å). Dockings labeled “MD” represent protein-ligand complex MD simulations after blind docking.

KRas binding to GNP/GDP. GNP, a non-hydrolyzable
GTP analog, is commonly used to simulate the GTP-bound
active state of Ras proteins (Pantsar, 2020). In WT KRas
bound to GNP (Figure 4D; 5UFE), residues from the Switch
II region fill the pocket. Removal of the γ-phosphate relaxes
the protein conformation to the GDP-bound state, opening
the switch II region (Figure 4C; 4OBE) (Kauke et al., 2017).

After blind docking the generated KRas-like structures with
GNP/GDP, we analyzed the complexes using protein–ligand
MD simulations. Allowing flexibility in both the backbone
and side-chains enabled us to capture the dynamic confor-
mational changes, especially in the switch regions, between
active/inactive states. FM-generated KRas-like structures
show greater flexibility. In FM-13 (Figure 4D), GNP bind-
ing causes switch II residues to fill the pocket, similar to
5UFE. In the GDP-bound state, FM-13 adopts an open
conformation, with the channel between the switches and
P-loop opening, as seen in 4OBE (Figure 4C). In contrast,
SM-27 are more rigid, with fewer conformational changes
between GDP- and GTP-bound states.

4. Discussion
This study demonstrates the potential of SM and FM meth-
ods for generating protein backbones. After determining
the sequence, we performed side-chain homology modeling.
Despite sequence dissimilarities, key residues are conserved,
and the generated structures are highly similar. SM better
captures conserved regions, producing more rigid structures,

while FM offers greater flexibility. Structural phylogenetic
analysis revealed evolutionary relationships, and MD and
docking simulations confirmed stability and functionality.
The presented pipeline and evaluation protocols build confi-
dence for broader applications in protein generation.

SM and FM can generate a range of monomeric protein
structures and can have applications beyond protein design
(Yim et al., 2023; Bose et al., 2023). However, the com-
plexity of these tasks is often underestimated, and function
verification for novel samples remains costly. Targeting
specific tasks or integrating generative methods into well-
established empirical knowledge may yield better results.
Key factors like conformational dynamics, water interac-
tions, and entropy have not been fully considered in genera-
tion (Du et al., 2024). Incorporating protein sequences, side-
chain details, and functional annotations as context could
improve model performance. Although some progress has
been made (Torge et al., 2023; Jin et al., 2023; Somnath
et al., 2023; Zhou et al., 2023), research gaps remain.

These generative processes differ from protein synthesis sim-
ulations and do not reflect human hierarchical understand-
ing. Limited interpretability reduces their utility for further
downstream analyses and industrial applications. Although
generated proteins may resemble real ones and include sim-
ilar conserved residues and conformational changes, small
variations could significantly impact function. Simply aim-
ing for diversity and novelty does not guarantee quality.

Generative models have also shown great potential as effi-
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cient surrogates for MD simulations, which are often com-
putationally intensive for complex systems or long-term
behaviors. Jing et al. (2024) developed a framework to
simulate molecular trajectories using generative models.
Similarly, Viguera Diez et al. (2023) used generative models
to enhance sampling of slow degrees of freedom, covering
the sample space more effectively than traditional MD.

Software and Data
All input data and software used in this study are available
from public sources or provided under academic licenses.
The source code, scripts, generated samples, and curated
datasets can be accessed at https://github.com/
ECburx/PROTEVAL. The PDB structure files were down-
loaded on June 19, 2024, from https://www.wwpdb.
org/ftp/pdb-ftp-sites.
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A. Protein Backbone Generation
A.1. SE(3) Decomposition into SO(3) and R3

The Special Euclidean group SE(3) describes the rotations and translations in 3D space. An element of the SE(3) can be
represented by a 4× 4 matrix:

T =

(
R x

01×3 1

)
(2)

where R is a 3 × 3 rotation matrix belonging to the Special Orthogonal group SO(3), and x = [xx xy xz] ∈ R3 is the
translational component. Since SE(3) can be viewed as the semidirect product of SO(3) and R3, denoted as SE(3) ∼=
SO(3)⋉R3, one option is to naturally treat SO(3) and R3 as independent for simplicity (Yim et al., 2023).

A.2. Protein Backbone Representations

Molecules can be intuitively represented as 3D atomic point clouds. However, macromolecules like proteins may contain
thousands or tens of thousands of atoms, with variation in the atom types and quantities among different amino acids
(for instance, sulfur atoms are present only in a few amino acids like cysteine). Representing proteins as unordered 3D
atomic point clouds significantly increases data dimensionality and sparsity, requiring far more training data than is typically
available.

Following the work of Yim et al. (2023) and Bose et al. (2023), we adopt the more compact backbone rigid groups from
AlphaFold (Jumper et al., 2021) to represent protein backbone structures in 3D space. A backbone rigid group consists of
the main chain atoms (N, Cα, C, O) within a single residue (Figure 1A), where the their geometric relationships (relative
positions and orientations) are highly stable. The position and orientation of the group is transformed as a whole, without
accounting for individual atomic movements, simplifying the computation and reducing structural errors caused by excessive
degrees of freedom.

Assuming experimentally measured ideal chemical bond angles and lengths, models learn how the rigid transformation
(or frame) Ti of each residue i ∈ [1, N ] acts on idealized coordinates [N⋆,C⋆

α,C
⋆] ∈ R3 (centered at C⋆

α), so that the
transformed coordinates match the actual coordinates as closely as possible:

[N,Cα,C]i = Ti · [N⋆,C⋆
α,C

⋆] (3)

where Ti ∈ SE(3) can be decomposed into a rotation matrix Ri ∈ SO(3) and a translation vector xi ∈ R3. An additional
torsion angle ψi ∈ SO(2) is introduced between the bond of Cα and C for a more accurate construction of the backbone
oxygen atom O.

A.3. SE(3) Score Matching

Let Tt = [T1,t, . . . ,TN,t] ∈ SE(3)N denote the manifold of N frames at time t, where each frame can independently
rotate and translate. Correspondingly, define Rt = [R1,t, . . . ,RN,t] and Xt = [x1,t, . . . , xN,t]. By treating SO(3) and R3

as two independent stochastic processes, a forward process gradually perturbs the initial data distribution p0. Following the
approach of Yim et al. (2023), this process is described by the Stochastic Differential Equation (SDE) for Tt ∼ pt and any
arbitrary time t ∈ [0, T ]:

dTt =

[
0,−1

2
Xt

]
dt+

[
dB

SO(3)
t ,dBR3

t

]
(4)

where B
SO(3)
t and BR3

t are Brownian motions on the SO(3) and R3, respectively. Invariant density p
SE(3)
inv (T) ∝

USO(3)(R) N (x; 0, I) is chosen for T = (R, x).

Let (
←−
T t)t∈[0,T ] = (TT−t)t∈[0,T ], the corresponding time-reverse process (De Bortoli et al., 2022) is given by

d
←−
Rt = ∇R log pT−t(

←−
T t)dt+ dB

SO(3)
t (5)

d
←−
Xt =

{←−
Xt

2
+∇x log pT−t(

←−
T t)

}
dt+ dBR3

t (6)
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where ∇ log p is the gradient of the log-probability density function (also known as the Stein score). However, this gradient
is typically intractable in practice because the exact form of pt(Tt) is unknown at any given time t.

Instead, score-based models estimates tractable conditional score ∇ log pt|0 through SM (Vincent, 2011), using a neural
network s(θ, t, ·) trained by minimizing both4:

LR
SM(θ) = E

[
∥∇R log pt|0(Rt|R0)− s(θ, t,Rt)∥2

]
(7)

LX
SM(θ) = E

[
∥∇X log pt|0(Xt|X0)− s(θ, t,Xt)∥2

]
(8)

with t ∼ U(0, T ) and

∇R log pt|0(Rt|R0) =
Rt

ω(R0→t)
log{R0→t}

∂ωf(ω(R0→t), t)

f(ω(R0→t), t)
(9)

∇x log pt|0(xt|x0) =
e−t/2x0 − xt

1− e−t
(10)

where ω represents the rotation angle, R0→t = R⊤
0 Rt, and

f(ω, t) =
∑
ℓ∈N

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+
1
2 )ω)

sin(ω2 )
(11)

is an auxiliary function for the heat kernel5 of the Brownian motion on SO(3).

A.4. SE(3) Flow Matching

FM is a simulation-free method for training vector fields to follow a prescribed conditional probability path (Lipman et al.,
2022). Formally, for t ∈ [0, 1], let U = {ut} be a flow which is a set of time-indexed vector fields that describe the paths
along which data points move from an initial distribution p1 to a target distribution p0. Each vector field ut(Tt) represents
the rate of change of Tt which is typically the solution to the Ordinary Differential Equation (ODE) d

dtTt = ut(Tt). FM
approximates ut(Tt) with a network v(θ, t, ·) by minimizing LFM(θ) = E ∥ut(Tt)− v(θ, t,Tt)∥2 with t ∼ U(0, 1).

Similarly, independent flows can be built on SO(3) and R3. Computing ut, however, is also intractable due to the complex
integrals involved in defining the marginal probability path and vector field. By showing∇θLFM(θ) = ∇θLCFM(θ), Lipman
et al. (2022) suggested the tractable conditional FM objective on R3:

LX
CFM(θ) = E ∥ut(Xt|X0)− v(θ, t,Xt)∥2 (12)

with the Gaussian path pt(xt|x0) = N (xt; tx0, (tσ − t+ 1)2) generated by

ut(xt|x0) =
x0 − (1− σ)xt
1− (1− σ)t

(13)

where σ > 0 is a smoothing constant.

For flows on SO(3), Bose et al. (2023) set

LR
CFM(θ) = E ∥ut(Rt|R0,R1)− v(θ, t,Rt)∥2 (14)

and define the geodesic interpolant between R1 ∼ p1 and R0 ∼ p0 as Rt = expR1
(t logR1

(R0)). Let Ψt be a flow that
connects R1 to R0, computing ut(Rt|R0,R1) simplifies to determining Rt along d

dtΨt(R) = Ṙt (Chen & Lipman, 2023)
and then taking its time derivative. Thus, we have

ut(Rt|R0,R1) =
logRt

(R0)

t
(15)

4One adds weights 1/E[∥∇R log pt|0(Rt|R0)∥2] to Equation (7) and (1− e−t)/e−t/2 to Equation (8) for simplicity.
5The heat kernel on a manifold is the fundamental solution to the heat equation, representing the probability density function of a

Brownian particle diffusing from one point to another over time.
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Optimal transport. Optimal Transport (OT) conditions hold when the probability paths between two distributions are
defined by a displacement map that linearly interpolates between them (Pooladian et al., 2023).

Tong et al. (2023) views the OT problem as finding a mapping that minimizes the 2-Wasserstein distance between two
distributions p1 and p0 on R3, using the Euclidean distance ∥x0 − x1∥ as the displacement cost:

W (p0, p1)
2
2 = inf

π∈Π

∫
R3×R3

∥x0 − x1∥2dπ(x0, x1) (16)

where Π denotes the set of all joint probability measures on R3 × R3 with marginals p1 and p0. By setting p(x0, x1) =
π(x0, x1) and a Gaussian conditional probability path with mean µt = tx0 + (1− t)x1, we have

LX
OT(θ) = Eπ ∥ut(Xt|X0,X1)− v(θ, t,Xt)∥2 (17)

ut(xt|x0, x1) = x0 − x1 (18)

with pt(xt) =
∫
N (xt|tx0 + (1− t)x1, σ2)π(x0, x1)dx0dx1.

Inspired by this, Bose et al. (2023) extended Equation (14) and Equation (15) to SO(3) using Riemannian optimal transport,
with π̄ being the projection of π on SO(3):

LR
OT(θ) = Eπ̄

∥∥∥∥ logRt
(R0)

t
− v(θ, t,Rt)

∥∥∥∥2 (19)

A.5. SE(3) Invariance

SE(3) invariance can be achieved by consistently positioning the model at the origin (Yim et al., 2023; Bose et al., 2023;
Rudolph et al., 2020).

In the context of SM, to ensure translation invariance on R3, one apply a projection matrix P ∈ R3N×3N that removes the
center of mass 1

N

∑N
i=1 xi. It results in an invariant measure on SE(3)N , denoted as SE(3)N0 . Since the Brownian motion

on SO(3) and the score∇R log pT−t are both rotation-invariant, Equation (5) is SO(3)-invariant. Consequently, Yim et al.
(2023) derive the following SE(3)-invariant forward process

dTt =

[
0,−1

2
PXt

]
dt+

[
dB

SO(3)N

t ,PdBR3N

t

]
(20)

and its corresponding time-reverse process

d
←−
Rt = ∇R log pT−t(

←−
T t)dt+ dB

SO(3)N

t (21)

d
←−
Xt = P

{←−
Xt

2
+∇x log pT−t(

←−
T t)

}
dt+ dPBR3N

t (22)

The same approach can be applied to FM. After centering and decoupling the flow on SE(3)N0 , a separate SE(3)-invariant
flow can be constructed for each residue in backbone6, in which each SE(3)-invariant measure is decomposed into a measure
that is proportional to the Lebesgue measure on R3 (Pollard, 2001) and an SO(3)-invariant measure (Bose et al., 2023).

A.6. Additional Losses

To prevent unrealistic fine-grained features such as steric clashes or chain breaks when learning the torsion angle ψ, Yim
et al. (2023) proposed adding two additional loss functions. The first is the mean squared error (MSE) on backbone atom
positions:

Lbb =
1

4N

N∑
n=1

∑
a∈A

∥an − ân∥2 (23)

6As the product group of N copies of SE(3), SE(3)N0 has a geometric structure that allows global geometric operations (such as
geodesic distance, exponential maps, and logarithmic maps) to be decomposed into operations on each of the N SE(3) groups.
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where A = {N, C, Cα, O}. an and ân are the true and predicted coordinates of backbone atom a at residue n.

The second loss penalizes deviations in local pairwise atomic distances:

L2D =

∑N
n=1

∑N
m=1

∑
a,b∈A 1{dnmab < 6Å}∥dnmab − d̂nmab ∥2(∑N

n=1

∑N
m=1

∑
a,b∈A 1{dnmab < 6Å}

)
−N

(24)

where dnmab = ∥an − bm∥ and d̂nmab are the true and predicted distances between atoms a and b in residues n and m,
respectively. The indicator function 1{dnmab < 6Å} limits the loss to atom pairs within 6 Å.

The complete training loss is given by

L = LR(θ) + LX(θ) + 1 {t < T/4} (Lbb + L2D) (25)

where T = 1 in the case of FM.

A.7. Model Architecture

Figure 5. Overview of the (A) embedding module and (B) multi-layer network architecture.

The networks s(θ, t, ·) involved in SM and v(θ, t, ·) involved in FM models, as reviewed in Section 2, can share a common
high-level architecture (Yim et al., 2023; Bose et al., 2023; Anand & Achim, 2022).

Embeddings. Given node embedding dimensionsDh and edge embedding dimensionsDe, node embeddings h ∈ RN×Dh

are derived from residue indices i = {1, . . . , N} and time-step information t = {0,∆t, . . . , T}, while edge embeddings
E =∈ RN×N×De integrate additional features, such as relative sequence distances j − i for any i, j ∈ [1, N ] (Figure 5A).
Self-conditioning on the predicted Cα displacements is also applied:

ci,j =

B∑
b=1

1
{
|x∗i − x∗j | < vb

}
(26)
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where x∗ denotes the coordinates for Cα predicted through self-conditioning, and v1, . . . , vB are bins spaced uniformly
from 0 and B angstroms. These initial features are encoded using multilayer perceptrons (MLPs) along with sinusoidal
embeddings (Vaswani et al., 2017).

Multi-layer network. Figure 5B shows the architecture of the multi-layer neural network (L = 4 layers used in our
experiments). At each layer l, the network takes node embeddings hl, edge embeddings El, and rigid transformations
Tl as input, applying the Invariant Point Attention (IPA) introduced by Jumper et al. (2021) to enable spatial attention.
Transformer from Vaswani et al. (2017) models interactions along the chain structure. The network’s update procedure
remains invariant under SE(3) transformations due to the inherent SE(3)-invariance of the IPA.

The output TL from the final layer serves as the predicted frame, denoted as T̂0 = (R̂0, x̂0). Consequently, for SM, we have
the following scores predictions based on Equation (9) and Equation (10):

∀s(θ, t,Rt) ∈ s(θ, t,Rt), s(θ, t,Rt) = ∇R log pt|0(Rt|R̂0) (27)

=
Rt

ω(R̂
⊤
0 Rt)

log{R̂
⊤
0 Rt}

∂ωf(ω(R
⊤
0 Rt), t)

f(ω(R⊤
0 Rt), t)

(28)

∀s(θ, t, xt) ∈ s(θ, t,Xt), s(θ, t, xt) = ∇x log pt|0(xt|x̂0) (29)

=
e−t/2x̂0 − xt

1− e−t
(30)

From Equation (13) and Equation (15), we have the following for FM with OT:

∀v(θ, t,Rt) ∈ v(θ, t,Rt), v(θ, t,Rt) = ut(Rt|R̂0,R1) (31)

=
logRt

(R̂0)

t
(32)

∀v(θ, t, xt) ∈ v(θ, t,Xt), v(θ, t, xt) = ut(xt|x̂0) (33)

=
x̂0 − (1− σ)xt
1− (1− σ)t

(34)

Torsion angle ψ̂ = {ψ̂1, . . . , ψ̂N} = ψ/∥ψ∥ ∈ SO(2)
N is predicted with hL and EL.

B. Amino Acid Count Distributions in Experimental Proteins Used for Training

Figure 6. (A-D) Distribution of amino acid sequence lengths (aa) in experimentally determined protein structures used for training.

C. Structural Phylogenetic Trees
Figure 7 shows structural phylogenetic trees generated usingQscore and the 3Di alphabet. Both approaches reveal evolutionary
relationships between the generated and experimental structures. However, compared to the Qscore-based tree, the 3Di
alphabet tree shows closer and less distinguishable evolutionary relationships among samples from different protein families,
especially between the GFP and cytochrome c samples.
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Figure 7. Structural phylogenetic trees constructed using (A) Qscore and (B) 3Di alphabet. Members of different protein families are
grouped into semi-circular rings. The colored branches and nodes represent the generated protein structures.

D. Conserved Residue Consistency

Figure 8. Normalized evolutionary rates were mapped onto sequences, with black indicating rapidly evolving positions and orange
indicating conserved positions. The heat map displays each column as the optimal predicted sequence of a generated sample, with rows
representing specific positions in these sequences. The bar chart (exp. identity) shows the average pairwise sequence identity at each
position from the MSAs of experimental proteins. Taller bars signify positions where most experimental protein share the same residue.
Consistency between generated and experimental sequences at conserved positions appears as uniform orange coloring in the heat map,
aligning with the taller bars.

E. Evaluation of Side-Chain Homology Modeling
We used homology modeling to add side-chains to the generated protein backbones, evaluating them using PROCHECK
(Laskowski et al., 1993; 1996) and WHAT CHECK (Hooft et al., 1996) to correct or exclude those not meeting the
expectations. Specifically:

Planarity. Planar side-chains, such as those in phenylalanine, tyrosine, tryptophan, and histidine, are essential for stability
and function. Conformations lacking expected planarity were discarded.
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Asparagine, glutamine, histidine flips. Asparagine, glutamine, and histidine side-chains can experience terminal flips,
altering key interactions. WHAT CHECK was used to evaluate and, if necessary, adjust side-chain orientations to have more
stable interactions.

Torsion angles. Side-chain torsion angles (χ angles) were assessed, focusing on χ1 (rotation around Cα to the first
side-chain atom) and χ2 (rotation to the second side-chain atom) to prevent spatial clashes. Conformations in uncommon
χ-angle regions were excluded.

Bond lengths and angles. Unusual bond lengths and angles may indicate strain and modeling errors, potentially disrupting
interactions. Conformations with such issues were discarded.

Other parameters. Side-chains with abnormal torsion angles, atypical aromatic bonding angles, or unusual proline
puckering were also discarded.

F. Molecular Dynamics Simulations
For experimental structures, crystallographic water and unnecessary small molecules were removed. For generated structures,
missing side-chains were added via homology modeling (Section 3.6). After adding hydrogen atoms using Reduce2 (Grosse-
Kunstleve et al., 2002) and confirming no missing atoms, each protein was centered at the origin.

Simulations were performed with GROMACS (Abraham et al., 2015), using the all-atom CHARMM36 force field (July
2022 version) (Vanommeslaeghe et al., 2009; Vanommeslaeghe & MacKerell, 2012; Vanommeslaeghe et al., 2012; Yu et al.,
2012; Soteras Gutiérrez et al., 2016).

F.1. Molecular Dynamics Setup for Stability Assessment of Generated Structures

Proteins were placed in an octahedral simulation box with a minimum distance of 1.5 nm between the protein and the
box boundaries. Prior to solvation, energy minimization was performed in vacuum using the steepest descent method
(max 30,000 steps, step size 0.01 nm, convergence 2 kJ/(mol·nm)) to resolve steric clashes and geometric inconsistencies.
Neighbor searching used a grid-based method with a search radius of 1.2 nm.

In accordance with GROMACS 2024 documentation, we applied the following configurations in the MD parameter (.mdp)
files. Van der Waals interactions were handled using a cutoff method, while long-range electrostatic interactions were
calculated using the Particle Mesh Ewald (PME) method.

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2
rvdw = 1.2
rvdw-switch = 1.0
coulombtype = PME
rcoulomb = 1.2
DispCorr = no

After solvating the system with water using the TIP3P model, we added Na+ and Cl− ions to achieve a physiological
concentration of 150 mM and to neutralize the system’s total charge. Energy minimization was then conducted to resolve
steric clashes and optimize the geometry, with potential energy and maximum force monitored to ensure they reached
acceptable thresholds.

The next step involved equilibrating the solvent and ions around the protein. We chose the leap-frog integrator for the
simulations and applied the LINCS algorithm to constrain hydrogen bonds. Equilibration involved two stages. In the first
stage, we performed a 500 ps NVT equilibration (250,000 steps with a 2 fs time step). Temperature control was managed
using the V-rescale thermostat, with the system divided into two groups: (1) protein and (2) water + ions, both set to a target
temperature of 310 K to simulate physiological conditions. In the second stage, we carried out a 500 ps NPT equilibration
with pressure coupling enabled. The pressure was regulated using the C-rescale method with isotropic coupling. The target
pressure was 1.0 bar, with a compressibility of 4.5× 10−5 bar−1 and a pressure coupling time constant of 0.5 ps.
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Following equilibration, we conducted a 10 ns production simulation (5,000,000 steps with a 2 fs time step), during which
all position restraints were removed. This allowed us to observe and analyze the system’s dynamic behavior over time, in
order to access its stability. Full details of the MD parameter files can be found in Software and Data.

F.2. Molecular Dynamics Setup for Conformational Analysis of Protein-Ligand Complexes

The receptor and ligand were saved as separate coordinate files to prepare their respective topologies. The receptor topology
was prepared as in Appendix F.1. For the ligand, hydrogen atoms were added using OpenBabel (O’Boyle et al., 2011),
and topology was generated via the CGenFF server (Vanommeslaeghe et al., 2009; Vanommeslaeghe & MacKerell, 2012;
Vanommeslaeghe et al., 2012). The receptor and ligand topologies, along with force-field-compatible coordinate files, were
then combined to construct the complete complex system.

The MD workflow for complexes followed the same steps in Appendix F.1. Complexes were placed in an octahedral
simulation box, energy-minimized in vacuum, solvated in water, and neutralized with Na+ and Cl− ions to 150 mM. A
second energy minimization was then performed on the solvated system.

During equilibration, positional restraints were applied to the ligand to prevent unnecessary displacement in the initial
stages of the simulation. Additionally, to minimize interference from temperature fluctuations of the ligand on the overall
simulation, we defined two temperature coupling groups: (1) the receptor and ligand as one group, and (2) the solvent and
ions as the other. Other equilibration settings followed Appendix F.1.

After equilibration, restraints were removed, and a 10 ns production simulation was conducted to analyze the dynamic
behavior and conformational changes in the complexes.

G. Protein-ligand Blind Docking
Similarly, crystallographic water and unwanted molecules were removed from experimental structures, and missing side-
chains were added to generated structures via homology modeling. Receptor structures were prepared using AutoDock
Tools (Morris et al., 2009), with polar hydrogens added, Kollman charges assigned, and any missing atoms repaired. For
receptors within the same family, we prepared a shared ligand file, adding hydrogen atoms and assigning Gasteiger charges.
A large grid box, typically 80 to 110 Å per side, was defined to cover the entire protein surface.

Using these settings, we performed blind docking with AutoDock Vina (Trott & Olson, 2009; Eberhardt et al., 2021),
generating up to 25 binding modes with a maximum energy difference of 5 kcal/mol and an exhaustiveness level of 20. The
binding mode with the lowest binding free energy was selected as the final result.
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H. Generated Structures

Figure 9. 50 β-lactamase-like protein backbones generated using score matching and 50 using flow matching.
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Figure 10. 50 cytochrome c-like protein backbones generated using score matching and 50 using flow matching.
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Figure 11. 50 GDP-like protein backbones generated using score matching and 50 using flow matching.
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Figure 12. 50 Ras-like protein backbones generated using score matching and 50 using flow matching.
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