
Proceedings of Machine Learning Research 158:181–195, 2021 Machine Learning for Health (ML4H) 2021

Early Exit Ensembles for Uncertainty Quantification

Lorena Qendro∗ 1 lq223@cl.cam.ac.uk

Alexander Campbell∗ 1, 2 ajrc4@cl.cam.ac.uk

Pietro Liò 1
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Abstract
Deep learning is increasingly used for decision-
making in health applications. However, com-
monly used deep learning models are determin-
istic and are unable to provide any estimate
of predictive uncertainty. Quantifying model
uncertainty is crucial for reducing the risk of
misdiagnosis by informing practitioners of low-
confident predictions. To address this issue, we
propose early exit ensembles, a novel framework
capable of capturing predictive uncertainty via
an implicit ensemble of early exits. We evalu-
ate our approach on the task of classification
using three state-of-the-art deep learning ar-
chitectures applied to three medical imaging
datasets. Our experiments show that early exit
ensembles provide better-calibrated uncertainty
compared to Monte Carlo dropout and deep en-
sembles using just a single forward-pass of the
model. Depending on the dataset and base-
line, early exit ensembles can improve uncer-
tainty metrics up to 2×, while increasing accu-
racy by up to 2% over its single model counter-
part. Finally, our results suggest that by pro-
viding well-calibrated predictive uncertainty for
both in- and out-of-distribution inputs, early
exit ensembles have the potential to improve
trustworthiness of models in high-risk medical
decision-making.

Keywords: Uncertainty, Medical Imaging,
Deep learning, Robustness, Early Exit, Out-Of-
Distribution Detection

1. Introduction

Deep learning achieves state-of-the-art performance
on a variety of tasks within the medical field such as
classification (Esteva et al., 2017), segmentation (Per-
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slev et al., 2019), and monitoring (Chan et al., 2019).
For the majority of methods, however, the main fo-
cus is on improving accuracy without any considera-
tion of predictive uncertainty. Particularly in medical
imaging, uncertainty quantification is critical since
the input distributions are often shifted from the
training distribution due to different hardware and
data collection protocols (Mårtensson et al., 2020;
Amodei et al., 2016). In such scenarios, a model with
well-calibrated uncertainty is able to indicate if a pre-
diction should be trusted (Ovadia et al., 2019). Such
a model could inform clinicians on how its perfor-
mance may degrade in different deployment settings
as well as when a human-in-the-loop is required to
analyze uncertain samples (Garćıa Rodŕıguez et al.,
2020; Xia et al., 2021).

Predictive uncertainty is defined as a probability
distribution over multiple predictions on a single sam-
ple. Bayesian neural networks (BNNs) can natu-
rally quantify such uncertainty via the estimation
of the posterior over model weights using techniques
such as variational inference (MacKay, 1992; Graves,
2011; Blundell et al., 2015). However, BNNs tend
to be unstable and prohibitively slow to train, as
well as parameter inefficient. More recently, Monte
Carlo dropout uses dropout during inference as an
efficient approximation to BNNs by creating an im-
plicit ensemble of networks (Gal and Ghahramani,
2015). It is well known that ensembles of neural net-
works (NNs) improve prediction and uncertainty cal-
ibration (Hansen and Salamon, 1990). In particu-
lar deep ensembles (Lakshminarayanan et al., 2017),
which train explicit ensemble members with different
random initializations, have been shown to outper-
form approximate Bayesian methods (Ovadia et al.,
2019). However, these approaches consist of training
and running multiple models which can be unfeasible
in real-world scenarios.
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We propose a novel framework, early exit ensem-
bles1, that addresses the practical limitations of the
aforementioned approaches for uncertainty quantifi-
cation. The main contributions of our paper are:

• We provide a new interpretation of early exits as
an implicit ensemble for uncertainty quantifica-
tion. Our approach can be easily applied to any
feed-forward deep learning architecture.

• We compare early exit ensembles to state-of-the-
art deep learning uncertainty baselines in a se-
ries of experiments on the task of classification
using real-world medical imaging datasets. Our
evaluation includes data from different modali-
ties (images and timeseries) as well as different
model architectures (shallow and deep).

• Based on our experiments, early exit ensem-
bles can provide significantly better uncertainty
quantification compared to baselines such as
Monte Carlo dropout and deep ensembles. On
some datasets, negative log-likelihood, brier
score and expected calibration error are im-
proved up to 2×. Furthermore, on out-of-
distribution data, early exit ensembles can
achieve a 77% higher predictive entropy com-
pared to the state-of-the-art.

• Finally, our approach enables training all ensem-
ble members jointly in a single model, as well as
providing uncertainty estimations from a single
forward-pass of input data. Early exit ensembles
therefore can be applied to a wide range of real-
world applications in need of efficient uncertainty
quantification.

2. Related Work

Uncertainty in deep learning. Several ap-
proaches exist for uncertainty quantification in deep
learning. By setting a prior over model parame-
ters, BNNs capture uncertainty via the estimation of
the posterior distribution (MacKay, 1992; Blundell
et al., 2015). To overcome the issue of slow train-
ing in BNNs (Graves, 2011), Monte Carlo dropout
(MCDrop) approximates Bayesian inference by ran-
domly dropping out weights during testing (Gal and
Ghahramani, 2015). Despite the simplicity of Monte
Carlo dropout, recent work using ensembles of NNs
have demonstrated better calibrated results (Ovadia

1. Code available at https://github.com/ajrcampbell/

early-exit-ensembles

et al., 2019). In particular, deep ensembles (Lak-
shminarayanan et al., 2017), where individual net-
works are trained with different weight initialization,
achieve state-of-the-art results by leveraging diverse
models and their local optima (Fort et al., 2019). Hy-
per deep ensembles (Wenzel et al., 2020) and neu-
ral ensembles search (Zaidi et al., 2020) have further
improved performance via using parameter search to
build maximally diverse ensemble members, however,
building and maintaining multiple models can be ex-
pensive.

Uncertainty in medical imaging. For quantify-
ing uncertainty in medical imaging tasks, the most
commonly used techniques are Monte Carlo dropout
and deep ensembles (Rahman et al., 2021; Abdar
et al., 2021). Few studies employ pure Bayesian
methods such as BNNs on medical data (Zhao et al.,
2018; Lotter et al., 2021) due to the former techniques
being simpler to implement. To date, the majority
of applications of uncertainty quantification in deep
learning on medical data have focused on images such
as cancerous skin lesions (Abdar et al., 2021), di-
abetic retinopathy (Leibig et al., 2017), and brain
magnetic resonance imaging (Zhao et al., 2018). As
of yet, there is no study of uncertainty quantification
in deep learning that covers multiple medical imaging
modalities (e.g. timeseries and images) across differ-
ent architectures.

Early exit neural networks. Within the field of
efficiency in deep learning, early exits are a class of
conditional computation models that exit once a cri-
terion (e.g., sufficient accuracy) is satisfied in order
to save on computation (Wang et al., 2019; Li et al.,
2019). Recent research leverages early exit predic-
tions to dynamically change a neural network com-
putation graph at test time (Nan and Saligrama,
2017; Montanari et al., 2019, 2020). The two most
common use cases for early exits rely on either com-
pleting the full early exit inference before making a
decision (Huang et al., 2017; Teerapittayanon et al.,
2016) or applying a gating mechanism before the exit
points in the backbone architecture (Bolukbasi et al.,
2017). Under a different interpretation, the early
exit paradigm can be used to mitigate the problem
of model overthinking (Kaya et al., 2019) where the
representations learnt in earlier layers can be more ac-
curate than those learnt in the later layers which can
sometimes not generalize well. As of yet, the con-
nection between early exit model architectures and
uncertainty remains unexplored.
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3. Methods

We introduce a novel framework, early exit ensem-
bles, which gives early exit NNs a new probabilistic
interpretation as an implicit ensemble. Herein, we
present the methodology required to transform any
feed-forward NN into an efficient ensemble of weight
sharing sub-networks from which uncertainty can be
quantified.

Problem formulation. Consider a classification
problem where x ∈ RD denotes a D-dimensional in-
put and y ∈ {1, . . . , C} a corresponding discrete tar-
get taking one of C classes. We seek to learn a NN
that can model the probabilistic predictive distribu-
tion pθ(y|x) over the ground truth labels, where θ
are model parameters. This predictive distribution
is obtained via the softmax transform σ(·) of unnor-
malized log probabilities fθ(x) ∈ RC .

Neural networks. By definition of a NN, fθ(·)
consists of blocks of differential operations (e.g., con-
volution) (Goodfellow et al., 2016). We assume there-
fore that fθ(·) can be decomposed into a composition
of B blocks such that

fθ(x) = (f (B) ◦ f (B−1) ◦ · · · ◦ f (1))(x) (1)

where (f (i) ◦ f (j))(x) = fθi(fθj (x)) denotes function
composition for i ̸= j and θ = ∪B

i=1θi represents the
union of each blocks parameters. Let h(i) ∈ RKi×Di

denote the intermediary output of the i-th block hav-
ing Ki features of dimension Di ≤ D such that
h(i) = fθi(h

(i−1)) for 1 ≤ i ≤ B − 1, and h(0) = x.

3.1. Early Exit Ensembles

With only minor architectural modifications, any
multi-layered feed-forward NN can be converted into
an implicit ensemble of networks by adding early ex-
its. We define an early exit block as a NN gϕi

(·) with
parameters ϕi which takes as input the intermediary
output h(i) from the i-th block of the backbone NN
fθ(·). We let each exit block learn a probabilistic
predictive distribution pϕi

(y|x) such that

pϕi
(y|x) = σ(gϕi

(h(i)))

= σ((g(i) ◦ f (i−1) ◦ · · · ◦ f (1))(x))
(2)

for 1 ≤ i ≤ B − 1. As such, any NN is able to
output a set M containing up to B − 1 probabilistic
distributions from early exits blocks, in addition to
the standard output from its final block

M = {pϕ1
(y|x), . . . , pϕB−1

(y|x), pθ(y|x)} (3)

Figure 1: Representation of an early exit ensemble.
Each fθi represents a block from the backbone NN.
Exit block gϕi

take as inputs intermediary output
h(i) shared by the backbone (and previous exits) and
learns a predictive distribution pϕi(y|x).

where |M| = B. In practice, the number of exit
blocks and therefore the ensemble size |M| is a hyper-
parameter bounded above by B and bounded below
by a combination of factors such as computational
cost (Kaya et al., 2019) and quality of the uncertainty
estimates (Ovadia et al., 2019). Figure 1 provides a
visual representation of an early exit ensemble.

Predictive uncertainty. During inference, a sin-
gle forward pass of a NN with early exits produces a
set of ensemble predictions M. The overall predic-
tion of the ensemble can be computed as the mean
of a categorical distribution obtained from averaging
the predictions from the individual exits

pθM(y|x) ≈ 1

|M|
(
pθ(y|x) +

B−1∑
i=1

pϕi
(y|x)

)
(4)

where θM = θ ∪ ϕ and ϕ = ∪B−1
i=1 ϕi. Although

other methods of aggregating the output of the en-
semble exist (e.g. majority voting, geometric mean,
or weighted average), previous works have shown that
for uncertainty quantification the arithmetic mean
works well in practice (Gal and Ghahramani, 2015;
Lakshminarayanan et al., 2017).

3.2. Early Exit Blocks

The exit blocks are built to satisfy two important
characteristics that have been shown to make a
good ensemble: accuracy and diversity (Perrone and
Cooper, 1992; Granitto et al., 2005). Since early exit
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blocks exit from different points in the backbone ar-
chitecture, their predictions are naturally based off
features learnt from structurally distinct architec-
tures thereby promoting diversity. However, the ex-
its from earlier blocks in the backbone inherit inter-
mediary outputs with weak representational capacity
which can negatively impact the overall accuracy.

Block architecture. To improve the accuracy of
earlier exits, as well as further increase ensemble di-
versity, we propose inversely increasing the learning
feature capacity of each block relative to its exit posi-
tion in the backbone model. More formally, we intro-
duce a learning capacity factor γ ≥ 0 which increases
the number of features Ki of the i-th intermediary
output h(i) ∈ RKi×Di as follows:

Kγ
i = (

√
1 + γ)B−iKB , 1 ≤ i ≤ B − 1 (5)

where KB is the number of features in the last block
defined by the backbone. The learning capacity fac-
tor changes the architecture of each exit block as:

gϕi(h
(i)) =

{
W

(i)
2 ρ(W

(i)
1 s(h(i))), γ > 0

W
(i)
3 s(h(i)), γ = 0

(6)

where s(·) denotes global average pooling used to
reduce the spatial dimension Di of each feature,

ρ(·) is an activation function, and W
(i)
1 ∈ RKγ

i ×Ki ,

W
(i)
2 ∈ RC×Kγ

i and W
(i)
3 ∈ RC×Ki are weights of lin-

ear layers (biases are omitted for clarity of notation).
Clearly, when γ > 0 an exit block has the ability to
learn more complex relations between features via the
extra linear layer.

3.3. Training with Early Exists

In order to ensure early exit ensemble members are
both accurate and diverse, we optimize a composite
classification and diversity loss function:

L = LC + βLD (7)

where LC is the classification loss, LD is the diversity
loss, and β ≥ 0 represents the relative weight of the
diversity loss. This procedure allows for an efficient
training of the whole ensemble in one go.

Classification loss. The classification loss is the
sum of individual losses of each exit in addition to
the backbone. As such, each prediction propagates
the error in relation to the ground truth label to the

preceding exit blocks. More formally,

LC = LCE(y, fθ(y|x))+
B−1∑
i=1

αiLCE(y, gϕi(y|x)) (8)

where LCE(·, ·) is the cross-entropy loss function and
αi ∈ {0, 1} is a weight parameter corresponding to
the relative importance of each exit.

Diversity loss. In order to further increase ensem-
ble diversity, correlation between exit block predic-
tions must be minimal. To achieve this, we propose
a diversity loss such as:

LD =
1

M

B−1∑
i=1

∑
j ̸=i

LCE(gϕi
(y|x), gϕj

(y|x)) (9)

where M = |M|(|M| − 1). Since LD minimizes the
cross-entropy between all exit pairs it approximately
maximizes pairwise mutual information (Boudiaf
et al., 2020).

4. Experiments

We design experiments to verify the improvement of
early exit ensembles in providing well-calibrated un-
certainty quantification for in-distribution data com-
pared to state-of-the-art deep learning ensemble base-
lines (Section 4.1). We then further verify the ability
of early exit ensembles to detect out-of-distribution
samples (ODD) (Section 4.2).

4.1. Uncertainty Estimation

Datasets. We evaluate our proposed early exit
ensembles on three medical imaging classification
datasets: (1) ECG heart attack (ECG5000) (Dau
et al., 2019), (2) EEG epileptic seizure (EEG) (Dua
and Graff, 2017), and (3) skin melanoma
(ISIC2018) (Codella et al., 2019). Each dataset
is paired with a different architecture (see Ap-
pendix B): FCNet for ECG5000, ResNet18 for EEG,
and MobileNetV2 for ISIC2018. Table 1 contains a
descriptive summary of each dataset. All datasets
are split into 80% training, 10% validation and 10%
testing maintaining the original class proportions.
Further details are included in Appendix A.

Placement of exits. Following findings from re-
cent works on the optimal number of ensemble mem-
bers to consider for well-calibrated uncertainty (Ova-
dia et al., 2019; Qendro et al., 2021), we set the en-
semble size |M| = 5 for all models. Since for FCNet
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Model Dataset

Name B θ Name Type Train Valid Test C D

FCNet 5 0.2M ECG5000 Time series 4050 450 500 2 1 × 140
ResNet18 9 3.8M EEG Time series 9315 1035 1150 5 1 × 178
MobileNetV2 18 3.1M ISIC2018 Image 8268 919 1021 7 3 × 224 × 224

Table 1: Summary of models and datasets used for experiments. All datasets are split into 80% training,
10% validation and 10% testing maintaining the original class proportions. B is the number of exit blocks,
θ is number of model parameters (millions), C is number of classes, and D is input data dimension.

this results in no choice of exit placement, we exit af-
ter all blocks. On the other hand, for ResNet18 we se-
mantically group residual blocks based on number of
hidden features (based on findings from different exit
strategies detailed in Section 5.3). For MobileNetV2,
we follow a similar strategy to Kaya et al. (2019) by
placing exit points based on the overall number of
floating-point operations (FLOPs) in the model. As
such, we place exits points closest to 45%, 60%, 75%
and 90% of the overall FLOPs for MobileNetV2.

Baselines. We compare early exit ensembles
against its backbone without exists (Backbone),
Monte Carlo dropout (MCDrop) (Gal and Ghahra-
mani, 2015), deep ensembles (Deep) (Lakshmi-
narayanan et al., 2017) and depth ensembles (Depth):

• Backbone - the unchanged implementations of
FCNet, ResNet18, and MobileNetV2 represent-
ing a single model which outputs softmax prob-
abilities over classes.

• MCDrop - an approximate Bayesian probabilis-
tic approach implemented by adding dropout
layers to each of the backbone architectures dur-
ing training and activating them during infer-
ence. For fairness of comparison, dropout layers
are added to the same places as the exit points.
A total of 5 Monte Carlo samples are taken with
a dropout rate of pMC = 0.2.

• Deep - a non-Bayesian probabilistic approach
based on training an explicit ensemble of models
with the same backbone architecture but trained
with a different random weight initialization. A
total of 5 models were used for the ensemble.

• Depth - our own baseline composed of an en-
semble of the same backbone where each mem-
ber has a different depth determined by the exit
points. Similar to Deep, all ensemble members
are trained separately. In contrast, each of the

5 models ranges from shallow to deep and is
trained with the same weight initialization.

We omit the recently proposed batch ensem-
bles (Wen et al., 2020) from our experiments since
they do not improve upon deep ensembles in terms
of uncertainty quantification.

Implementation. We use the data preprocessing
and hyperparameters described in the original im-
plementation of each model-dataset combination as
the initial starting point for hyperparameter tun-
ing. All models are trained with the Adam (Kingma
and Ba, 2014) optimizer using default parameters,
except for the learning rate which is tuned over
{1e−2, 1e−3, 1e−4, 1e−5}. For MCDrop, the dropout
rate is tuned over {0.2, 0.3, 0.5}. We empirically
choose batch sizes and epochs from 50, 100, 200 and
100, 200, 250 respectively based on stability of train-
ing. To prevent overfitting, early-stopping is imple-
mented with a patience of 5 based on the best valida-
tion accuracy. We train early exit ensembles with the
best performing hyperparameters across all backbone
models αi = 1 and β = 0 (see Section 5.5). Finally,
all models were implemented using PyTorch (Paszke
et al., 2019) and trained on a 4-GPU Linux server
with 64GB memory.

Evaluation metrics. The classification perfor-
mance of all models is evaluated based on class
weighted F1, precision, and recall. For uncertainty
quantification, we use negative log-likelihood (NLL),
Brier score (BS) (Brier et al., 1950), and expected
calibration error (ECE) (Naeini et al., 2015). NLL
measures how likely it is to observe the test data given
each trained model, BS measures the accuracy of pre-
dicted probabilities, and ECE measures model cali-
bration in terms of the expected difference between
accuracy and predicted confidence. A description of
how these metrics are computed can be found in Ap-
pendix C.
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Model F1 (↑) Precision (↑) Recall (↑) NLL (↓) ECE (↓) BS (↓)

FCNet
- Backbone 0.983 ± 0.010 0.983 ± 0.010 0.983 ± 0.010 0.059 ± 0.031 0.009 ± 0.005 0.026 ± 0.015
- MCDrop 0.987 ± 0.002 0.987 ± 0.002 0.987 ± 0.002 0.043 ± 0.019 0.011 ± 0.004 0.019 ± 0.004
- Depth 0.989 ± 0.007 0.989 ± 0.007 0.989 ± 0.007 0.036 ± 0.008 0.017 ± 0.007 0.018 ± 0.006
- Deep 0.989 ± 0.003 0.989 ± 0.003 0.989 ± 0.003 0.045 ± 0.020 0.014 ± 0.007 0.018 ± 0.005
- Early exit 0.992 ± 0.005 0.992 ± 0.005 0.992 ± 0.005 0.024 ± 0.008 0.007 ± 0.001 0.009 ± 0.003

ResNet18
- Backbone 0.847 ± 0.012 0.848 ± 0.012 0.847 ± 0.012 0.432 ± 0.022 0.081 ± 0.007 0.233 ± 0.018
- MCDrop 0.844 ± 0.007 0.849 ± 0.004 0.844 ± 0.007 0.362 ± 0.012 0.045 ± 0.005 0.216 ± 0.011
- Depth 0.861 ± 0.011 0.862 ± 0.011 0.861 ± 0.011 0.318 ± 0.028 0.028 ± 0.003 0.194 ± 0.012
- Deep 0.866 ± 0.009 0.866 ± 0.008 0.866 ± 0.009 0.316 ± 0.024 0.028 ± 0.004 0.189 ± 0.011
- Early exit 0.865 ± 0.002 0.865 ± 0.002 0.866 ± 0.002 0.306 ± 0.013 0.027 ± 0.006 0.189 ± 0.005

MobileNetV2
- Backbone 0.868 ± 0.005 0.869 ± 0.006 0.870 ± 0.003 0.512 ± 0.022 0.080 ± 0.008 0.209 ± 0.010
- MCDrop 0.865 ± 0.002 0.872 ± 0.001 0.861 ± 0.002 0.375 ± 0.016 0.041 ± 0.008 0.197 ± 0.008
- Depth 0.865 ± 0.011 0.873 ± 0.010 0.861 ± 0.011 0.495 ± 0.005 0.133 ± 0.017 0.237 ± 0.004
- Deep 0.887 ± 0.011 0.888 ± 0.011 0.888 ± 0.009 0.359 ± 0.019 0.037 ± 0.008 0.171 ± 0.007
- Early exit 0.885 ± 0.005 0.885 ± 0.004 0.886 ± 0.005 0.357 ± 0.020 0.033 ± 0.010 0.170 ± 0.006

Table 2: Results for classification and uncertainty metrics. All results are for the optimally tuned learning
rate, batch size, and number of epochs for each model: FCNet (1e−2, 200, 250), ResNet18 (1e−3, 200, 200),
MobileNetV2 (1e−5, 100, 200). Results for MCDrop are for the optimal dropout rate pMC = 0.2. Results for
Early Exit are for the weighted classification loss αi = 1, diversity loss β = 0 and learning capacity factor:
FCNet (0.0), ResNet18 (0.2), MobileNetV2 (0.7). We mark in bold the best results. All results are the mean
plus/minus standard deviation across 3 independent splits of the test dataset.

4.2. Out-of-Distribution Detection

Datasets. For OOD analysis, we use three datasets
containing the same type of signal but from com-
pletely different distributions: ECG heart attack
(ECG200) (Dau et al., 2019) is applied to FC-
Net, EEG Steady-State Visual Evoked Potential Sig-
nals (SSEVP) (Dua and Graff, 2017) is applied to
ResNet18, and CIFAR-10 (Krizhevsky and Hinton,
2010) is applied to MobileNetV2.

Evaluation metrics. OOD behavior is evaluated
using predictive confidence (PC) and predictive en-
tropy (PE) (see Appendix C). PC measures the prob-
ability of the top class prediction whilst PE measure
the amount of information contained in the predictive
distribution.

5. Results

We present the results of early exit ensembles on
in-distribution (Section 5.1) and out-of-distribution
(Section 5.2) experiments and compare them to the
aforementioned baselines. Additionally, we ana-

lyze the effect of the number and position of exit
blocks (Section 5.3), the learning capacity factor (Sec-
tion 5.4), and diversity regularization as well as exit
loss weighting (Section 5.5).

5.1. Uncertainty Estimation

Table 2 shows classification and uncertainty results
on in-distribution test datasets. Our results show
that the addition of early exits, and their joint train-
ing, improves accuracy compared to the backbone
model across all datasets by an average of 1.5% as
measured by F1 score. These findings are in line
with existing work on early exit architectures (Teer-
apittayanon et al., 2016). Furthermore, Early Exit,
Deep, Depth and MCDrop all display significantly
better F1 score, precision and recall compared to
Backbone across each of the three datasets. We at-
tribute these results to a reduction in variance caused
by averaging a set of NNs which individually have
a high variance and low bias (Perrone and Cooper,
1992). For ResNet18 and MobileNetV2, Deep is on
average 0.2% better than Early Exit across classifi-
cation metrics. However, this marginal sacrifice in
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(a) Predictive entropy (PE) (b) Predictive confidence (PC)

Figure 2: Results for out-of-distribution sample detection

accuracy is negligible compared to the improvement
gain in uncertainty metrics. For instance, Early Exit
improves model ECE by an estimated 4% and 11%
for ResNet18 and MobileNetV2, respectively.
Early Exit clearly outperforms MCDrop both in

terms of classification and uncertainty metrics. In
particular, BS is improved by an estimated 53%, 13%,
and 14% for FCNet, ResNet18 and MobileNetV2, re-
spectively. Such improvement translates into the pre-
dicted probability distributions over the classes more
accurately reflecting the ground truth distribution in
the data. Moreover, the generalizability of early exit
ensembles is demonstrated by improvement in uncer-
tainty quantification for both deep (ResNet18 and
MobileNetV2) and shallow architectures (FCNet). In
particular, for FCNet uncertainty metrics are roughly
2× less compared to Deep and MCDrop.

Finally, depth ensembles perform well across all
metrics compared to MCDrop for both FCNet and
ResNet18. In particular, Depth increase F1 score
by an estimated 2% and improves NLL by 14%
compared to MCDrop for ResNet18. These results
demonstrate that when forming an ensemble, diver-
sity in terms of different NN architecture depths, im-
proves model calibration. Interestingly, Depth does
not outperform Early Exit in either classification or
uncertainty metrics. We attribute this difference to
Early Exit having the benefit of exit blocks that are
joint trained with a backbone architecture. As a re-
sult, Early Exit not only benefits from shared features
from the backbone that are informative for the task
but is also able to diversify these features at each each
exit block allowing it to make accurate but indepen-
dent predictions.

5.2. Out-of-Distribution Detection

Figure 2 shows PC and PE on out-of-distribution
datasets. A well calibrated model should show low

PC and high PE on out-of-distribution data. Our re-
sults clearly show across all datasets that Backbone
is overly confident in making wrong predictions as
reflected by an average PC of 0.99 and an PE en-
tropy of 0.00. This demonstrates the risk of deploy-
ing deep learning models which are unable to pro-
vide proper uncertainty estimates potentially result-
ing in overconfident wrong diagnoses. Our proposed
early exit ensemble framework provides the highest
PE and lowest PC for out-of-distribution samples. In
particular, Early Exit has an estimated 38%, 77%
and 34% higher entropy for FCNet, MobileNetV2 and
ResNet18 compared to their respective best perform-
ing baselines.

In contrast to previous works, Deep does not al-
ways out outperform MCDrop. For FCNet, Deep is
comparable to MCDrop in terms of both average con-
fidence and entropy. For ResNet18, MCDrop has a
significantly lower PC (0.81 vs. 0.94) and PE (0.44
vs. 0.24). Depth ensembles do not show good calibra-
tion on OOD data having the worse performance for
FCNet and MobileNet on both PC (0.97 and 0.90,
respectively) and PE (0.10 and 0.40, respectively).
While they showed acceptable uncertainty metrics in
in-distribution, they cannot be trusted in OOD sce-
narios.

5.3. Effect of Number of Exits

The number of early exits, and therefore ensemble
size |M|, is bounded above by the number of blocks
B in each backbone model architecture (see Table A).
As such, each exit block is indexed i ∈ {1, . . . , B−1}
which gives a combinatorial choice

(
B

|M|
)

of exist

points and therefore ensemble arrangements. We in-
vestigate the effect of the number and placement of
exits on predictive uncertainty using the ResNet18
backbone with γ = 0.2. Since for ResNet18, B = 9
and |M| = 5 this yields 126 possible combinations of
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Strategy |M| F1 (↑) ECE (↓) BS (↓) Exit index, i Param. increase

Pareto 2 + 1 0.853 ± 0.01 0.049 ± 0.01 0.201 ± 0.01 {4, 7} 9.8%
Last-k 4 + 1 0.849 ± 0.00 0.063 ± 0.01 0.219 ± 0.01 {5 ,6, 7, 8} 23.3%
Semantic 4 + 1 0.865 ± 0.00 0.027 ± 0.01 0.189 ± 0.01 {2, 4, 6, 8} 15.2%
Computation 6 + 1 0.861 ± 0.01 0.057 ± 0.02 0.200 ± 0.01 {3, 5, 6, 7, 8} 25.6%
Residual 8 + 1 0.856 ± 0.01 0.032 ± 0.02 0.193 ± 0.02 {1, 2, 3, 4, 5, 6, 7, 8} 30.4%

Table 3: Effect of the number of exit blocks and exit strategy on accuracy and uncertainty for ResNet18
with γ = 0.2. Reported results are the mean plus/minus standard deviation across 3 independent splits of
the test dataset. Ensemble size |M| includes the backbone in addition to each exit block (represented as
+1). For Last-k we set k = 4. Parameter increase is measured as a percentage increase over the number of
parameters from the backbone. Exit index match the indexes of the exit blocks in Figure 5.

ensembles. To limit this search space, we introduce
and test the following exit strategies:

• Pareto (Pareto, 1964): Exit at blocks closest to
20% and 80% of the overall number of FLOPs.

• Computation: Exit at blocks closest to 15%,
30%, 45%, 60%, 75% and 90% of the overall num-
ber of FLOPs (Kaya et al., 2019).

• Residual : Exit at residual blocks.

• Last-k: Exit at the last k blocks.

• Semantic: Exit at blocks semantically grouped
by their number of features.

Table 3 summarizes the results for the listed exit
strategies. A small ensemble of 3 members in the
case of Pareto does not perform well in terms of accu-
racy but still shows well-calibrated uncertainty com-
parable to Computation with 5 members (ECE 0.049
vs. 0.057). Interestingly, a higher number of exits
does not guarantee better uncertainty quantification
(Residual BS 0.193 vs. Semantic BS 0.189), nor does
choosing to exit deeper in the case of Last-k (BS
0.219). The strategy Semantic clearly gives the best
results in terms of accuracy and uncertainty metrics
reinforcing our findings in Section 5.1 which employs
the same strategy. We attribute this result to the fact
that when exiting at semantically group blocks, low-
level and high-level features are integrated by sum-
mation at residual connections therefore representing
the points of maximum diversity in the backbone.

Figure 5 in Appendix D provides a detailed illus-
tration of the ResNet18 backbone with exit blocks.
Exit indexes in Table 3 match the index of the exit
blocks in Figure 5.

Figure 3: Effect of learning capacity factor γ on NLL
as well the percentage increase in parameters over the
backbone.

5.4. Effect of Learning Capacity Factor

In Figure 3, we show the effect of tuning the learning
capacity factor γ for Early Exit in terms of NLL on
each of the validation datasets. For FCNet, γ = 0.0
yields the best results for Early Exit in terms of
lowest NLL and smallest percentage increase in pa-
rameters. On the other hand, for the deeper back-
bone architectures ResNet18 and MobileNetV2 on
the larger datasets, higher learning capacity factors
(γ = 0.2, γ = 0.7, respectively) yield the best results
in terms of lowest NLL. Intuitively, for these harder
classification problems, the earlier exit blocks require
more features in order to make accurate predictions
that improve the overall ensemble performance. For
ResNet18 and MobileNetV2 this translates to a small
increase of 1.15× and 1.38× respectively in the num-
ber of overall parameters. In contrast, Deep with
|M| = 5 always increases parameters by 5× regard-
less of the backbone and dataset. Additionally, unlike
MCDrop, Early Exit can provide uncertainty quan-
tification in one single forward pass.
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5.5. Further analysis

Effect of weighting exits. We experiment with
running early exit ensembles using a ResNet18 back-
bone setting γ = 0 and tuning only the importance
weights from the classification loss (Equation 8).
Without the extra learning capacity, the early ex-
its with αi = 1 tend to have a high misclassification
rate. However, penalizing the earlier exits, by setting
αi = 1/(B−1−i) for example, does not improve clas-
sification performance and worsens uncertainty met-
rics overall. We conclude the performance of early
exit ensembles requires each individual member to
be accurate in line with the findings of Perrone and
Cooper (1992).

Effect of diversity loss. We further experiment
with running all early exit models setting γ = 0 and
tuning only the weight β of the diversity loss (Equa-
tion 7) over {0.3, 0.5, 1.0, 2.0} using ResNet18. In-
tuitively, a higher value of β should allocate more
importance to learning a diverse early exit ensemble.
Results show that as β increases from 0.3 to 2.0, F1
score increases by 23.1% (from 0.85 to 0.86) and ECE
decreases by 14.6% (from 0.047 to 0.041). Although
performance improves, accuracy and calibration are
still worse than the best result for early exit ensem-
bles in Table 2.

Using uncertainty in patient-level decision
making. During inference each ensemble technique
outputs |M| = 5 softmax predictions over classes.
The extent of agreement/disagreement between these
predictions can be used to quantify uncertainty. Fig-
ure 4 visualizes two outputs for Early Exit using Mo-
bileNetV2 on the ISIC2018 test dataset. It is clear
from (a) that all exits are individually confident and
correctly predict the same class y = 0 (melonocytic
nevi). On the other hand, in (b) all the exits highly
disagree predicting different classes to the true class
y = 1 (melanoma) suggesting further investigation
from an expert clinician.

6. Conclusion

We introduce, early exit ensembles, a novel frame-
work for enabling uncertainty quantification in any
feed-forward NN. At the core of our methodology is
a new interpretation of early exit NNs as an implicit
ensemble of weight sharing sub-networks from which
predictive uncertainty can be estimated. We evalu-
ate early exit ensembles using three state-of-the-art

Figure 4: Early exit ensemble test predictions. In
(a) all exits agree on the prediction. In (b) all ex-
its highly disagree predicting different classes indicat-
ing the sample should sent to a clinician for further
checks. Correct class in green.

deep learning architectures applied to different med-
ical imaging datasets. Our results show that, com-
pared to competitive deep learning ensemble base-
lines, early exit ensembles can provide better cali-
brated uncertainty for both in-and out-of-distribution
data. Moreover, our approach enables training all
ensemble members jointly in a single model, as well
as providing uncertainty estimations from a single
forward-pass of input data. Both the ease of imple-
mentation and the computational efficiency of train-
ing and inference means that early exit can be applied
to a wide range of real-world applications.

Future work. A limitation of early exit ensembles
is the ensemble size being tied to the underlying back-
bone architecture. To overcome this issue, future
work could add dropout and/or add multiple heads to
the exit blocks to further increase ensemble size. Fur-
thermore, new methodologies for enforcing diversity
in order to boost ensemble performance is an interest-
ing research direction. Finally, since early exit ensem-
bles are efficient-by-design, future work could include
an in-depth analysis of efficiency (e.g. FLOPs, run-
time latency, and energy consumption) on resource-
constrained devices specific to healthcare.
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crete problems in ai safety. arXiv preprint
arXiv:1606.06565, 2016.

Paschalis Bizopoulos, George I Lambrou, and Dim-
itrios Koutsouris. Signal2image modules in deep
neural networks for eeg classification. In 2019
41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society
(EMBC), pages 702–705. IEEE, 2019.

Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint
arXiv:1505.05424, 2015.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and
Venkatesh Saligrama. Adaptive neural networks
for fast test-time prediction. arXiv preprint
arXiv:1702.07811, 2017.
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Appendix A. Datasets

ECG heart attack (ECG5000) (Dau et al.,
2019). A dataset of univariate timeseries of ECG sig-
nals of length 140 extracted from a single patient.
Each signal falls into one of 5 classes which are com-
bined to make two labels: Normal (N) and Abnormal
(R-on-T, PVC, SP, UB). The original train and test
datasets are combined creating a dataset of size 5000
which is re-split maintaining class proportions.

EEG epileptic seizure (EEG) (Dua and Graff,
2017). A dataset of univariate timeseries of single-
channel EEG signal of length 178 extracted from 500
patients. Each signal falls into one of 5 classes: nor-
mal patient eyes open, normal patient eyes closed, tu-
mor patient healthy area, tumor patient tumor area,
epileptic patient seizure. The original train and test
datasets are combined creating a dataset of size 11500
which is re-split maintaining patient and class propor-
tions. During training, a combination of Gaussian
noise, signal shift, and polarity inversion is applied
with probability 0.5.

Skin melanoma (ISIC2018) (Codella et al.,
2019) A dataset of multi-source dermatoscopic im-
ages of common pigmented skin lesions. Each im-
age falls into one of 7 classes: melanocytic nevi,
melanoma, benign keratosis-like lesions, basal cell
carcinoma, actinic keratoses, vascular lesions, and
dermatofibroma. The original train and validation
datasets from Task 3 are combined creating a dataset
of size 10208 which is re-split maintaining class pro-
portions. All images are resized to 224 × 224 and
then normalized using the training dataset mean and
standard deviation. During training, a combination
of Gaussian noise, horizontal and vertical flips, and
jitter is applied to each image with probability 0.5.

Appendix B. Backbone architectures

FCNet (Wang et al., 2017) A fully convolutional
network consisting of 4 blocks each containing a 1D
convolution, batch normalization (BN), and Recti-
fied Linear Unit (ReLU) activation. The output of
the fourth block is averaged over the time dimen-
sion using global average pooling (GAP) and fed to a
1D convolutional layer with filter length 1. Convolu-
tional layers all have 128 filters of length 8, 5, 5, and
3 all with a stride of 1 and zero padding to preserve
the length of each time series input.

ResNet18 (He et al., 2016; Bizopoulos et al.,
2019) A residual convolutional network composed of
8 blocks containing a 1D convolution, BN, and ReLU
activation repeated twice. Convolutions in consecu-
tive pairs of blocks have filters 64, 128, 256, 512 with
stride 1, 2, 2, 2 all with length 3. The output of
these blocks are fed to a GAP and a fully connected
(FC) layer. Identity residual connections exist be-
tween consecutive blocks with the same number of
filters. Downsample residual connections exist be-
tween blocks with different filter numbers.

MobileNetV2 (Sandler et al., 2018; Chaturvedi
et al., 2020) A convolution neural network mobile ar-
chitecture composed of 17 inverted residual blocks
with bottleneck layers. Each inverted residual block
contains a 2D convolution of size 1x1, a 2D depth-
wise convolution of size 3x3, a Rectified Linear Unit
6 (ReLU6), and finally a 2D convolution of size 1x1
followed by ReLU6.

Appendix C. Uncertainty metrics

C.1. Negative log-likelihood

Negative log-likelihood (NLL) measures how likely it
is to observe the data under model. NLL is defined

NLL = −
∑

c∈{1,...,C}

1(y = c) log pθ(y = c|x)

+(1− 1(y = c)) log(1− p(y = c|x))
(10)

where 1(·) is the indicator function.

C.2. Brier score

Brier score (BS) measures the accuracy of predicted
probabilities. BS is defined

BS =
∑

c∈{1,...,C}

(pθ(y = c|x)− 1(y = c))2. (11)

C.3. Predictive confidence

Predictive confidence (PC) is the probability of the
top class prediction. PC is defined:

PC = max
c∈{1,...,C}

pθ(y = c|x) (12)

C.4. Predictive entropy

Predictive entropy (PE) measures the average
amount of information in the predicted distribution.
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PE is defined:

PE = −
∑

c∈{1,...,C}

pθ(y = c|x) log pθ(y = c|x) (13)

C.5. Expected calibration error

Expected calibration error (ECE) measures the ex-
pected difference (in absolute value) between accura-
cies and the predicted confidences on samples belong-
ing to different confidence intervals. ECE is defined:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (14)

where accuracy and confidence for bin Bm are

acc(Bm) =
1

|Bm|
∑

n∈Bm

1(ŷn = yn)

conf(Bm) =
1

|Bm|
∑

n∈Bm

PCn

such that ŷn = argmaxc∈{1,...,C} pθ(yn = c|xn) is the
predicted class, M is the number of bins of size 1/M ,
and bin Bm covers the interval (m−1

M , m
M ].
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Appendix D. Early exit ensemble on ResNet18

Figure 5: Representation of an early exit ensemble applied to a ResNet18 backbone decomposed into B = 8
blocks. The Residual strategy is used to create an ensemble of size |M| = 8 + 1 = 9. For the Semantic
strategy (best performing) only exits after each semantic block are included in the ensemble |M| = 4+1 = 5.
Block indexes match the exit indexes i in Table 3.
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