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Quorum Sensing Peptides (QSP) are small molecules crucial for microbial communication, enabling bacterial 
populations to coordinate behaviors such as biofilm formation and virulence. The identification of QSP is vital 
for understanding these biological processes. While existing clinical and lab-based methods are available, they 
can be costly and time-consuming. This study introduces DeepQSP, a novel technique for QSP identification, 
which combines Latent Semantic Analysis (LSA), a word embedding feature extraction method, with classical 
amino acid-based extraction Pseudo Amino Acid Composition (PAAC), and a convolutional neural network (CNN) 
classifier. The DeepQSP model was evaluated using a dataset of 440 peptide sequences, achieving impressive 
performance metrics: 0.9697 accuracy, 0.9655 sensitivity, 0.9730 specificity, and a Matthews correlation 
coefficient (MCC) of 0.9385. The LSA combined with PAAC improves peptide sequence representation, while 
the CNN effectively captures complex patterns, leading to accurate QSP identification. These quantified results 
demonstrate the effectiveness of the DeepQSP method, offering a powerful tool for advancing the study of 
microbial interaction and quorum sensing. The enhanced identification of QSPs is critical for microbiology and 
bioengineering, aiding in the understanding of cell-to-cell communication in microorganisms.
1. Introduction

Quorum sensing (QS) is a common biological process in microorgan-

isms, facilitating bacterial cells to communicate and synchronize gene 
expression through the exchange of chemical signaling molecules [1,2]. 
Quorum Sensing Peptides (QSP) are small signaling molecules produced 
and released by bacteria to facilitate communication among microbial 
community members [3,4]. These peptides play a vital role in governing 
various bacterial behaviors, including forming biofilms, expressing viru-

lence factors, and regulating gene activity [5]. Quorum sensing enables 
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bacteria to synchronize their actions based on the population density of 
their peers by detecting the concentration of QSP in their environment. 
Once the QSP concentration reaches a critical threshold, it triggers spe-

cific responses in the bacterial population, allowing them to function 
as a cohesive group [6]. Quorum sensing is an intriguing mechanism 
that empowers bacteria to adapt to their surroundings and respond 
collectively to changing conditions. Researchers have shown keen in-

terest in studying QSP for potential applications in diverse fields, such 
as medicine, biotechnology, the food industry, agriculture, and environ-

mental science [7–9].
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Fig. 1. Research methodology of the study and structural architecture for developing the proposed model, which has been named after DeepQSP.
QSP have the potential to enhance crop health through eco-friendly 
approaches for managing plant diseases by disrupting quorum sensing 
in plant pathogens. Moreover, these factors find application in regu-

lating bacterial behavior in food production, effectively preventing the 
unwanted formation of biofilms and thereby safeguarding the safety 
and quality of food products [10,11]. Researchers are exploring the 
use of QSP for the development of innovative antibacterial therapies. 
These peptides offer a means to interfere with quorum sensing, poten-

tially curbing bacterial pathogens’ virulence without outright destroy-

ing them. This approach has the potential to mitigate the emergence 
of antibiotic resistance, a critical concern in modern medicine [12]. 
Moreover, QSP finds practical utility in the realms of bioprocessing 
and bioremediation. These factors boost the efficiency of microbial fer-

mentation processes and provide a means to govern the conduct of 
genetically engineered bacteria, whether for the targeted synthesis of 
particular compounds or the breakdown of environmental pollutants 
[13]. QSP is a cornerstone in a broad array of scientific fields, from food 
and medicine to agriculture and environmental science. As a result, the 
accurate, reliable, and cost-effective detection of QSP holds profound 
importance, contributing to scientific progress and the overall welfare 
of humankind. Conventional laboratory experiments for QSP or peptide 
sequence identification are both time-consuming and expensive. In this 
case, the application of machine learning (ML) and computational bi-

ology becomes instrumental in addressing this challenge. ML and other 
computational models can offer more precise and reliable predictions 
for QSP and protein or peptide sequences [14,15].

In recent years, researchers have undertaken numerous studies to 
identify QSP using ML and computational models. For instance, Rajput 
et al. in 2015 introduced the first computational model for QSP pre-

diction, known as QSPpred. The authors used amino acid composition 
(AAC), amino acid residue position (ACRP), motif identification, physic-

ochemical properties (PCP), and Grand average of hydropathy (GRAVY) 
for sequence encoding. A support vector machine (SVM) was proposed 
as the classifier, exhibiting noteworthy performance with the highest 
accuracy and Mathew’s correlation coefficient (MCC) of 93.00% and 
0.8600, respectively [16]. However, the model’s reliance on multiple 
encoding methods makes it computationally intensive. Additionally, the 
SVM classifier, while effective, may not capture complex patterns in 
the data as effectively as more advanced machine learning techniques 
like deep learning. A model for predicting QSP, which employed Ran-

dom Forest (RF) and feature representation learning, termed QSPred-

FL. QSPred-FL achieved an accuracy of 94.30% and a MCC of 0.8850 
2

[17]. Despite these improvements, RF models can struggle with high-
dimensional data and may not generalize well to unseen data. The 
feature representation learning technique used in this model, while ben-

eficial, still relies on traditional encoding methods that may not fully 
capture the complexity of QSP sequences. Another SVM classifier-based 
model called iQSP predictor with a PCP-based encoding method was 
proposed by Charoenkwan et al. (2019), with maximum accuracy of 
93.00% and MCC of 0.8600 [18]. While the use of PCP-based encod-

ing is a step forward, the model’s performance plateaued compared 
to earlier efforts. The reliance on SVM may limit the ability to learn 
more complex patterns in QSP sequences, and the encoding methods 
used may not capture all relevant features. In 2022, Sivaramakrishnan 
et al. introduced a stacking-based ensemble learning model, known as 
EnsembleQS, for identifying QSP. Feature encoding methods such as 
AAC, Dipeptide Composition (DPC), Dipeptide Deviation from Expected 
Mean (DEM), and Tripeptide Composition (TPC) were utilized. Notably, 
the EnsembleQS predictor achieved an impressive accuracy of 93.40% 
and an MCC of 0.9100 [19]. The ensemble approach enhances predic-

tive performance by combining multiple models, but it also increases 
computational complexity and may suffer from overfitting. Addition-

ally, the employed feature encoding methods, although diverse, are still 
traditional methods and might not capture deeper contextual informa-

tion in sequences. Charoenkwan et al. (2023) introduced the PSRQSP 
model for QSP prediction. Their approach involved the use of propen-

sity scores for 20 amino acids and 400 dipeptides, implemented with 
a scoring card method to construct PSRQSP. Impressively, the PSRQSP 
model outperformed existing prediction models, achieving an accuracy 
of 94.44% [20]. Despite its success, the PSRQSP model’s reliance on 
propensity scores and scoring card methods may limit its ability to gen-

eralize across different datasets. Additionally, while the model improved 
accuracy, it did not significantly innovate in terms of feature extraction 
or machine learning techniques. It has also been shown that only a lim-

ited number of studies have utilized deep learning models, such as CNN, 
in the bioinformatics field for the prediction of various proteins, peptide, 
RNA, DNA, and virus sequences [15,24].

Numerous studies have delved into QSP prediction; however, there 
is still considerable scope for advancing QSP identification. While ex-

isting models have achieved notable performance, the reliance is pre-

dominantly on traditional amino acid-based feature extraction methods. 
There is a need for integrating more advanced techniques, such as word 
embedding feature extraction, which can capture more nuanced pat-

terns in the data. Additionally, exploring the combination of different 
machine learning and deep learning algorithms can potentially lead to 

more robust and accurate models. Considering the broad-reaching ap-
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plications of QSP in significant domains, there is an urgent demand for 
a more precise, reliable, and cost-effective predictive model. In light 
of these imperatives, our research aims to develop a QSP identification 
model that excels in terms of accuracy and effectiveness, surpassing ex-

isting QSP predictors.

The research contribution is to enhance the performance of QSP pre-

diction. This study has accomplished this by combining word embedding 
feature extraction methods with some amino acid-based feature extrac-

tors, creating a more resilient prediction model. This model is further 
enhanced by the implementation of a diverse number of ML and deep 
learning (DL) algorithms, ensuring a more precise and robust prediction 
of QSP. The novelty of this research lies in the integration of advanced 
word embedding techniques with traditional amino acid feature extrac-

tion methods, which has not been extensively explored in the context 
of QSP prediction. This novel approach leverages the strengths of both 
techniques to create a more accurate and effective model, pushing the 
boundaries of current QSP predictive capabilities.

2. Research Methodology

2.1. Dataset Description

To build a more robust and effective QSP predictor in this research, 
the existing datasets previously utilized by different researchers in their 
studies were employed [16–20]. The resulting curated dataset contains 
a total of 440 peptide sequences. Among them, 220 are QSP sequences, 
and 220 are non-QSP sequences. The entire data set was divided into 
training and independent test sets for the purposes of this study. The 
training dataset comprises 310 sequences, with 155 QSP sequences and 
the remaining being non-QSP sequences. The independent test dataset 
contains 130 sequences, with an equal number of QSP and non-QSP 
sequences.

2.2. K-fold Cross Validation (CV)

The 5-fold Cross-Validation (CV) is a commonly employed technique 
in ML for model evaluation. It involves dividing the dataset into five 
roughly equal subsets or folds. The training and testing procedure is 
iterated five times, with each iteration using four folds for training and 
one fold for testing. This method is particularly useful in classification 
techniques, as it helps mitigate overfitting.

2.3. Feature Encoding

2.3.1. Pseudo Amino Acid Composition

Pseudo amino acid composition (PAAC) is a computational represen-

tation of protein or peptide sequences that encode various properties 
of amino acids to aid in bioinformatics analyzes, such as prediction of 
protein structure and prediction of function [21–23]. The PAAC can be 
defined as:

𝑋𝑐 =
𝑓𝑐

20∑
𝑟=1
𝑓𝑟 +𝑤

𝜆∑
𝑗=1
𝜃𝑗

, (1 < 𝑐 < 20) (1)

𝑋𝑐 =
𝑤𝜃𝑐−20

20∑
𝑟=1
𝑓𝑟 +𝑤

𝜆∑
𝑗=1
𝜃𝑗

, (21 < 𝑐 < 20 + 𝜆) (2)

where, 𝑋𝑐 represents the components of the PAAC vector, where 𝑓𝑐
is the normalized occurrence frequency of the 𝑐-th amino acid, and 𝜃𝑗
denotes the sequence-order correlation factors capturing the order of 

amino acids in the sequence. The sum 
20∑
𝑟=1
𝑓𝑟 accounts for the total fre-
3

quencies of occurrence of all 20 standard amino acids, while 𝜆 defines 
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the maximum sequence distance considered for correlation. The weight-

ing factor 𝑤, typically set at 0.05, balances the influence of sequence-

order information against amino acid composition.

2.3.2. Composition, Transition, Distribution

Composition, Transition, Distribution, Transition (CTDT) is a feature 
extraction method in bioinformatics that combines four types of features 
to represent protein or peptide sequences, aiding in various computa-

tional analyses [24,25]. CTDT works as follows:

𝑇 (𝑟, 𝑠) =𝑁(𝑟, 𝑠) +𝑁(𝑠, 𝑟)
𝑁 − 1

, (𝑟, 𝑠)𝜀[(𝑝𝑜𝑙𝑎𝑟, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙),

(𝑛𝑒𝑢𝑡𝑟𝑎𝑙, ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐), (ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐, 𝑝𝑜𝑙𝑎𝑟)]
(3)

𝑁(𝑟, 𝑠) and 𝑁(𝑠, 𝑟) represent the counts of dipeptides encoded as “𝑟𝑠” 
and “𝑠𝑟”, respectively, in the sequence. “𝑁” corresponds to the length 
of the sequence.

2.3.3. Grouped Dipeptide Composition

An alternative variant of the Dipeptide Composition descriptor, 
known as the Grouped Dipeptide Composition Encoding (GDPC), com-

prises a total of 25 dimensions [26,27]. GDPC is defined as:

𝑓 (𝑟, 𝑠) =
𝑁𝑟𝑠

𝑁 − 1
, 𝑟, 𝑠𝜀(𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5) (4)

Here, 𝑁𝑟𝑠 denotes the quantity of tripeptides produced by the amino 
acid type groups denoted by the letters “𝑟” and “𝑠”, and 𝑁 is the total 
length of a peptide or protein sequence.

2.3.4. FastText

FastText is a word embedding method that represents words as dense 
vectors, capturing their semantic and syntactic meanings. It is known for 
its speed and ability to handle out-of-vocabulary words, making it valu-

able for various natural language processing tasks [28,29]. In recent 
years, FastText has gained popularity among researchers for encoding 
biological sequences [30–32]. The FastText works based on the follow-

ing equation:

𝐸(𝑤) =
∑
𝑔𝜀𝐺𝑤

𝑍𝑔 (5)

Here, 𝐸(𝑤) represents the word vector for word 𝑤, 𝐺𝑤 is the set of 
subword (character) n-grams for the word 𝑤, 𝑍𝑔 represents the vector 
for subword 𝑔 in 𝐺𝑤.

2.3.5. Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a word embedding method that 
represents words as vectors in a high-dimensional space, capturing their 
semantic relationships and meanings by analyzing the co-occurrence 
patterns of words in a large corpus of text [33,34]. In the field of bi-

ological sequence data encoding, researchers have explored the use of 
LSA word embedding techniques in their studies [35,36]. LSA is charac-

terized by two key components: the term-document matrix and singular 
value decomposition (SVD) [37]. These two terms are defined as fol-

lows:

𝑀 =
⎡⎢⎢⎢⎣

𝑚11, 𝑚12, ..., 𝑚1𝑛,
𝑚21, 𝑚22, ..., 𝑚2𝑛

... ... ...

𝑚𝑚1, 𝑚𝑚2, ..., 𝑚𝑚𝑛

⎤⎥⎥⎥⎦
(6)

𝑀 =𝑈 × Σ × 𝑉 𝑇 (7)

In this case, the matrices 𝑈 , Σ, and 𝑉 𝑇 have dimensions (𝑚 × 𝑘), (𝑘 ×
𝑘), and (𝑘 × 𝑛), respectively. The chosen reduced dimensionality, ′𝑘′, 
corresponds to the number of latent semantic dimensions selected for 

embedding.
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2.4. Development of DeepQSP using Deep Learning

Deep learning, a subset of machine learning, is a powerful tool in 
computational biology for analyzing complex datasets. It involves train-

ing artificial neural networks on large data sets to recognize patterns 
and make predictions. In this study, the deep learning method is utilized 
to identify QSPs, which play a crucial role in bacterial communication. 
The approach leverages the ability of neural networks to process and 
learn from the intricate patterns in peptide sequences, enabling more 
accurate and efficient identification compared to traditional methods. 
The developed deep learning-based method is named DeepQSP, where 
the CNN layer is employed. Then the performances of the DeepQSP are 
compared with different machine learning to ensure that the proposed 
DeepQSP is highly capable of identifying QSPs from protein sequences. 
The structural architecture of this study has been represented in Fig. 1.

CNN was used to develop DeepQSP for the identification of Quorum 
Sensing Peptides. The process starts with the input layer, which applies 
convolution using 64 filters of kernel size 2. This operation can be math-

ematically represented as [54,55]

𝑦 = 𝑓 (𝑊 × 𝑥+ 𝑏) (8)

where 𝑥 is the input, 𝑊 represents the weights of the filters, and 𝑏 is 
the bias, and × denotes the convolution operation. The ReLU activa-

tion function is then applied for non-linear transformation. The ReLU 
activation function can be expressed as follows [55]:

𝑓 (𝑥) =𝑚𝑎𝑥(0, 𝑥) (9)

Subsequent hidden layers, with 128 filters each and ReLU activation, 
further process these features. The pooling layer, with a kernel size of 
4, reduces the spatial dimensions (downsampling), which can be repre-

sented as [55,56]

𝑃 (𝑥)𝑖𝑗 = max
𝑘,𝑙∈[1,2,3,4]

𝑥4𝑖+𝑘,4𝑗+𝑙 (10)

where 𝑃 (𝑥)𝑖𝑗 is the pooled output. Afterward, a flattened layer is em-

ployed to convert all the previous layer’s output from pooled feature 
maps into a single long continuous linear vector. The network then in-

cludes dense layers with 128 and 64 nodes respectively, again using 
ReLU activation, to interpret these features. The final output layer with 
a sigmoid activation function, is used for binary classification. The math-

ematical expression of sigmoid function is as follows [55–57]:

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(11)

The model is trained over 40 epochs with batches of 64 samples each, 
optimizing the network’s ability to identify QSPs from the input data 
accurately. This architecture is a strategic blend of convolutional layers 
and dense layers, using non-linear activation functions for complex pat-

tern recognition in peptide sequences. The structural architecture of the 
proposed model is illustrated in Fig. 2.

2.5. Applied Machine Learning Algorithms

After developing the optimized deep learning model, DeepQSP, to 
identify QSPs, we applied various machine learning algorithms and com-

pared the performance of the proposed DeepQSP model with the five 
outperformed machine learning algorithms to justify that our proposed 
model is the most promising solution to identify QSPs. For selection of 
the model this study focuses on the performances of the applied mod-

els and used Randomized Search CV to choose the specific parameters 
of the models. A brief description of the applied machine learning mod-

els is provided in the following subsections. The selected parameters of 
4

the applied models have been represented in Table 1.
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Table 1

Parameters of the applied models of this study.

Model Parameter

CNN

Layer Filters Kernel Size/Pool size Activation function

Input 64 2 relu

Hidden-1 128 2 relu

Hidden-2 128 2 relu

Pooling 4

Dense-1 128 relu

Dense-2 64 relu

Output 1 sigmoid

epoch: 40; batch size: 64

RF n_estimators = 200, max_depth = 5

GB n_estimators = 200, learning_rate = 0.5, random_state = 50

ADB n_estimators = 200, learning_rate = 0.1, random_state = 50

XGB n_estimators = 200,max_depth = 5, learning_rate = 0.1

LGBM learning_rate = 0.1,max_depth = 5,random_state = 50

2.5.1. Random Forest (RF)

An RF is a powerful and versatile ML algorithm used for both clas-

sification and regression tasks. It is an ensemble learning method that 
combines the predictions of multiple decision trees to improve accuracy 
and reduce overfitting [38]. The key advantages of RF are its ability 
to handle high-dimensional data, handle missing values, and provide a 
measure of feature importance. It also tends to be more robust and less 
prone to overfitting compared to individual decision trees. RF is widely 
used in various fields, including finance, healthcare, and image recog-

nition, due to its reliability and excellent performance in a wide range 
of applications [39,40].

2.5.2. Gradient Boosting (GB)

Gradient Boosting (GB) is a powerful ML technique for regression 
and classification tasks. It is a group learning method that builds a 
strong predictive model by combining the predictions of multiple weak 
learners, usually decision trees, sequentially [41]. The key advantage of 
Gradient Boosting is its ability to create highly accurate models, even 
when dealing with complex relationships in the data. It is robust against 
overfitting and can handle both numerical and categorical features [42].

2.5.3. AdaBoost (ADB)

AdaBoost (ADB), a short form of Adaptive Boosting, is an ensem-

ble ML technique used primarily for binary classification tasks. It aims 
to improve the accuracy of weak classifiers by combining them into a 
strong classifier [43,44]. ADB is particularly useful when dealing with 
complex data where simple models struggle. It adapts by giving more 
emphasis to difficult-to-classify examples, effectively creating a strong 
model from a collection of weak ones. While ADB can be sensitive to 
noisy data and outliers, it is a popular choice in many practical applica-

tions, including face detection and text classification, due to its ability 
to improve classification accuracy significantly [45,46].

2.5.4. XGBoost (XGB) Classifier

XGBoost (XGB), a short form of Extreme Gradient Boosting, is a 
highly efficient and popular ML algorithm known for its exceptional per-

formance in various tasks, particularly in classification and regression. 
It is an advanced implementation of the gradient boosting framework 
with several optimizations and features, making it a preferred choice 
among data scientists and ML practitioners [47,48]. XGB is a versatile 
and powerful tool in the field of ML, known for its ability to produce 
accurate and robust models across a wide range of applications, from 
natural language processing to image classification and beyond [49].

2.5.5. LightGBM (LGBM) Classifier

LightGBM (LGBM), short form Light Gradient Boosting Machine, is a 
high-performance gradient boosting framework designed for efficient 
and accurate machine learning tasks, particularly in the domains of 

classification, regression, and ranking. LGBM is known for its speed, 
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Fig. 2. Structural architecture of the proposed model DeepQSP, which has been developed using CNN architecture.
memory efficiency, and ability to handle large datasets [50–52]. LGBM 
has gained popularity in ML competitions and real-world applications 
due to its exceptional speed and performance [53].

2.6. Evaluation Metrics

Evaluating the performance of deep learning (DL) and ML models is a 
critical step in assessing their effectiveness and predictive capabilities. 
The choice of evaluation metrics depends on the nature of the prob-

lem at hand, whether it is classification, regression, or another specific 
task. In the assessment of the applied models, a set of six performance 
metrics was employed to gauge their effectiveness. The accuracy met-

ric measures the proportion of correctly classified instances relative to 
the total number of instances [58]. Specificity is calculated as the count 
of correct negative predictions divided by the total number of actual 
negative instances [59]. Sensitivity is calculated as the number of true 
positive predictions divided by the total number of actual positive in-

stances [60].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(12)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(13)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

Another performance metric is the F1-Measure. The F1-Measure is a 
metric that combines precision and recall to provide a balanced as-

sessment of a model’s performance in classification tasks [59]. Kappa 
Statistics assesses agreement between raters or classifiers, accounting 
for chance agreement, in various tasks such as inter-rater reliability or 
classification model evaluation [61]. The Matthews Correlation Coeffi-

cient (MCC) is a correlation measure that falls within the range of -1 
to +1, effectively quantifying the strength of association between two 
variables [60].

𝐹1 −𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(15)

𝐾𝑎𝑝𝑝𝑎𝑆𝑡𝑎𝑡= 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦− 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

(16)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
(17)
5

√
(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
Here, 𝑇𝑃 stands for true positive, 𝑇𝑁 represents true negative, 𝐹𝑃
corresponds to false positive, and 𝐹𝑁 denotes false negative.

3. Result Analysis and Discussion

In this work, a two-stage analysis was conducted. Initially, a biolog-

ical analysis of the peptide sequences was performed using the Biopy-

thon software package [62]. Subsequently, we employed Python version 
3.10.12 within the Google Colab environment to develop and assess the 
model’s performance.

3.1. Analysis of Peptide Sequence

Fig. 3 shows the percentage of amino acids in the datasets used. 
Based on the figure, the F (phenylalanine) has the highest percentage 
value among the twenty amino acids, considering the QSP sequence. G 
(glycine) shows the maximum percentage among other amino acids for 
the non-QSP sequence. The lowest percentage value among the amino 
acids is W (tryptophan) for the non-QSP. For the QSP sequence, H (histi-

dine) has the lowest percentage. Here it can be seen that the percentage 
value of the non-QSP sequence is significantly higher than the QSP se-

quence.

3.2. Analysis of the Classifiers Algorithm Result

In this study, 5-fold Cross-Validation (CV) was applied to construct 
classification models for the training dataset. The utilized datasets are 
balanced, with an equal number of QSP and non-QSP sequences, elim-

inating the need for any balancing method. After applying 5-fold CV 
to the training dataset, the classification model was tested on an inde-

pendent dataset. In addition, the feature extractor was merged, com-

bining 3 amino acid property-based extractors with 2-word embedding 
techniques, resulting in six different combinations of feature extraction 
methods. The results of the 5-fold CV and independent test are repre-

sented in Table 2 and Table 3.

Table 2 presents the cross-validation (CV) results for various classi-

fier models using different feature extraction methods. The LSA+GDPC 
feature extractor method yields the highest performance across nearly 
all evaluation metrics when used with the CNN classification model. 
Specifically, this combination achieves an accuracy of 0.9672, a sensi-
tivity of 1.00, a specificity of 0.9355, an F1-measure of 0.9677, and MCC 
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Fig. 3. Percentage of the amino acids in the used QSP dataset.

Table 2

5-fold CV results of the different combined feature extractors.

Extractor Classifiers Accuracy Sensitivity Specificity F1-Measure MCC Kappa

LSA+ PAAC

RF 0.7857 0.8366 0.7355 0.795 0.5748 0.5717

XGB 0.8084 0.8104 0.8064 0.8078 0.6169 0.6169

LGBM 0.8084 0.8104 0.8064 0.8078 0.6169 0.6169

GB 0.8344 0.8301 0.8387 0.8328 0.6688 0.6688

ADB 0.8279 0.8758 0.7806 0.8349 0.6592 0.656

CNN 0.9672 0.9667 0.9677 0.9667 0.9344 0.9344

LSA+ CTDT

RF 0.8006 0.7671 0.8312 0.786 0.6003 0.5996

XGB 0.7879 0.7397 0.8312 0.7687 0.5744 0.5729

LGBM 0.8072 0.8219 0.7937 0.8027 0.615 0.6144

GB 0.8235 0.8082 0.8375 0.8138 0.6462 0.6461

ADB 0.7908 0.7603 0.8187 0.7762 0.5805 0.5801

CNN 0.918 0.963 0.8823 0.9123 0.8357 0.8398

LSA+ GDPC

RF 0.8377 0.8456 0.8302 0.8344 0.6755 0.6752

XGB 0.8961 0.8725 0.9182 0.8904 0.7923 0.7917

LGBM 0.9091 0.8926 0.9245 0.9048 0.8181 0.8178

GB 0.8896 0.8658 0.9119 0.8836 0.779 0.7787

ADB 0.8474 0.8121 0.8805 0.8374 0.6951 0.6939

CNN 0.9672 1 0.9355 0.9677 0.9365 0.9345

FastText+ PAAC

RF 0.8562 0.8973 0.8187 0.8562 0.716 0.713

XGB 0.8693 0.8699 0.8687 0.8639 0.7382 0.7382

LGBM 0.8529 0.863 0.8437 0.8485 0.7061 0.7057

GB 0.866 0.8767 0.8562 0.8619 0.7322 0.7319

ADB 0.8431 0.8699 0.8187 0.841 0.688 0.6865

CNN 0.9344 0.931 0.9375 0.931 0.8685 0.8685

FastText+ CTDT

RF 0.8006 0.7671 0.8312 0.786 0.6003 0.5996

XGB 0.7876 0.7397 0.8312 0.7687 0.5744 0.5729

LGBM 0.8072 0.8219 0.7937 0.8028 0.615 0.6144

GB 0.8235 0.8082 0.8375 0.8138 0.6462 0.6461

ADB 0.7908 0.7603 0.8187 0.7762 0.5805 0.5801

CNN 0.9508 0.9687 0.931 0.9538 0.9017 0.9012

FastText+ GDPC

RF 0.8333 0.8278 0.8387 0.8306 0.6666 0.6666

XGB 0.8431 0.841 0.8452 0.841 0.6862 0.6862

LGBM 0.8268 0.8212 0.8322 0.8239 0.6535 0.6535

GB 0.8497 0.8344 0.8645 0.8456 0.6994 0.6992

ADB 0.8203 0.8079 0.8322 0.816 0.6405 0.6404

CNN 0.9016 0.9286 0.8788 0.8965 0.8047 0.803
and Kappa values of 0.9365 and 0.9345, respectively. In contrast, the 
LSA+PAAC feature encoding method, while matching the LSA+GDPC 
method’s accuracy of 0.9672, surpasses it in specificity, achieving a 
score of 0.9677. However, this comes with a slightly reduced sensitiv-

ity of 0.9667, an F1-measure of 0.9667, and MCC and Kappa values of 
0.9344. The lowest performance is observed with the Random Forest 
(RF) classifier when paired with the LSA+PAAC feature extractor. This 
combination results in the minimum scores for accuracy of 0.7857, sen-

sitivity of 0.8366, specificity of 0.7355, F1-measure of 0.7950, MCC of 
0.5748, and Kappa of 0.5717.

Table 3 presents the independent test results of this study, high-

lighting the performance of various feature encoding methods and 
classifier models. The LSA+PAAC and FastText+PAAC encoding meth-

ods achieved the highest accuracy, both recording 0.9697 on the CNN 
6

model. For the LSA+PAAC extractor with the CNN model, the sensitiv-
ity was 0.9730, the specificity 0.9655, the F1-measure 0.9730, and the 
Kappa and MCC scores were both 0.9385. Similarly, the FastText+PAAC 
method on the CNN model delivered impressive results, with a sensitiv-

ity of 0.9855, specificity of 0.9524, F1-measure of 0.9714, Kappa score 
of 0.9392, and MCC of 0.9396. In contrast, the XGB classifier recorded 
the lowest accuracy, at 0.7954, along with an MCC of 0.5920 and a 
Kappa score of 0.5903. The ADB classifier demonstrated the lowest sen-

sitivity and F1-score, both at 0.7833, when using the LSA+CTDT feature 
extractor. Additionally, the lowest specificity was observed in the RF 
model with the LSA+GDPC encoding method, which registered a score 
of 0.7714.

Fig. 4, illustrates the ROC curves along with the AUC scores for the 
six classifiers used in this study. In subplot (A), the CNN model achieved 
the highest AUC score of 0.995, while the ADB model recorded the 

lowest AUC score of 0.893. For the independent test results shown in 



Results in Engineering 24 (2024) 102878M. Ashikur Rahman, M. Mamun Ali, K. Ahmed et al.

Fig. 4. ROC curve for the different ML classifiers on LSA+PAAC feature encoding method. Subplot(A) shows the result of 5-flod CV and subplot(B) shows the result 
of the independent test.

Table 3

Independent Test results of the different combined feature extractors.

Extractor Classifiers Accuracy Sensitivity Specificity F1-Measure MCC Kappa

LSA+ PAAC

RF 0.8485 0.8955 0.8 0.8571 0.6994 0.6965

XGB 0.8561 0.8358 0.8769 0.855 0.713 0.7122

LGBM 0.8712 0.8658 0.8769 0.8722 0.7425 0.7424

GB 0.9015 0.9104 0.8923 0.9037 0.803 0.8029

ADB 0.9091 0.9254 0.8923 0.9118 0.8184 0.818

CNN 0.9697 0.973 0.9655 0.973 0.9385 0.9385

LSA+ CTDT

RF 0.8257 0.8167 0.8333 0.8099 0.6492 0.6491

XGB 0.7954 0.8167 0.7778 0.784 0.592 0.5903

LGBM 0.8257 0.85 0.8055 0.816 0.6529 0.651

GB 0.8182 0.8333 0.8055 0.8064 0.6365 0.6353

ADB 0.803 0.7833 0.8194 0.7833 0.6028 0.6028

CNN 0.9318 0.9077 0.9552 0.9291 0.8644 0.8635

LSA+ GDPC

RF 0.8257 0.8871 0.7714 0.8271 0.6592 0.6531

XGB 0.9015 0.9032 0.9 0.896 0.8026 0.8025

LGBM 0.947 0.9516 0.9428 0.944 0.8937 0.8936

GB 0.9242 0.9032 0.9428 0.918 0.848 0.8476

ADB 0.9091 0.9193 0.9 0.9048 0.8182 0.8178

CNN 0.9621 0.9851 0.9385 0.9635 0.9251 0.9242

FastText+ PAAC

RF 0.8257 0.863 0.7797 0.8456 0.6465 0.6458

XGB 0.8257 0.8356 0.8135 0.8414 0.6482 0.6481

LGBM 0.8182 0.863 0.7627 0.84 0.631 0.6298

GB 0.8485 0.8493 0.8474 0.8611 0.6948 0.6945

ADB 0.8333 0.863 0.7966 0.8513 0.6621 0.6618

CNN 0.9697 0.9855 0.9524 0.9714 0.9396 0.9392

FastText+ CTDT

RF 0.8712 0.8356 0.9152 0.8777 0.7466 0.7424

XGB 0.8712 0.8767 0.8644 0.8827 0.74 0.7399

LGBM 0.9015 0.8904 0.9152 0.9091 0.8026 0.8017

GB 0.8864 0.863 0.9152 0.8936 0.7742 0.772

ADB 0.8864 0.8082 0.983 0.8872 0.7901 0.7749

CNN 0.9318 0.9846 0.8806 0.9343 0.8687 0.8638

FastText+ GDPC

RF 0.8485 0.8529 0.8437 0.8529 0.6967 0.6967

XGB 0.8409 0.897 0.7812 0.8531 0.6844 0.6805

LGBM 0.8788 0.9118 0.8437 0.8857 0.7583 0.7569

GB 0.8864 0.9265 0.8437 0.8936 0.7742 0.772

ADB 0.8182 0.8676 0.7656 0.831 0.6377 0.635

CNN 0.9394 0.9687 0.9118 0.9394 0.8805 0.8789
subplot (B), the CNN model again secured the highest AUC score at 
0.988, whereas the XGB model had the lowest AUC score, registering at 
0.925. Notably, in both subplots, the CNN model consistently achieved 
the highest AUC score, demonstrating its superior performance among 
the tested classifiers.

Fig. 5 compares the accuracy and MCC of six feature extraction meth-

ods across six classifier models, resulting in a total of thirty-six models. 
According to the figure, the LSA+GDPC_CNN and LSA+PAAC_CNN mod-

els occupy the top two positions in the 5-fold cross-validation (CV) 
in terms of accuracy and MCC. For the independent test, the Fast-

Text+PAAC_CNN and LSA+PAAC_CNN models lead in both accuracy 
and MCC performance metrics. Notably, the LSA+PAAC_CNN model 
consistently ranks among the top models in both the 5-fold CV and the 
independent test. In contrast, the LSA+PAAC_RF and FText+CTDC_XGB 
7

models rank at the bottom for accuracy and MCC in the 5-fold CV. Addi-
tionally, in both subplot (C) and subplot (D), the LSA+CTDC_XGB model 
is positioned at the bottom, reflecting its lower performance in both the 
5-fold CV and the independent test.

Fig. 6 presents the sensitivity and specificity comparison of the 
thirty-six models. According to the figure, in the 5-fold cross-validation 
(CV), the LSA+PAAC_CNN model achieved the highest specificity 
among all models. However, for sensitivity in the 5-fold CV, the 
LSA+PAAC_CNN model ranked third, with the LSA+GDPC_CNN model 
taking the top position. In the independent test, the FastText+CTDC_GB 
model ranked highest for specificity, with the LSA+PAAC_CNN model 
coming in second place. For sensitivity in the independent test, the Fast-

Text+PAAC_CNN model took the lead, while the LSA+PAAC_CNN model 

secured the fourth position among all the models.



Results in Engineering 24 (2024) 102878M. Ashikur Rahman, M. Mamun Ali, K. Ahmed et al.

Fig. 5. Comparison of the Accuracy and MCC of the combined feature encoding techniques and applied ML algorithm. Subplot(A) and subplot(B) for the 5-fold CV 
result. Subplot(C) and subplot(D) for the independent test result.
3.3. Discussion

The identification of quorum-sensing peptides is vital for com-

prehending and managing microbial activities and driving progress 
across diverse sectors, including healthcare, food, agriculture, drug 
discovery, biotechnology, and environmental science. Based on the 
analysis of the results discussed above, it can be concluded that the 
LSA+PAAC_CNN model demonstrates superior performance compared 
to all other models applied in the study. Though some models perform 
well for 5-fold CV and some models perform well in independent tests, 
the LSA+PAAC_CNN model outperforms on both the 5-fold CV and inde-

pendent tests, considering all the evaluation metrics. The results of our 
developed DeepQSP prediction model on the independent test set are as 
follows: an accuracy of 0.9697, a specificity of 0.9730, a sensitivity of 
0.9655, an F1-measure of 0.9730, and a kappa score and MCC score both 
equal to 0.9385. Additionally, the AUC score for our proposed DeepQSP 
8

model on the independent test is 0.988.
According to Table 4 and Fig. 7, the performance of our proposed 
DeepQSP model significantly improves over the existing QSP prediction 
model. Our DeepQSP model outperforms other existing prediction mod-

els by a margin of 0.0253 to 0.0697 in terms of accuracy.

Although our developed DeepQSP outperforms other QSP predictor 
models, there are still some limitations and future scope for this study. 
First, the dataset used in this study is relatively small, consisting of 
only 440 instances. A larger dataset would provide a more comprehen-

sive representation of QSP sequences, improving the model’s ability to 
generalize and perform accurately on unseen data. Next, while the com-

bination of word embedding and amino acid-based feature extraction 
has shown promising results, there may still be other feature extrac-

tion methods that could further enhance the model’s performance. Deep 
learning models, including CNNs, are often considered “black boxes” 
due to their complexity, making it difficult to interpret the specific fea-
tures or patterns that drive their predictions. Accordingly, our future 



Results in Engineering 24 (2024) 102878M. Ashikur Rahman, M. Mamun Ali, K. Ahmed et al.

Fig. 6. Comparison of the specificity and sensitivity of the combined feature encoding techniques and applied ML algorithm. Subplot(A) and subplot(B) for the 5-fold 
CV result. Subplot(C) and subplot(D) for the independent test result.

Table 4

Comparing DeepQSP with existing other QSP prediction models.

Prediction Model Accuracy Specificity Sensitivity Kappa MCC

QSPpred [16] 0.9 - - - 0.8

QSPred-FL [17] 0.925 - - - 0.86

iQSP [18] 0.93 0.935 0.925 - 0.86

EnsembleQS [19] 0.934 - - - 0.91

PSRQSP [20] 0.9444 1 0.882 - 0.893
9

DeepQSP [this work] 0.9697 0.973 0.9655 0.9385 0.9385
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Fig. 7. Performance comparison of DeepQSP with previous existing studies.
work includes building a more reliable and robust QSP predictor model, 
with the collection of a larger and more diverse QSP dataset. This should 
help in improving the generalizability and performance of the model in 
different microbial communities and contexts. The implementation of 
a web server based on the developed DeepQSP predictor is planned. 
This should provide an accessible tool for researchers and practition-

ers in the bioengineering field and the broader scientific community, 
facilitating the use of our model for various applications. Future work 
will also explore the integration of additional feature extraction meth-

ods, such as structural and functional properties of QSPs, to further 
enhance the model’s predictive capabilities. The use of transfer learn-

ing techniques will be investigated to leverage knowledge from related 
domains and enhance the model’s performance with limited data. Ongo-

ing efforts will focus on optimizing the model’s architecture and training 
process to reduce computational requirements and enhance efficiency, 
making it more accessible for practical applications. Furthermore, fu-

ture research will explore methods to improve the interpretability of 
our DeepQSP model, enabling researchers to understand the key fea-

tures and patterns driving the model’s predictions. Techniques such as 
attention mechanisms or explainable AI methods could be investigated. 
By addressing these limitations and pursuing these future research di-

rections will further enhance the capabilities of the DeepQSP model, 
significantly contributing to the field of microbial communication re-

search and its applications in biotechnology, healthcare, and beyond.

4. Conclusion

In summary, the fusion of Convolutional Neural Network (CNN) 
models with word embedding feature encoding techniques and classical 
amino acid based encoding methods represents a pioneering approach 
for Quorum Sensing Peptides (QSP) prediction. This unique amalgama-

tion enhances our comprehension of microbial communication, offer-

ing significant improvements in unraveling the complexities of Quorum 
Sensing. The Convolutional Neural Network-driven model, in conjunc-

tion with word embedding, provides a resilient and adaptable tool with 
diverse research applications, paving the way for innovative therapies 
in healthcare and reducing reliance on broad-spectrum antibiotics to 
combat global antibiotic resistance. Our model achieved an impressive 
accuracy of 0.9697 and a Matthews Correlation Coefficient of 0.9385, 
marking a transformative phase in microbial communication research 
with wide-ranging benefits for human health, the environment, and 
scientific advancement. Further research will focus on expanding the 
model to predict QSPs in more diverse microbial environments and ex-

ploring the integration of additional biological factors into the model. 
Additionally, future studies will aim to validate the model’s predictions 
experimentally, thereby strengthening its application in biotechnology, 
healthcare, and other fields.
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