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Abstract ��

Hydrodynamic cavitation (HC) and its combination with H2O2 and ozone have been ��

applied in the present work for the treatment of industrial pesticide effluent. Initially, the ��

effect of dilution of the effluent on the efficacy of hydrodynamic cavitation has been studied ��

using circular venturi as a cavitator. Although an increase in the extent of dilution has not ��

shown any beneficial effect on the actual moles of pollutant degraded, hybrid processes have ��

been studied using 1:5 dilution due to very high TDS content of the effluent. Treatment of the ��

industrial pesticide effluent using HC+Ozone (3 g/h) process has demonstrated that the 	�

biodegradability index (BI) of the effluent increases from 0.123 to 0.324 after 2 h of 
�

operation. The rate of COD and TOC reduction has also increased by many folds by using ���

HC in combination with ozone. In addition this, the treatment of industrial pesticide effluent ���

using HC+H2O2 has also indicated that the rate of COD and TOC reduction increases ���

significantly by using HC in combination with various loadings of H2O2. The study of ���

interference of added H2O2 on the COD analysis has exhibited that the COD equivalence is ���

0.441 mg/L for 1 mg/L of H2O2. The energy efficiency and operating cost of various hybrid ���

processes have been compared based on the cavitational yield and the cost of electricity. The ���

combined process of HC and H2O2 has observed to be the most cost-effective one due to its ���

higher cavitational yield and lower power consumption. �	�

---------------------------------------------------------------------------------------------------------------- �
�

Keywords: Hydrodynamic cavitation, Venturi, Biodegradability index, Industrial pesticide ���
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1. IntroductionIntroductionIntroductionIntroduction ���

Contamination of surface and groundwater resources by the pesticides is mainly due ���

to industrial discharges and extensive agricultural activities [1].Wastewater generated from �	�

the pesticide manufacturing industries poses significant pollution problems due to the high �
�

values of chemical oxygen demand (COD) and reduced biodegradability [2]. Most of the ���

pesticide compounds are very toxic and hazardous in nature, even at low concentrations. ���

Although conventional biological treatments are widely used for the degradation of ���

organic pollutants in wastewater, they are not very effective for the degradation of ���

biorefractory compounds [3]. Since last decade, advanced oxidation processes (AOPs) have ���

proved to be very effective in improving the overall degradation efficiency of biorefractory ���

compounds such as pesticides [4, 5]. The degradation mechanism of AOPs is primarily based ���

on the generation of highly reactive and nonselective hydroxyl radicals (OH•) and its ���

subsequent attack on the organic pollutant to convert them into CO2, water and inorganic ions �	�

[6]. However, the application of AOPs is not very cost-effective if they are applied �
�

individually to obtain complete mineralization of recalcitrant compounds in wastewater. ���

Hence, instead of replacing the cost-effective biological processes with AOPs, the effective ���

and proper combination of both systems is very essential [7].  AOPs such as Fenton, ���

ozonation, cavitation etc. can be used for the pre-treatment of industrial wastewater to ���

improve its biodegradability index (BOD5:COD ratio)  and thus enhancing the probability of ���

degradation using microbial action [8]. ���

Cavitation is one of the emerging AOP which is capable of reducing the toxicity and ���

enhancing the mineralization of the wastewater [9]. It is the phenomena of formation and ���

growth of the millions of micro cavities under the controlled conditions and their subsequent �	�

violent collapse due to the pressure variations created [10]. Although cavitation can be �
�

induced by many ways, hydrodynamic cavitation has been reported to be the most cost ���
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effective and efficient way of inducing the cavitation [11]. The degradation of pollutants ���

using hydrodynamic cavitation occurs through the pyrolysis/thermal decomposition of the ���

pollutant molecules entrapped inside the cavity and the oxidation of pollutant molecule using ���

OH• radicals at cavity water interface [12]. Hydrodynamic cavitation has attracted the ���

attention of many researchers since it can be easily scaled up [13]. However, it has a serious ���

limitation of low degradation or mineralization rates when applied individually for the ���

treatment of complex wastewater [14]. The efficacy of hydrodynamic cavitation can be ���

enhanced by using the process intensifying additives such as hydrogen peroxide and ozone �	�

since all such processes have similar degradation mechanism i.e the generation and �
�

subsequent attack of OH
•

 radicals on the pollutant molecule [15].  ���

The work done so far on the application of combination of hydrodynamic cavitation ���

and other AOPs is primarily based on the degradation of synthetic wastewater containing ���

single pollutant and the reports on the treatment of real industrial effluent are very few. ���

Chakinala et al. [16] have explored the combined process of hydrodynamic cavitation (HC) ���

and advanced Fenton process for the treatment of real industrial wastewater and reported that ���

HC is very effective as a pre-treatment to biological oxidation. Padoley et al. [9] have also ���

reported the improvement in the biodegradability index (BI) of complex biomethanated ���

distillery wastewater (B-DWW) by using the hydrodynamic cavitation.  �	�

The combined application of hydrodynamic cavitation and the process intensifying �
�

additives for the degradation of industrial pesticide effluent is not yet reported in the literature ���

to the best of our knowledge. The present work aims at reducing the toxicity and increasing ���

the biodegradability of industrial pesticide effluent by the application of hydrodynamic ���

cavitation in combination with process intensifying additives such as hydrogen peroxide ���

(H2O2) and ozone (O3). The change in the toxicity of industrial pesticide effluent after ���

treatment has been evaluated by measuring the COD, BOD and TOC values of the effluent. ���
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However, H2O2 interferes with COD analysis by consuming certain amount of potassium ���

dichromate and lead to overestimation of the COD values [17-19]. Due to this, the ���

interference of H2O2 on COD estimation during HC+ H2O2 has been evaluated to obtain the �	�

corrected COD values. In addition to this, the cost estimation of HC, HC+ H2O2 and HC + �
�

Ozone processes has also been included in the present work to obtain the most effective and 	��

economical process for the treatment of industrial pesticide effluent. 	��

2.  Materials and methods 	��

2.1 Materials  	��

Hydrogen peroxide (30 % w/v) and sodium hydroxide (NaOH) both of AR grade 	��

were obtained from S D Fine Chemicals Ltd., Mumbai, India. A sample of industrial 	��

pesticide effluent was collected from the pesticide manufacturing industry in Mumbai, India. 	��

The effluent collected was filtered before use, to remove any suspended solids and the 	��

supernatant obtained has been used in the degradation study after making the desired dilution 		�

and pH adjustment. The characteristics of the effluent have been summarized in Table 1.  	
�

2.2 Experimental set-up 
��

Hydrodynamic cavitation set-up used in the present work is as shown in the Fig .1. 
��

The set-up is a closed circuit assembly which essentially consists of holding tank (Max. 
��

capacity-15L), cavitator, positive displacement pump (1.1 kW), control valves (V1, V2 and 
��

V3) and pressure gauges (P1 and P2). Geometrical specifications of the cavitator used in the 
��

present work (circular venturi) have been mentioned in the Fig. 2. The dimensions of the 
��

cavitator are based on the optimized parameters obtained by Bashir et al. [20] using the CFD 
��

analysis. The provision was made in the cavitator for insertion of the ozone at the throat of 
��

the venturi.  
	�

The holding tank is surrounded by the cooling jacket to remove the heat generated 

�

during cavitation. The solution temperature was maintained at 25 ± 5 °C by circulating water ����
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through the cooling jacket. The base of the holding tank is connected to the suction side of ����

the pump through a pipe and the discharge line of pump is branched further into two lines, the ����

main and a bypass line. The control valve in the bypass line was used for regulating the inlet ����

pressure to the cavitating device by regulating the flow through the main line. The pressure ����

gauges have been provided before and after the cavitator to obtain the inlet pressure to the ����

cavitating device and fully recovered downstream pressures. Both the mainline and bypass ����

line have terminated well inside the holding tank, to avoid the possible induction of air into ����

the liquid due to the plunging jet. ��	�

2.3 Experimental methodology ��
�

All the experiments have been performed for the duration of 120 min by using 6 L of ����

industrial pesticide effluent with pH adjusted to 7 by adding 5 N NaOH. The holding tank ����

was filled with the effluent to be treated and the reciprocating pump was used to circulate the ����

effluent continuously in the experimental set-up. The control valve in the bypass line was ����

used to adjust the desired inlet pressure to the cavitating device by controlling the flow in the ����

main line. The samples were collected after regular interval of time to determine the COD, ����

BOD and TOC values of the samples. Initially, during HC pre-treatment the effect of dilution ����

of effluent on COD reduction was studied by using effluent without any dilution and with 1:5 ����

and 1:10 times dilution with pH adjusted to 7. The inlet pressure to the cavitating device was ��	�

6 bar in all such experiments.   ��
�

The effect of loading of ozone on the performance of combined process of ����

hydrodynamic cavitation and ozone has been evaluated by varying loading of ozone from 0.5 ����

to 3 g/h (0.5, 0.75, 1 and 3 g/h). The flow rate ratios of effluent to ozone corresponding to the ����

loadings of 0.5, 0.75, 1 and 3 g/h of ozone are 0.0000525, 0.000787, 0.001050 and 0.00315 ����

respectively. These values are based on the liquid flow rate of 445 LPH at the chosen inlet ����

pressure of 6 bar to the cavitator. Ozonator with a capacity of 180 W (make- Eltech ����
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Engineers, India) was used for generating ozone with a maximum ozone producing capacity ����

of 10 g/h. Oxygen generator (capacity – 420 W and oxygen output - 1–5 LPM) was used to ����

produce the oxygen (94% purity) since it is a feed to the ozonator for producing the ozone. ��	�

The generated ozone was then constantly injected at the throat of the venturi. ��
�

The effect of loading of H2O2 on the efficacy of combined process of hydrodynamic ����

cavitation and H2O2 has also been evaluated by using various concentrations of H2O2 such as ����

2, 5 and 10 g/L. All such experiments have been performed using 6 bar inlet pressure, 1:5 ����

dilution and pH adjusted to 7. The decomposition of H2O2 during these experiments was also ����

evaluated by measuring the concentration of unreacted H2O2 in the effluent by using the ����

DMP method. The experiments of studying the interference of H2O2 on the standard COD ����

estimation have been carried out by using the various loadings of H2O2 such as 2, 5, 7 and 10 ����

g/L. Initially, the effluent was diluted to different proportions and the COD was measured ����

using standard method [21]. Keeping the identical dilutions of the effluent, later the COD was ��	�

measured immediately after adding the fixed quantity of H2O2. Average increase in the COD ��
�

estimation for various loadings of H2O2 (2, 5, 7 and 10 g/L) was evaluated to determine the ����

correlation of COD overestimation.  ����

2.4 Analysis ����

The samples withdrawn after pre-treatment were centrifuged at 4500 rpm (5660 g ����

relative centrifugal force) to remove the solid particles and clear supernatant was subjected to ����

the further physico-chemical analysis. The COD and BOD analysis was carried out as per the ����

standard methods [21]. The degree of mineralization of industrial effluent into end products ����

(such as CO2 and H2O) was analyzed using total organic carbon analyzer (make-Shimadzu ����

corporation, Japan) at various optimum conditions. The concentration of H2O2 was ��	�

determined by the spectrophotometric method (�max of Cu(DMP)
2 +

 complex- 454 nm) using ��
�

copper (II) ion and DMP (2,9-Dimethyl-1,10-phenanthroline) [22]. ����
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3.     Results and discussion ����

3.1   Effect of dilution on COD reduction using hydrodynamic cavitation (HC)  ����

The effect of dilution of pesticide effluent on the rate and extent of COD reduction ����

has been evaluated by utilizing different dilutions of the effluent such as no dilution, 1:5 ����

dilution and 1:10 dilution for the pre-treatment using hydrodynamic cavitation. All the ����

experiments have been carried out for the duration of 90 minutes using 6 L of the effluent ����

with desired dilution and by keeping the inlet pressure to the venturi as 6 bar.  The initial pH ����

of the effluent was adjusted to 7 (by adding 5 N NaOH) in order to neutralize the effect of ��	�

chloride ions present in the effluent which may cause corrosion of the experimental setup ��
�

[23]. The samples withdrawn at the regular interval of time during these experiments have ����

been subjected to the COD analysis.  ����

The results obtained have been summarized in the Fig. 3 which has indicated that the ����

rate of COD reduction obtained using pre-treatment of hydrodynamic cavitation follows first ����

order kinetics for all the dilutions studied.  It has been observed that, with an increase in the ����

extent of dilution, the rate of COD removal also increases with the maximum COD reduction ����

of 21 % obtained using 10 times diluted effluent. However, an increase in the extent of ����

dilution has shown a negative impact on the actual moles of pollutant degraded (based on ����

COD values). It can be seen from the Table 2 that, with an increase in the extent of dilution, ��	�

although the extent of COD reduction is increasing, effective number of moles of pollutant ��
�

degraded have reduced. Hence, the use of much diluted effluent for the pre-treatment using ����

hydrodynamic cavitation is not a promising option for effective treatment of industrial ����

pesticide effluent.  ����

The results obtained are consistent with the earlier reports indicating that, the rate of ����

removal of pollutants under cavitating conditions is inversely proportional to the initial ����

concentration of the pollutant. Chakinala et al. [16] have studied the effect of dilution of ����

industrial wastewater effluent on the extent of COD and TOC removal. The extent of COD ����
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removal in 150 min of treatment time was 42 %, 62 % and 73 % for a dilution ratio of 10, 25 ����

and 50 respectively. It was clearly observed that the extent of COD reduction does not ��	�

increase appreciably with an increase in the extent of dilution. Padoley et al. [9] have also ��
�

studied the effect of dilution of distillery waste water on the extent of mineralization obtained �	��

using hydrodynamic cavitation. The original wastewater (34,000 mg/L COD) was diluted to �	��

25% and 50% concentration (%, V/V) using tap water and was treated using hydrodynamic �	��

cavitation. It was observed that the dilution has no significant effect on the mineralisation of �	��

distillery waste water, since the COD and TOC reduction at 25 % and 50 % dilution was �	��

lower as compared to undiluted waste water.  �	��

Although an increase in the extent of dilution has not shown any beneficial effect on �	��

the actual moles of pollutant degraded, further experiments have been performed using 1:5 �	��

dilution of effluent in order to reduce the TDS content of the effluent. This is because, very �		�

high TDS content of effluent along with very high temperature and pressure conditions at the �	
�

time of cavitation can damage the pump and the cavitator.  �
��

3.2   Effect of loading of ozone on the mineralization of the effluent using HC + Ozone �
��

Ozonation process has attracted the attention of many researchers since it is capable �
��

of oxidising the organic pollutants due to its high oxidation potential of 2.08 eV. However, �
��

during conventional ozonation process, the rate of reaction of ozone with pollutant molecule �
��

is not very significant due to high mass transfer resistances in aqueous solutions [24]. The �
��

combination of HC and ozone can enhance the rate of reaction of ozone with pollutant �
��

molecules since local turbulence created by cavitation can increase the mass transfer of ozone �
��

from gas phase to the bulk liquid phase [25]. In addition to this, ozone dissociates in presence �
	�

of cavitation and generates atomic oxygen (O
•

) which further reacts with water molecule to �

�

generate highly reactive OH• radicals [13].  Hence the combination of hydrodynamic ����

cavitation and ozone can be a promising option for the treatment of wastewater. ����

With this background, the effect of loading of ozone on the extent of mineralisation of ����
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industrial pesticide effluent has been evaluated by applying HC + Ozone process and by ����

varying the loading of ozone from 0.5 to 3 g/h. All the experiments have been carried at an ����

inlet pressure of 6 bar and pH of 7 and the samples withdrawn at regular interval of time were ����

subjected to COD and TOC analysis. It can be seen from the Fig. 4 and Fig. 5 that, with an ����

increase in the loading of ozone, the rate of COD as well as TOC reduction increases. The ����

rate constant (k), extent of COD and TOC reduction and the moles of pollutant degraded at ��	�

various loadings of O3 have been summarised in Table 3. The rate and the extent of COD ��
�

reduction of 1.38 × 10
-3
 min

-1 
and 14.77 % obtained by using individual hydrodynamic ����

cavitation have enhanced significantly (nearly by 80%) to 2.47 × 10
-3
 min

-1 
and 25.69 % by ����

using HC in combination with 0.75 g/h of ozone. Similar trend has also obtained in case of ����

effect of ozone on the rate and extent of TOC reduction. ����

Although, the efficacy of HC has increased noticeably in the presence of ozone, ����

increasing the loading of ozone beyond 0.75 g/h (Ozone to liquid flow rate ratio as 0.000787) ����

has shown only marginal increase in the rate of COD and TOC reduction. Similarly, the ����

moles of effluent degraded have also not increased very significantly by increasing the ����

loading of ozone beyond 0.75 g/h. Hence, an optimal loading of 0.75 g/h ozone should be ��	�

used in the combined process of HC and ozone, for the effective treatment of industrial ��
�

pesticide effluent. ����

Similar results have also been observed in the literature reports for the treatment of ����

synthetic wastewater containing single organic pollutant. Gore et al. [13] have observed that ����

efficiency of HC for the degradation of reactive orange 4 dye (RO4) enhances significantly ����

by combining it with ozone. TOC reduction of 14.67% obtained in case of HC has increased ����

to 76.25% when HC was coupled with ozone. Similarly, Wu et al. [25] have also ����

demonstrated the enhanced effect of suction-cavitation on the ozonation of phenol using ����

orifice as a cavitator. ����
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3.3   Effect of HC and HC + Ozone processes on the biodegradability index  ��	�

Biodegradability index (BI), a ratio of BOD
5
: COD is a measure of the extent to which ��
�

a wastewater is amenable to biodegradation [3]. The wastewater is fairly biodegradable if BI ����

is greater than 0.4. However, wastewater with BI in the range of 0.3-0.4 is also amenable to ����

biological treatment with a BI value � 0.3 necessary for aerobic treatment and � 0.4 for ����

anaerobic treatment. The wastewater cannot be treated biologically if BI is less than 0.3 [9, ����

26]. Wastewater effluent pre-treatment using hydrodynamic cavitation or its combination with ����

ozone can reduce the toxicity of wastewater and thus can enhance its biodegradability.  ����

The biodegradability index of the industrial pesticide effluent has been evaluated after ����

the pre-treatment of HC or HC + Ozone processes and the results obtained have been ����

summarised in Table 4. It has been observed that pre-treatment of HC for either diluted or ��	�

non-diluted effluent could lead to only marginal enhancement in the BI even after 120 min of ��
�

treatment time. However, the pre-treatment of combination of HC and ozone process has ����

shown significant impact on the biodegradability of the wastewater effluent. The BI of the ����

effluent has substantially increased from 0.121 to 0.324 after pre-treatment of HC + Ozone (3 ����

g/h) over the treatment duration of 120 min. In order to obtain higher BOD/COD ratio, the ����

degradation process can be continued for longer period of time or the cavitation conditions ����

can be made more severe.   ����

Similar observation has been reported by Padoley et al. [9] while studying the effect ����

of HC pre-treatment for distillery wastewater. It was observed that, HC treatment of distillery ����

wastewater (with 25 % dilution) at inlet pressure of 13 bar results into an increase in the BI ��	�

from 0.14 to 0.32 after 50 min. It was reported that, HC pre-treatment results into an increase ��
�

in the efficiency of the conventional biological process by almost 6 times in terms of COD ����

removal and biogas formation.  Bis et al. [27] have also observed that the application of HC ����

can enhance the biodegradability index of the mature landfill leachate. The orifice plate ����

having three holes of 10 mm diameter and cavitation number of 0.033 was observed to be the ����
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most suitable one for enhancing the biodegradability index of mature leachate. By using this ����

configuration and maintaining 30 recirculation passes through the cavitation zone at inlet ����

pressure of 7 bar, the highest biodegradability index (BI) was observed. The results obtained ����

were attributed to the physical and chemical effects of cavitation.  ����

Overall, it has been observed that HC in combination with ozone can effectively be ��	�

utilized for reducing the toxicity and thereby enhancing the biodegradability index of the ��
�

pesticide wastewater effluent.  ����

3.4    Effect of loading of H2O2 on the TOC reduction using HC + H2O2 process ����

Hydrogen peroxide being a potential oxidant can be used for enhancing the efficacy ����

of hydrodynamic cavitation since it dissociates easily in the presence of cavitation providing ����

additional highly reactive hydroxyl radicals [28]. The effect of loading of H2O2 on the TOC ����

reduction has been evaluated by using the loadings of H2O2 such as 2, 5 and 10 g/L for the ����

treatment of industrial pesticide effluent (5 times diluted) with pH adjusted to 7. The results ����

obtained have been depicted in Fig. 6, which indicated that the effect of H2O2 on the TOC ����

values of the effluent during combined process of HC and H2O2 followed first order kinetics. ��	�

Table 5 summarizes the values of rate constant (k) and extent of TOC reduction and moles of ��
�

the effluent degraded (based on TOC) after 120 min of operation.  The results obtained have ����

clearly shown that the rate and extent of TOC reduction increases with an increase in the ����

loading of H2O2. Combined process of HC and H2O2 has observed to be more efficient than ����

HC operated individually, since the rate constant of 0.56 × 10-3 min-1 (TOC reduction- ����

6.58%) obtained using only HC has significantly enhanced to 2.42 × 10-3 min-1 (TOC ����

reduction- 22.85%) by using HC in combination with 2 g/L of H2O2. Similarly, moles of the ����

pollutant from industrial pesticide effluent degraded (based on TOC) in case of individual HC ����

(4.614× 10
-3

 moles) has also increased appreciably by using HC in combination with 2 g/L of ����

H2O2 (1.749 × 10
-2

 moles). However, further increase in the loading of H2O2 has resulted in ��	�
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monotonic increase in the TOC reduction, even though loading of H2O2 has increased by 5 ��
�

times i.e. from 2 g/L to 10 g/L. Hence, optimized loading of H2O2 should be used for �	��

effective mineralization of pesticide effluent. The results obtained are attributed to the fact �	��

that at very high loading of H2O2 the detrimental effects are observed due to recombination/ �	��

scavenging of OH• radicals by H2O2 present.  �	��

In a similar study of treatment of actual industrial wastewater effluent, Chakinala et �	��

al. [16] have also observed that the efficacy of hydrodynamic cavitation enhances appreciably �	��

by using it in combination with H2O2. It was found that the extent of TOC reduction increases �	��

with an increase in the loading of H2O2 although increase in the TOC reduction was marginal �	��

at higher loading of H2O2.   �		�

3.5    Influence of H2O2 on standard COD estimation  �	
�

While studying the effect of addition of H2O2 on the COD values of the industrial �
��

pesticide effluent, it has been observed that the COD values of the effluent samples are �
��

increasing after the pre-treatment using combined process of HC and H2O2. The unusual �
��

trend of the results has indicated the possibility of H2O2 interference on the COD estimation. �
��

To confirm the existence and extent of H2O2 interference on the COD estimation, �
��

COD analysis of industrial pesticide effluent has been evaluated after adding different �
��

loadings of H2O2 such as 2, 5, 7 and 10 g/L. The samples have been prepared by using five �
��

different dilutions of the effluent and COD analysis has been carried out immediately after �
��

the addition of fixed quantity of H2O2. The COD values have also also been evaluated without �
	�

addition of H2O2 and keeping identical extent of dilutions of effluent. Later, the COD �

�

overestimation was obtained by determining the increase in the COD values due to the ����

addition H2O2.  It has been observed that the presence of hydrogen peroxide leads to an ����

overestimation of the COD values and the extent of COD overestimation has found to be ����

proportional to the concentration of H2O2. Fig. 7 demonstrates the linear relationship between ����
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COD overestimation and concentration of H2O2.  The slope of the straight line has indicated ����

that the equivalence of 1 mg/l of H2O2 is 0.441 mg/l of COD. The other details of regression ����

analysis including the relative standard deviation and confidence limit of 95% have been ����

depicted in Table 6. Each �COD value reported in the table is arithmetic mean of COD ����

overestimation values of five different concentrations of effluent loaded with fixed ��	�

concentration of H2O2. ��
�

Many other previous reports have also confirmed the interference of H2O2 on the ����

COD estimation [17, 18]. Hydrogen peroxide leads to the COD overestimation since it gets ����

consumed during COD analysis as per the oxidation reaction given in Eq. 1 [19] leading to ����

more utilization of potassium dichromate and higher COD values.  ����

K2Cr2O7 + 3H2O2 + 4H2SO4 � K2SO4 + Cr2(SO4)3 + 7H2O + 3O2                (1) ����

Lee et al. [29] have reported that theoretical COD value of 1 mg/L of H2O2 is 0.470 ����

mg/L. The COD overestimation obtained in the present work is marginally lower than the ����

theoretical one, since some fraction of H2O2 might have got consumed for the oxidation of ����

effluent even though COD analysis was carried out immediately after the addition of H2O2. ��	�

Although, it has been observed that extent of overestimation of COD is proportional to the ��
�

concentration of   H2O2, the exact COD overestimation correlation is dependent on type of the ����

wastewater under question. ����

3.6 Effect of loading of H2O2 on the rate of COD reduction using HC + H2O2 process ����

(based on corrected COD values)  ����

For studying the effect of loading of H2O2 on the rate of COD reduction, the ����

determination of residual concentration of H2O2 and corrected COD values is very essential. ����

Fig. 8 shows the change in the residual concentration of H2O2 during combined process of ����

HC and H2O2. It has been observed that the residual concentration of H2O2 decreases with ����

time for all the loadings of H2O2 during HC + H2O2 process. The results obtained have clearly ��	�
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indicated that very high loading of H2O2 is not beneficial, since the rate of decomposition of ��
�

H2O2 has decreased with an increase in the initial loading of H2O2. Substantial decrease in the ����

residual concentration of hydrogen peroxide can be obtained if the effluent will be treated for ����

longer period of time using HC + H2O2 process. Various researchers have reported the ����

degradation rate of H2O2 under cavitation [1, 30]. The values of residual concentration of ����

H2O2 have been used further to obtain the extent of COD overestimation, which was further ����

used for estimating the true/corrected values of COD as below.  ����

Extent of COD overestimation, mg/L = residual concentration of H2O2, mg/L × 0.441 ����

True/ Corrected COD in mg/L= measured COD value � extent of COD overestimation   ����

The corrected COD values obtained have been used to further study the effect of ��	�

loading of H2O2 on the rate of COD reduction at various loadings of H2O2 such as 2, 5 and 10 ��
�

g/L. The results obtained have been illustrated in Fig. 9. The results obtained while studying ����

the effect of loading of H2O2 on the rate of TOC and COD have indicated that the combined ����

process of HC and H2O2 is more efficient than HC alone for reducing the toxicity of ����

wastewater effluent. The details of rate constant (k), extent of COD reduction and moles of ����

effluent degraded at various loadings of H2O2 have been summarized in Table 7.  It has been ����

observed that rate and extent of COD reduction increases monotonically with an increase in ����

the loading of H2O2, since the rate of COD reduction obtained in case of 2 g/L of H2O2 has ����

not increased significantly even after increasing the loading of H2O2 by 5 times i.e. to 10 g/L. ����

Similarly, moles of the pollutant degraded based on COD values have not enhanced ��	�

proportionately with an increase in the loading of H2O2. Hence, based on the rate of ��
�

decomposition of residual H2O2 and rate of COD reduction it has been concluded that even ����

though efficacy of hydrodynamic cavitation greatly enhances in presence of H2O2, the use of ����

very high loading of H2O2 should be avoided for the sake of any apparent increased rate of ����

COD reduction.  In the multivariate analysis of mineralization of phenol using hydrodynamic ����
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cavitation, Chakinala et al. [31] have also indicated that an optimum loading of H2O2 must be ����

used for enhancing the efficacy of HC since an excess amount acts as a scavenger for ����

hydroxyl radicals and also contribute to excess COD in the pollutant stream.  ����

3.7   Comparison of energy efficiency and cost effectiveness  ����

The energy efficiency of cavitation based processes can be expressed in terms of ��	�

cavitational yield, which is defined as the ratio of quantifiable effects of cavitation per unit ��
�

energy supplied to the system [32]. In the present study, the cavitational effects have been ����

measured on the basis of number of moles of pollutant degraded and the power consumption ����

(KWh/m
3
) have been evaluated on the basis of treatment time required for obtaining the 60 % ����

COD reduction. Table 8 provides the comparison of energy efficiency and cost effectiveness ����

of various processes such as HC and its combination with various loadings of H2O2 or Ozone. ����

The major fraction of the operating cost of these processes is typically utilized for supplying ����

the electrical energy to the system, since the cost of reagents such as H2O2 is very nominal as ����

compared to the cost of electrical energy [33]. Due to this, the cost of reagents is neglected in ����

the present study, while determining the cost effectiveness of various processes.    ��	�

It has been observed that energy efficiency of individual hydrodynamic cavitation ��
�

notably enhances by combining it with H2O2. The cavitational yield of 1.589×10
-9 

moles/J ����

obtained in the case HC has approximately enhanced by 2, 3 and 4 times as a result of ����

combining it with 2, 5 and 10 g/L of H2O2 respectively. However, marginal enhancement in ����

the energy efficiency and cost effectiveness was observed by combining HC with ozone. This ����

is because additional energy (ozonator- 180 W and oxygen concentrator – 420 W) supplied to ����

generate the ozone has not resulted in significant enhancement in the rate of COD reduction. ����

Due to this, the combined application HC and ozone is not very economically attractive if ����

applied for the treatment of pesticide industry wastewater effluent under question. However, ����

it can be used as a pre-treatment tool for increasing the BI, which can be further treated with ��	�
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simple biological means. It has also been observed that power consumption of hydrodynamic ��
�

cavitation alone is very high due to the low rate of COD reduction leading to high treatment �	��

time. This makes the application of only HC a non-feasible and expensive option for the �	��

treatment of industrial wastewater effluent. However, the operating cost of the HC can be �	��

reduced if the wastewater effluent is available at considerable hydrostatic heads or pressures. �	��

In that case treatment cost of HC can be reduced by designing the pressure reduction devices �	��

in such a way that they will work in a hydrodynamic cavitation mode, without supply of any �	��

additional energy [34].  �	��

  Another option for reducing the treatment cost of HC is to use it in combination with �	��

optimum loading of H2O2. It was observed that moles of effluent degraded in case of HC has �		�

increased substantially by using HC in combination with H2O2, even though energy supplied �	
�

to both processes is identical. The combination of HC with H2O2 has found to be a relatively �
��

cost-effective option; since it has significantly reduced the treatment time required for �
��

obtaining desired COD reduction leading to less power consumption. The electrical cost of �
��

10250.99 Rs. /m
3
 incurred during HC has drastically reduced to 1951.63 Rs./m

3
 (i.e. almost �
��

by 4 times) when HC was combined with 10 g/L of H2O2. The results obtained are attributed �
��

to the fact that hydrogen peroxide can easily dissociate in presence of hydrodynamic �
��

cavitation leading to increased generation of hydroxyl radicals resulting into higher rate of �
��

COD reduction [35]. Although, cost of electricity has appreciably reduced due to the �
��

combination of HC and H2O2, even the reduced cost are excessive and cannot be observed by �
	�

a pesticide manufacturing unit and hence additional optimization is needed. However this �

�

work has indicated the direction in which future effort needed.  ����

4. Conclusions ����

The treatment of industrial pesticide effluent using HC and its combination with H2O2 ����

and ozone has established the following important conclusions: ����
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• The efficacy of hydrodynamic cavitation does not get enhanced appreciably by ����

increasing the extent of dilution of the effluent.  ����

• The treatment of effluent using HC + Ozone (3 g/h) for the duration of 120 min ����

enhanced the biodegradability index from 0.121 to 0.324. ����

• The rate of TOC reduction obtained in case of individual hydrodynamic cavitation ��	�

enhanced approximately by 5 and 11 times by using HC in combination with 3 g/h of ��
�

ozone and 10 g/L of H2O2 respectively.  ����

• H2O2 interferes with the COD analysis leading to the COD overestimation of 0.441 ����

mg/L for 1 mg/L of H2O2.  ����

• The rate of COD reduction obtained in case of individual hydrodynamic cavitation ����

has also enhanced roughly by 2.5 and 5 times by using HC in combination with 3 g/h ����

of ozone and 10 g/L of H2O2 respectively.  ����

• The combined process of HC and H2O2  has proved to be the most energy efficient ����

and cost effective since electrical cost of 10250.99 Rs./m3 incurred during HC has ����

appreciably reduced to 1951.63 Rs./m3 (i.e. almost by 4 times) when HC was ��	�

combined with 10 g/L of H2O2. Although, the cost incurred during HC has ��
�

successfully reduced by combining it with process intensifying agents, the reduced ����

treatment costs are still prohibitive. However, this work has clearly indicated the ����

direction in which more efforts are needed. ����
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Fig.  1. Schematic representation of hydrodynamic cavitation set-up��
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Fig.  2. Geometric specifications of a circular venturi (with throat diameter- 2mm) 
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Fig. 3. Effect of dilution on the mineralization of industrial pesticide effluent 

(Subjected to: treatment volume- 6 L, inlet pressure- 6 bar, pH-7)  
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Fig. 4. Effect of loading of ozone on the COD reduction of industrial pesticide 

effluent (Subjected to: treatment volume- 6L, inlet pressure- 6 bar, pH-7)  
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Fig. 5. Effect of loading of ozone on the TOC mineralization of industrial 

pesticide effluent (Subjected to: treatment volume- 6L, inlet pressure- 6 bar, pH-

7)  
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Fig. 6. Effect of loading of H2O2 on the TOC mineralization of industrial 

pesticide effluent (Subjected to: treatment volume- 6L, inlet pressure- 6 bar, pH-

7)  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 



  

���

�

 

 

 
 

Fig.7 Effect of concentration of H2O2 on the average COD overestimation 
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Fig. 8. First order rate of decomposition of H2O2 during HC + H2O2 Process 
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Fig. 9. Effect of loading of H2O2 on the COD reduction of industrial pesticide 

effluent   (Based on corrected COD values and subjected to: treatment volume- 

6L, inlet pressure- 6 bar, pH-7)  
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Table 1 

Characteristics of industrial pesticide effluent 

Parameters 

 

Values 

 

pH 0.3-0.5 

Total suspended solids 106 mg/L 

Total dissolved solids 1,08,500 mg/L 

Biological oxygen demand 2100-2200 mg/L 

Chemical oxygen demand 17000-18000 mg/L 

Ratio of BOD5/COD 0.123 

 

Table 2 

Rate constant of COD removal (k), extent of COD reduction and moles of pollutant 

degraded at various dilutions of effluent. 

 

Process 

Rate constant 

of COD 
removal, 

k × 10
3  

min
-1

 

Regression 
coefficient 

R
2
 

% COD 

reduction 

after 2 h 

CA0,  

based on  

COD, 

moles/L 

CA0-CA, 

based on 
COD,  

moles/L 

HC, No dilution 1.09 0.00109 0.99 8.98 0.386 0.0473 

HC, 1:5 dilution 1.38 0.00144 0.99 14.77 0.0825 0.0126 

HC, 1:10 dilution 2.63 0.00268 0.99 21.42 0.0350 0.0095 
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Table 3 

Rate constant (k), extent of COD and TOC reduction and moles of pollutant degraded 

at various loadings of O3 

Process 

Rate 

constant 

for COD 

removal 

in         

k × 10
3 

min
-1 

 

Regression 

coefficient 

for COD 

removal 

R
2
 

Rate 

constant 

for TOC 

removal 

in         

 k × 10
3 

min-1 

Regression 

coefficient 

for TOC 

removal 

R
2
 

% COD 

reduction 

after 2 h 

% TOC 

reducti

on after 

2 h 

CA0-CA 

based 

on 

COD, 

moles/ L 

 

HC 1.38 0.001354 0.99 0.56 0.00056 0.99 14.77 6.58 0.0126 

HC+ Ozone, 
0.5 g/h 

1.66 0.001702 0.98 1.01 0.000972 0.98 19.08 10.92 0.0146 

HC+ Ozone, 
0.75 g/h 

2.47 0.002493 0.98 1.5 0.001491 0.99 25.69 16.63 0.0203 

HC+ Ozone, 

1.0 g/h 
2.94 0.003033 0.97 1.89 0.001718 0.97 29.98 19.36 0.0238 

HC+ Ozone, 

3.0 g/h 
3.45 0.003635 0.99 2.48 0.002443 0.97 36.26 26.204 0.0272 
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Table 4 

Effect of HC and HC+ Ozone processes on biodegradability index 

 

Process 
Time in 

Minutes 

Number 

of passes 

Mean 

COD 

mg/L 

Confidence 

limit of 95% 

Mean 

BOD 

mg/L 

Confidence 

limit of 95% 
BOD/COD 

HC, 

No dilution 

0 0 12360 12360±48 1490 1490±3 0.121 

60 108 11490 11490±41 1740 1740±5 0.151 

120 216 11250 11250±40 1805 1805±6 0.160 

HC, 

1:5 dilution 

0 0 2640 2640±8 325 325±4 0.123 

60 108 2420 2420±8 375 375±3 0.155 

120 216 2250 2250±7 400 400±5 0.178 

HC+ Ozone, 
Ozone-1.0 g/h 

1:5 dilution 

0 0 2560 2560±9 320 320±4 0.125 

60 108 2070 2070±7 460 460±5 0.222 

120 216 1794 1794±5 510 510±5 0.284 

HC+ Ozone, 

Ozone-3.0 g/h 

1:5 dilution 

0 0 2570 2570±8 322 322±4 0.125 

60 108 2097 2097±7 470 470±5 0.224 

120 216 1638 1638±6 530 530±5 0.324 
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Table 5 

Rate constant (k) and extent of TOC reduction and moles of pollutant degraded at 

various loadings of H2O2 

Process 

Rate constant 

for TOC 

removal, 

k ×10 3 min-1 

Regression 

coefficient 
R

2
 

% TOC 

reduction 

(120 min) 

CA0 

moles/L 

CA0-CA 

moles/L 

HC 0.56 0.00056 0.99 6.58 0.0711 4.614E-03 

HC+ H2O2, 2 g/L 2.42 0.00223 0.95 
22.85 

 
0.0694 1.749E-02 

HC+ H2O2, 5 g/L 3.86 0.00378 0.98 
37.66 

 
0.0718 2.661E-02 

HC+ H2O2, 10 g/L 6.02 0.00648 0.96 
54.87 

 
0.0755 3.884E-02 

 

 

 

Table 6 

COD overestimation (�COD) values for various concentrations of H2O2 

[H2O2], g/L Average �COD 
Relative standard 

deviation, % 

Confidence limit 

of 95% 

2  940 2.29 940 ± 18.83 

5  2221 4.23 2221 ± 82.40 

7  3124 1.68 3124 ± 45.99 

10  4366 3.36 4366 ± 128.47 
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Table 7 

Rate constant (k) and extent of COD reduction and moles of pollutant degraded at 

various loadings of H2O2 

Process 

Rate constant 

for COD 
removal, 

k × 10
-3

  min
-1

 

Regression 
coefficient 

R
2 

% COD 

reduction 

(120 min) 

CA0 
moles/L 

CA0-CA 
moles/L 

HC 1.382 0.001354 0.995 14.77 0.0825 0.0126 

HC + H2O2, 2 g/L 3.064 0.003036 0.992 31.57 0.0806 0.0248 

HC + H2O2, 5 g/L 4.835 0.004870 0.999 44.18 0.0801 0.0352 

HC + H2O2, 10 g/L 7.215 0.007834 0.972 60.29 0.0818 0.0474 

 

 

Table 8 

Comparison of cavitational yield and cost effectiveness of various processes 

Process Cavitational 

yield, moles 
effluent 

degraded/J 

Rate constant, 

k (based on 
COD) min-1 

Treatment 

time in h to 
achieve the 

60% COD  
reduction 

Power 

consumption 
in KWh/m3 

Cost of 

Electricity 
Rs./m3 

HC 1.589E-09 1.38E-03 11.050 2025.89 10250.99 

HC + H2O2, 

2 g/L 
2.796E-09 2.68E-03 5.707 1046.26 5294.05 

HC + H2O2, 

5 g/L 
4.248E-09 4.55E-03 3.359 615.74 3115.65 

HC + H2O2, 

10 g/L 
6.011E-09 7.26E-03 2.104 385.70 1951.63 

HC + Ozone, 

0.75 g/h 
1.658E-09 2.47E-03 6.183 1751.79 8864.07 

HC + Ozone, 

1.0 g/h 
1.943E-09 2.94E-03 5.194 1471.74 7447.03 

HC + Ozone, 

3.0 g/h 
2.224E-09 3.45E-03 4.427 1254.18 6346.16 
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Highlights: 

� Treatment of industrial effluent using hydrodynamic cavitation (HC) based processes 

� Biodegradability index of the effluent increased from 0.123 to 0.324 using HC+Ozone  

� Higher rate of COD and TOC reduction obtained using HC+H2O2 as compared to HC 

alone 

� Cost estimation is done for individual HC and HC based hybrid processes 

� Combined HC and H2O2 process is the most effective and economical one 

 


