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A B S T R A C T   

Diabetic retinopathy (DR) involves retina damage due to diabetes, often leading to blindness. It is diagnosed via 
color fundus injections, but the manual analysis is cumbersome and error-prone. While computer vision tech
niques can predict DR stages, they are computationally intensive and struggle with complex data extraction. In 
this research, our prime objective was to automate the process of DR classification into its various stages using 
convolutional neural network (CNN) models. We employed the performance of fifteen pre-trained models with 
our novel proposed diabetic retinopathy network (DRNet13) model. We aimed to discern the most efficient 
model for accurate diabetic retinopathy (DR) staging based on fundus images from five DR classes. We pre
processed the image using a median filter for noise reduction and Gamma correction for image enhancement. We 
expanded our dataset from 3662 to 7500 images to create a more generalized training model through various 
augmentation techniques. We also evaluated multiple evaluation metrics, including accuracy, precision, F1- 
score, Sensitivity, Specificity, Area under the curve (AUC), Mean Squared Error (MSE), False Positive Rate 
(FPR), False Negative Rate (FNR), in addition to confusion matrices for an in-depth comparison of the perfor
mance of these models. Feature maps were employed to illuminate decision making areas in the DRNet13 model, 
which achieved a 97 % accuracy rate for DR detection, surpassing other CNN architectures in speed and effi
ciency. Despite a few misclassifications, the model’s capability to identify critical features demonstrates its 
potential as an impactful diagnostic tool for timely and accurate identification of diabetic retinopathy.   

1. Introduction 

Over the past few decades, diabetes has become one of the most 
rapidly expanding disease burdens. Currently, 382 million individuals 
throughout the world suffer from diabetes mellitus (DM), and this 

number is expected to rise to 592 million by 2025 [1]. Type-I and Type-II 
DM are the two disease subtypes, respectively, and are distinguished by 
their respective causes and symptoms. Moreover, the human eye is one 
of the vital body parts negatively impacted by both forms of DM. Dia
betic retinopathy (DR) [2–4] describes a serious eye disease linked to 
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DM. The symptoms of DR demonstrate that it results in the mutilation of 
blood vessels in the retina. There have been reports that DR affects 34.6 
% of the world’s population, which amounts to 382 million people. 

To address the aforementioned challenges and the rising frequency 
of DR, our research demonstrates a mixed-method strategy that lever
ages the analytical skills of both qualitative evaluations and quantitative 
[5] deep learning approaches. This method is intended to improve 
diagnosis accuracy and provide an improved understanding of disease 
development. In addition to diabetic retinopathy, 7.0 % of the popula
tion has proliferative diabetic retinopathy (PDR), and 6.8 % have dia
betic macular edema (DME) [6]. When the worldwide scenario is 
extrapolated from these statistics, the number of DR cases is expected to 
rise from 126.6 million to 191.1 million by 2030 [3]. Such statistics 
highlight the critical need for enhanced diagnostic approaches capable 
of reliably detecting and classifying DR at an early stage in order to 
prevent permanent vision loss. 

Furthermore, the present DR diagnostic landscape is characterized 
by a wide variety of techniques, each with intrinsic strengths and limi
tations. Our study aims to critically examine these current approaches, 
emphasizing the necessity for a complete and automated detection 
system capable of resolving the inadequacies of manual feature extrac
tion as well as the varied performance of pre-trained models. 

On the other hand, reports have demonstrated that DR is responsible 
for the blindness of 4 % of the total population in the Khyber Pak
htunkhwa (KP) province of Pakistan. In addition, it was found that the 
most prevalent cause of DR in the region was BD type-I DR (Risk Factors 
Awareness and Presentation, Pakistan, 2017). Diabetes mellitus was 
reported by 30 % of the population in KP, with type II diabetes affecting 
1.6 % of the patients. In KP, approximately 1.6 % of the overall popu
lation has type II diabetes, and it was observed that almost 30 % of 
diabetic patients were DR patients. Two percent of these individuals 
have claimed they are very close to being completely blind [1]. Diag
nosis can be challenging in the early stages of DR, and patients may 
report feeling symptom-free. However, Patients in later phases experi
ence decreased visual acuity and symptoms such as blurriness, floaters, 
and distortions. Although NPDR is the first stage of DR, it is further 
subdivided into three types. 

Microaneurysms, on the other hand, are merely spherical, locally 
dilated capillaries inside the eye [7]. The severity of NDPR is classified 
as "mild," "moderate," or "severe." During the early stages of DR, the 
blood capillary end forms a little, red, spherical spot [8,9]. 
Flame-shaped haemorrhages can occur in mild instances with more than 
five MA. When there are more than 20 haemorrhages within the retina, 
NPDR has progressed to the final stage. The creation of new blood 
vessels in response to these damage is known as neovascularization, and 
it affects the whole inner surface of the retina. Early diagnosis of DR can 
help prevent the worsening of NPDR into PDR. One hundred thirty pa
tients were monitored for DR signs. Two-thirds of a sample size of 130 
patients tested positive for DR. Of these DR-positive individuals, 25.8 % 
had advanced to the PDR stage [8], the terminal DR stage [6]. Because 
the early signs of this disorder are disguised, it typically stays unnoticed 
for a long period before causing irreparable vision loss. As a result, 
detecting DR early is crucial to preventing the complications associated 
with the condition [10]. To make progress in comprehending the disease 
and its prognosis, highly qualified medical professionals and specialists 
armed with cutting-edge diagnostic tools and methodologies are 
required. 

As a result, a reliable automated detection system is required to 
identify and prevent the impact of DR [11]. Prior work in the DR focused 
mainly on feature extraction using machine learning approaches 
[12–15]. However, difficulties with manual feature extraction directed 
scientists towards deep learning. Data mining, image processing, ma
chine learning, and deep learning are just some of the computer-aided 
technologies that have benefited from increased medical research 
[16–18]. However, in recent years, Deep Learning has gained popularity 
in a variety of disciplines, including sentiment analysis, handwriting 

recognition, stock market prediction, medical image analysis, and so on. 
When it comes to image classification, CNN in deep learning typically 
provides effective outcomes. 

In this study, we employ a mixed-method strategy to improve the 
identification and classification of DR, combining both qualitative in
sights from medical research and the quantitative capability of deep 
learning algorithms. This sophisticated approach fills methodological 
gaps in prior research, which have been limited by excessive dependence 
on human feature extraction and inadequately adaptable machine 
learning algorithms. We introduce the DRNet13 model as a model for 
advancement in medical image analysis by carefully connecting our 
research with the critical need for early and accurate identification of 
DR. Our findings have the potential to make a significant contribution to 
medical diagnostics by transforming the prognosis and treatment of 
diabetic retinopathy. We have chosen the DRNet13 with purpose and 
strategy. Unlike other approaches which may provide countable accu
racy at the expense of higher processing demand, DRNet13 achieves an 
optimal balance between accuracy and computational efficiency. This is 
crucial for practical applications where resources are limited. The de
cision is straightened further by its unique architectural design, which 
facilitated complex data extraction, a major challenge in the automated 
analysis of fundus images associated with DR. The main subject of this 
research is evaluating the severity of DR fundus images. Fig. 1 illustrates 
the entire overview of this study. The contributions of this research are 
as follows: 

1. A novel model DRNet13 has been introduced for Diabetic Retinop
athy (DR) classification with a validation accuracy of 97 %. It sur
passed fifteen pre-trained models in performance.  

2. A comprehensive comparative study, including fifteen pre-trained 
models and DRNet13, has been presented to identify the most effi
cient CNN architecture for DR classification.  

3. An efficient pre-processing pipeline was developed, incorporating 
Median filtering for noise reduction and Gamma correction for image 
enhancement.  

4. Image augmentation techniques have expanded the dataset from 
3662 to 7500 images, enhancing the model’s capacity to handle real- 
world variability. 

5. Performance assessment across multiple metrics has provided a ho
listic view of the model’s capabilities, including an in-depth analysis 
of the misclassification results from the proposed model DRNet13.  

6. Feature maps have been used to examine the model’s decision- 
making processes, identifying the ROI and features within the 
fundus images that the models focused on during the classification 
task. 

7. Among all the models tested, DRNet13 ranked lowest in computa
tional time that proving its efficiency. 

2. Literature review 

In recent years, the potential deep learning algorithms for detecting 
and classifying DR have been investigated extensively. Various re
searchers have made significant strides in automating DR detection 
process, improving accuracy, and reducing computation time [19–21]. 
Lin et al. [56] introduce advanced methods for analyzing 3D point 
clouds, underscoring the wide range of applications and the dynamic 
development of neural network structures in various fields of image 
analysis. T. Li and his colleagues [22] used GoogleNet, ResNet, DensNet, 
and VGG-16 and then compared them to find the best model. Transfer 
learning networks are pre-trained; therefore, implementation requires a 
considerably smaller dataset. Before being sent to the transfer learning 
variant layers, all fundus images were pre-processed and scaled to 224 
× 224 pixels. The Inception model performed best with 82 % accuracy. 
Aujih et al. [23] proposed EDR-Net, a novel deep neural network ar
chitecture featuring depth-wise separable convolution to optimize 
computational efficiency. The EDR-NET was trained using the 
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DRKaggle-train dataset, encompassing 35,126 images, and tested 
against the DRKaggle-test and Messidor-2 datasets. This approach 
reduced computational demands and achieved predictive performance 
comparable to existing methods. 

Furthermore, Minarno et al. [24] evaluate the EfficientNet-B7 model 
for classifying diabetic retinopathy using the APTOS 2019 dataset. 
Through hyperparameter tuning and preprocessing techniques, the 
study enhances the model performance. It attains 89.1 % training ac
curacy and 84.36 % test accuracy, showing a comprehensive study with 
existing methods. This research suggests further exploration of image 
enhancement techniques to advance diabetic retinopathy detection. 
Dayana et al. [25] proposed an optimized deep neural network with a 
Chronological Tunicate Swarm Algorithm for Diabetic retinopathy 
classification. Utilizing U-Net and sparse Fuzzy C-means-based hybrid 
entropy model, they effectively segmented the optic blood vessels from 
low-quality fundus images. The model trained on the DIARETDB0 and 
DIARETB1 datasets achieved high accuracy with 95.9 % and 95.48 %, 
respectively, demonstrating its robustness and effectively classifying DR 
severity. However, the study’s limitation lies in its reliance on specific 
datasets, which may affect its generalizability to other datasets or the 
real world. 

Similarly, Alghamdi et al. [26] evaluated three deep-learning models 
for automatic Diabetic Retinopathy detection using color fundus images. 
They optimized these models using early stopping and dropout tech
niques to mitigate overfitting. The study used a publicly available 
Kaggle dataset, presenting challenges due to its variability and imbal
ances. Among the models, VGG-16 showed the highest binary and 
multistage DR classification accuracy. However, despite high accuracy, 
the study highlighted a need for improved explainability in these models 
for medical diagnosis, indicating limitations in their current ability to 
detect DR-related lesions reliably. Five different classes of diabetic 

retinopathy are introduced by B. Tymchenko et al. [27]. This study used 
the APTOS 2019 Blindness Detection Dataset, which included 13000 
images. A screening approach for early diagnosis of diabetic retinopathy 
was presented, with a sensitivity and specificity of 0.99, placing it at 
position 54 out of 2943 methods. 

Additionally, Nasir et al. [28] developed a Convolutional Neural 
Network model to classify Diabetic Retinopathy stages using the Indian 
Retinopathy Image Dataset (IDRID). The CNN model, designed with 
layers including convolutional, subsampling, flattened, dense, and 
dropout layers, achieved a testing accuracy of 96 % and sensitivity of 
82.9 %. While the model showed high efficacy in detecting DR from 
high-quality retinal images, its performance may not generalize well to 
real-world conditions due to the dataset’s specificities and the varying 
quality of images in practical settings. Serrano et al. [29] utilized a 
MTLAB retained AlexNet Convolutional Neural Network to detect 
glaucoma and diabetic retinopathy using retinal fundus images. 
Employing transfer learning, they trained the network on diverse data
sets like APTOS, HRF, sjchoi86-HRF, LAG, and ODIR. The NetTransfer 
I–V models demonstrated high validation accuracies ranging from 89.7 
% to 94.3 %. These results showcase the effectiveness of retrained CNNs 
in eye disease detection. The study’s dependence on diverse datasets, 
each with its own unique features, raises concerns about the models’ 
stability and adaptability in various clinical contexts. Moreover, M. Tian 
et al. [30] and others have developed a fine-grained attention network 
(FA + KC-Net) for evaluating the severity of diabetic retinopathy. 
Fine-detailed fundus images and their medical interpretation were 
extracted using FA-Net and KC-net, respectively; a refining block was 
built with two decision rules to merge FA-Net and KC-net for final 
grading. According to the estimated results, the FA + KC-Net also gives 
superior grading compared to other SOTA deep learning models. 

To enhance the efficacy of their research, Mustafa et al. [31] 

Fig. 1. The overview of the entire system for diabetic retinopathy detection from fundus images, illustrating the steps from image processing to diagnostic output.  
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proposed a multi-stream ensemble deep neural network for the classi
fication of diabetic retinopathy severity. They integrated ResNet-50 and 
DenseNet-121 for effective feature extraction and utilized principal 
component analysis to reduce feature dimensionality. The model was 
further refined with ensemble classifiers like AdaBoost, and the random 
forest was evaluated on EyePACS, Messidor-2, APTOS, and DDR data
sets, achieving up to 95.58 % accuracy on the Messidor-2 dataset. 
Atwany et al. [32] conducted a comprehensive review and analysis of 
state-of-the-art deep learning methods for Diabetic Retinopathy (DR) 
classification. Their paper emphasizes the importance of early detection 
of DR, a progressive disease caused by high blood glucose levels and a 
leading cause of blindness in diabetic patients, particularly in the 
employed communities of developing nations. The study discusses 
various challenges in the manual diagnosis of DR, including the time, 
money and effort involved in the process and how machine learning and 
deep learning algorithms have aided in assessing retinal fundus images 
for early diagnosis. 

M. Nahiduzzaman et al. [33] used a CNN to extract 120 features to 
identify diabetic retinopathy using a parallel convolutional neural 
network based on the ELM classifier. Two datasets, Kaggle DR 2015 
competition (Dataset 1; 34,984 FIs) and APTOS 2019 (3662 FIs), were 
used to evaluate the performance of the demonstrated model. K. Oh 
et al. [34] utilized deep learning and ultra-widefield fundus images to 
detect diabetic retinopathy. The ResNet-34 model employed ETDRS-7SF 
and F1–F2 fundus images to evaluate research outcomes and perfor
mance. Seeking to advance the field of medical imaging analysis, Jaskari 
et al. [35] concentrated on improving the automated classification of DR 
using deep learning networks. Their study highlighted the significance 
of estimating the variance of classifications, a critical aspect often 
neglected in modern neural network models. They employed approxi
mate Bayesian neural networks (BNNs) and introduced a classifier using 
weighted cohen’s kappa. Jian et al. [36] introduced Triple-DRNet, a 
sophisticated triple-cascade convolutional neural network designed to 
improve the classification of diabetic retinopathy in fundus images. This 
network is structured into three subnetworks: DR-Net, PDR-Net, and 
NPDR_Net, each focusing on specific stages of diabetic retinopathy. The 
model tested on the APTOS 2019 dataset and achieved an accuracy of 
92.08 %. 

Deep learning medical image analysis has sparked an advancement 
in the early identification and classification of diseases such as diabetes. 
As the literature reflects a growing number of automated systems 
leveraging various CNN models, we have identified the gap in devel
oping models that maintain high accuracy without extensive computa
tional resources. Our decision to adopt and further develop DRNet13 
was motivated by a thorough study of current approaches. This model 
was designed to address the limitations of manual analysis while ac
commodating the constraints of computational resource availability, an 
aspect often overlooked in the design of deep learning systems of med
ical diagnostics. We have also included a comparison of DRNet13 with 
other pre-trained models to highlight its enhanced performance and 
efficiency. 

3. Methodology 

This section gives an extensive explanation of our study approach, 
which begins with data collection. We gathered high-quality data from 
Kaggle, a trustworthy open-source platform, concentrating on datasets 
relevant to diabetic retinopathy (DR) research. Following data collec
tion, we begin processing the data, which entails refining and trans
forming raw data into a format suitable for our models. This stage 
includes key steps like image noise removal to eliminate irrelevant de
tails, image enhancement to highlight critical features, and image 
augmentation to increase the variability and quantity of our data. This 
intensive pre-processing pipeline ensures that our dataset is primed for 
subsequent analysis. 

Next, we discuss our application of a number of well-known, pre- 

trained models with impressive image classification capabilities. These 
models have been thoughtfully chosen to classify DR stages from our 
pre-processed fundus images, allowing for efficient and precise disease 
stage identification. Lastly, we present DRNet13, our innovative model. 
This proposed model is specifically designed to overcome the limitations 
of existing models. By incorporating cutting-edge methodologies, 
DRNet13 intends to considerably enhance the performance and accu
racy of DR stage classification, making it a promising model in this vital 
area of medical research. 

3.1. Dataset overview 

To conduct this analysis, we used the Diabetic Retinopathy 224 ×
224 Gaussian Filtered dataset [37]. This dataset was created by 
compiling 3662 images of filtered retina scans from the Aravind Eye 
Hospital in India. These images were classified into five groups: No-DR, 
Mild, Moderate, Severe, and Proliferate-DR. Those images are provided 
in PNG format with descriptive information. Table 1 comprises details 
about the data collection sources for each class. The test and validation 
set each have 733 unique images, whereas the training set has 2197 
images and their associated data. The sample of the original dataset is 
depicted in Fig. 2. 

3.2. Data preprocessing 

Data preprocessing ensures that the data is in a structure that the 
deep learning network can understand. The preprocessing of image data 
is a vital step in preparing it for deep learning models. It entails con
verting unprocessed image data towards a format that is useable by the 
model. 

3.2.1. Image noise removal 
Accurate prediction of diabetic retinopathy is highly dependent on 

the removal of image disturbance. Our research addresses this difficulty 
by employing a median filter, an effective noise reduction technique. 
This method of nonlinear digital filtering works by replacing each pixel 
value with the median of neighboring pixel values. Its greatest strength 
is its resistance to extreme outliers, or pixels with atypical intensity 
values caused by noise or artefacts. By reducing the effect of these 
outliers, a noise-free image is produced. This image is then optimally 
positioned for subsequent analysis steps, such as feature extraction or 
the deployment of machine learning models [38]. The result is a highly 
reliable and accurate method for predicting diabetic retinopathy, which 
is facilitated by high-quality, noise reduced images obtained through 
efficient median filtering. 

img[x, y] =median{img1[p, q] |(p, q)ϵZxv} (1)  

where img[x, y] denotes the pixel value at coordinates [x, y] in the pro
cessed image after median filtering has been applied, median{img1[p, q]
refers to the median value calculated from the set of neighboring pixel 
values surrounding the pixel at coordinates [p,q]. Besides, img1[p, q] is a 
pixel value at coordinates [p, q] in the original, unfiltered image. The 
(p, q) are the coordinates of the pixels in the neighborhood of the pixel at 
[x,y], that are considered in calculating the median value. Zxv indicates 
an area of value for a pixel set by the user and is centered around the 
coordinates [x, y] in the images of diabatic retinopathy. Fig. 3 illustrating 

Table 1 
The raw dataset’s description.  

No. Classes Images 

1 No DR 1805 
2 Mild 370 
3 Moderate 999 
4 Severe 193 
5 Proliferate DR 295  
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the outcome of the median filter strategies for noise reduction from 
diabetic retinopathy images. 

3.3. Image enhancement 

Gamma correction is a non-linear adjustment that is applied to each 
pixel’s value. Typically, linear operations such as addition, subtraction, 
and multiplication are performed on every pixel [39]. Gamma correc
tion is accountable for applying nonlinear methods to the pixels of the 
image’s input, thereby transforming the image’s saturation. Gamma 
correction has emerged as a technique for adjusting an image’s light 
intensity. Fig. 4 depicted the outcome and improvement of images by 
applied gamma correction strategy through histogram. Below is the 
method utilized to obtain a gamma-corrected image: 

O=

(
I

255

)1
γ

.255 (2)  

where I indicate input pixel value [0,255], O denoted for output pixel 
value [0,255], γ denoted for gamma that determines image light in
tensity. If gamma is below 1, the image will be darker; if it is above 1, the 
imagery will be considered brighter. A value of 1 has no impact at all. 

3.4. Image augmentation 

A large quantity of input data is required for a deep learning model to 
perform optimally. In this work, we used a variety of data augmentation 
procedures to increase the breadth and quality of our dataset. We can 
improve our proposed algorithms’ performance and prediction ability 
by introducing a varied selection of different sampling into the training 
datasets. The training dataset’s variety and breadth significantly impact 
the model’s accuracy and precision. In this instance, using image 
enhancing methods leads to an increase in result accuracy. Furthermore, 

data augmentation techniques are an effective tool for increasing the 
diversity of datasets. Data augmentation methods are often used to in
crease the quantity of training sets, providing high-capacity learners 
with an even more diversified, relevant training environment [40,41]. 
Mirroring, rotating, zooming, flipping, and cropping are some of the 
most frequent augmentation methods. In this study, the dataset changes 
employing the two oversampling and undersampling strategies. Firstly, 
a random undersampling strategy is used for the excessively prevalent 
class ‘No DR’ in the data. This approach randomly removes data from the 
majority class, reducing the total data per class to 1500 instances. 
Oversampling (data augmentation) approaches are then used to enhance 
classes with inadequate data representation (‘Mild,’ ‘Moderate,’ ‘Severe, 
’ ‘Proliferate’). This research involves a variety of augmentation 
methods. Table 2 provides a complete review of all augmentation stra
tegies used. 

Following the implementation of the data augmentation procedures, 
the dataset volume increased to include a sum of 7500 images. This was 
divided equally across all classes, with ‘No DR,’ ‘Mild,’ ‘Moderate,’ 
‘Severe,’ and ‘Proliferate DR,’ each including 1500 images. Fig. 5 depicts 
the observable outcomes of this data augmentation approach. 

3.5. Data Management structure 

Before starting the training procedure, the dataset must be correctly 
partitioned. In our research, we separated the fundus imagine data into 
three unique subsets using a 60:20:20 ratio, which was then assigned to 
the training, validation, and test sets. The original dataset, which 
included 7500 images illustrating different phases of diabetic retinop
athy, was methodically divided into these three categories. The training 
set received the most interest, accounting for 60 % of the total data or 
4500 images. This large collection of photos is used to teach the model 
about the various features and characteristics of the condition. The 
remaining 40 % of the data, or 3000 images, was divided evenly 

Fig. 2. The dataset under consideration contains five distinct classifications. These categories include the five stages of Diabetic Retinopathy, namely No Diabetic 
Retinopathy (No DR), Mild, Moderate, and Severe stages, and Proliferative Diabetic Retinopathy (Proliferative DR). 
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between the validation and testing sets, with each getting 1500 images. 
The validation set is essential throughout the training phase because it 
allows us to fine-tune the parameters of our model and optimize its 
performance while minimizing the danger of overfitting. The testing set 
contains 1500 images and is kept aside and used only once the training is 
completed. This collection is used to assess our model’s final perfor
mance, offering a credible approximation of how it would perform when 
provided with fresh, previously unknown data. 

Table 3 presents a detailed description of the dataset after the pre- 
processing processes. It represents the final distribution of the data 
over the three subsets, training, validation, testing, and the outcomes of 
all pre-processing and data augmentation activities done on the dataset. 

3.6. Applied models selection 

This study used fifteen different pre-trained models to simplify 
comparison with our proposed DRNet13 model. ZFNet, GoogLeNet, 
AlexNet, InceptionV3, InceptionResV2, SqueezeNet, ResNet50, 
ResNet101, VGG16, VGG19, ShuffleNet, Xception, DenseNet201, Dar
kNet19, and DarkNet53 are among the networks that were used in our 
study. This variety provides a thorough study of performance, accuracy, 
and efficiency, giving a strong foundation for comparison with our 
proposed model. 

3.6.1. ZFNet network 
Deconvolution layers are used in ZFNet to visualize feature maps 

within the network. It sheds light on the network’s image processing and 
feature learning processes. Also, ZFNet was the first to use “local 

response normalization” layers. These layers make each neuron’s output 
the same, reducing the effect of internal covariate shift and speeding up 
the network’s learning. It had three fully connected layers, one dropout 
layer, and three max-pooling layers for five convolutional layers. A 7 × 7 
filter was utilized in the first layer with a lower stride value [42]. The 
first three convolutional layers are followed by pooling layers during 
down-sampling, whereas deconvolution layers follow the final two 
convolutional layers during up-sampling. The normalization layers are 
positioned between the first and second convolutional layers. 

3.6.2. GoogleNet network 
The GoogLeNet architecture is a convolutional neural network that 

takes cues from the popular Inception design. GoogLeNet uses an iter
ative algorithm as its foundation in an effort to improve computational 
efficiency [43]. As more layers are added on top of each other, the input 
from the layers below is filtered in parallel. It uses inception modules, 
which provide the network with a selection of convolutional filter sizes 
within each block. These modules can be stacked in two steps to make an 
inception network that lowers the grid’s resolution. GoogLeNet is a deep 
neural model that only has 22 layers and a smaller number of parameters 
than the inception architecture. Images of 224 × 224 pixels or higher 
quality have been tested and accepted by the pre-trained network. 
Layers of activation, average pooling, and density make up the archi
tecture. In place of a fully connected layer, GoogLeNet utilized global 
average pooling. 

3.6.3. AlexNet network 
The AlexNet model of convolutional neural network is immensely 

popular. Max pooling, convolutions, and dense layers are all funda
mental components of AlexNet. Model fitting occurs over two GPUs with 
the help of group convolutions. Within every possible combination of 
rewards, AlexNet has eight layers [44]. The model is made up of five 
convolutional layers, two normalizing layers, and a softmax layer. The 
fully connected and max pooling layers are the backbone of the model. 
Each “layer” is made up of a convolutional layer and a ReLU-based 
nonlinear activation function. Maximum pooling is achieved by 
employing pooling layers. As a result of how layers are seen, the input 
size is capped at 224 × 224 × 3 pixels. When a grayscale image is used as 
a source, an RGB image is generated by multiplying the individual color 
channels. The model has 60 million parameters, and the batch size is 
128. 

3.6.4. InceptionV3 network 
InceptionV3 is a conInceptionV3 is a convolutional neural network 

created for image recognition and classification. It emphasizes 1 × 1 
convolutions and consists of convolutional and pooling layers. During 
training, the network utilizes inception modules with reduced dimen
sionality and additional classifiers. The final layers include global 
average pooling, dropout for regularization, and a softmax layer for 
classification [45]. For dimensionality reduction, 1 × 1 convolutions are 
used, and batch normalization is applied to each convolutional layer. 
Model weights can be trained from inception or used as pre-trained 
weights for transferable learning with InceptionV3. Due to its efficient 
performance, InceptionV3 is frequently used for various image-related 
duties. 

3.6.5. InceptionResV2 network 
The InceptionResNetV2 network architecture integrates the Incep

tion module with residual connections. It is composed of multiple 
inception blocks, each of which contains a unique convolutional layer. 
The network begins with a root block, followed by multiple inception 
blocks piled on top of one another. Each inception block contains 1 × 1 
convolutions, 3 × 3 convolutions, 5 × 5 convolutions, and pooling layers 
as its detailed layers [46]. InceptionResNetV2 also consists of skip 
connections and residual units, which facilitate data transfer between 
layers. Additional layers, including batch normalization, global average 

Fig. 3. The figure depicts the improved image quality obtained by using a 
median filter to reduce noise. The histograms of the original and denoised 
images are also shown for comparison, demonstrating the significant increase in 
image clarity and overall quality after filter application. 
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pooling, and a softmax layer, are employed for classification. Incep
tionResNetV2 excels at tasks such as image recognition and feature 
extraction due to its robust architecture and advanced layers. 

3.6.6. SqueezeNet network 
SqueezeNet is a convolutional neural network architecture intended 

for efficient deep learning on resource-limited devices. It accomplishes 
high precision while reducing model dimensions by a significant 
amount. SqueezeNet employs fire modules comprising squeeze layers (1 
× 1 convolutions) to reduce dimensions and expand layers (1 × 1 and 3 
× 3 convolutions) for collecting additional features. In addition, skip 
connections are utilized to keep the gradient flow and facilitate infor
mation propagation [47]. SqueezeNet’s compact model allows quicker 
inference and deployment on devices with limited memory and 
computational resources. It is commonly used for real-time applications 

such as object detection and classification on mobile devices and 
embedded systems. 

3.6.7. ResNet50 network 
ResNet50 is a well-known convolutional neural network architecture 

characterized by its deep structure and residual learning. It revolution
ized the classification of images along with other computer vision op
erations with its 50 layers. ResNet50’s main characteristics include skip 
connections, batch normalization, and residual blocks. Skipping con
nections permits gradients to travel directly across layers, resolving the 
problem of gradients vanishing. Layer inputs are normalized via batch 
normalization, which improves training stability and accelerates 
convergence [48]. Residual blocks enable the successful training of 
exceedingly deep neural networks by facilitating learning residual 
functions. In the field of deep learning, ResNet50 is frequently used as a 
standard for evaluating new models and techniques. 

3.6.8. ResNet101 network 
ResNet101 is an enhanced convolutional neural network design that 

expands on ResNet50’s success. It has 101 layers, which makes it deeper 
and more effective for complex image recognition tasks [48]. 
ResNet101, similarly to ResNet50, has skip connections, batch normal
ization, and residual blocks. The use of skip connections allows for the 
efficient transfer of gradients between layers, hence overcoming the 
problem of gradients disappearing. By normalizing layer inputs, batch 
normalization helps to stabilize training. Residual blocks enable the 
learning of residual functions, making deep network training easier. 

Fig. 4. This demonstrates the substantial improvement in image quality gained by using the gamma correction approach.  

Table 2 
All parameters for augmented data.  

Augmentation Parameters Applied Values 

Rotate 45 
Rotate Right 90 
Rotate Left 90 
Rotate Horizontal 45 
Rotate Vertical 45 
Horizontal Flip True 
Vertical Flip True 
Translate x,y (30.0, 15.2)  
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ResNet101’s improved depth provides better representational capacity 
and has exhibited good performance on various hard computer vision 
applications, cementing its place as cutting-edge architecture. 

3.6.9. VGG16 network 
VGG16 is a well-known convolutional neural network architecture 

that is well-known for its ease of use and performance in image cate
gorization applications. It has 16 layers, which include convolutional 
and fully connected layers. VGG16 has a sequential structure consisting 
of successive sets of 3 × 3 convolutional layers, followed by a 2 × 2 max- 
pooling layer [49]. Through these layers, the network gradually learns 
increasingly complicated traits. It also includes batch normalization for 
regularization and extensively uses the ReLU activation function. The 
fully connected layers of VGG16 at the network’s conclusion execute 
categorization. While VGG16 has more parameters than other designs, it 
has exhibited good performance on numerous image recognition prob
lems and serves as a field benchmark. 

3.6.10. VGG19 network 
VGG19 is a modified version of the VGG16 network, notable for its 

deeper structure and enhanced performance. It has 19 layers, including 
convolutional and fully connected layers. VGG19, like VGG16, has a 
sequential structure comprising sets of 3 × 3 convolutional layers and 2 
× 2 max-pooling layers. The new layers in VGG19 boost representational 
capacity and allow the network to learn more complicated characteris
tics [49]. It also employs batch normalization for regularization and the 
ReLU activation function. In the end, VGG19’s fully connected layers 
execute categorization. VGG19’s deeper design provides better capa
bilities for image identification tasks and has been extensively utilized 
for various computer vision applications. 

3.6.11. ShuffleNet network 
ShuffleNet is a convolutional neural network design that optimizes 

computing efficiency while maintaining accuracy. It employs group 
convolutions and channel shuffling to decrease calculations while 
retaining performance [50]. ShuffleNet comprises pointwise group 
convolutions for spatial information, depthwise convolutions for spatial 
information, and channel shuffling for information flow across channels. 
It makes use of bottleneck units, which combine 1 × 1 and 3 × 3 con
volutions. Pointwise convolutions that are grouped facilitate efficient 
channel interaction. The network comes to a close with global average 
pooling, which reduces feature mappings to a single vector. The archi
tecture of ShuffleNet allows it to attain high accuracy with fewer pa
rameters, making it suited for resource-constrained applications where 
computational simplicity is critical. 

3.6.12. Xception network 
Xception is a convolutional neural network architecture modeled 

after the Inception network, which is renowned for its superior perfor
mance in image classification tasks. It introduces an advanced version of 
depthwise separable convolutions to improve learning of features and 
reduce computational complexity. Xception replaces typical convolu
tional layers with depthwise separable convolutions consisting of 

Fig. 5. Various data augmentation techniques, such as 45rotation, 90right rotation, 90left rotation, 45horizontal rotation, 45vertical rotation, horizontal flipping, 
vertical flipping, and translation in the x and y dimensions by (30.0, 15.2), were used to balance all classes. These approaches are intended to improve the training 
examples by enhancing the dataset’s variety and balance. 

Table 3 
The final dataset with applied techniques on the raw images of diabetic 
retinopathy.  

Final Features Values 

Total Number of Images 7500 
Total Number of Classes 5 
Image Noise Removal Median Filter 
Image Enhancement Gamma Correction 
Number of Augmentation Technique 8 
No DR 1500 
Mild 1500 
Moderate 1500 
Severe 1500 
Proliferate DR 1500 
Train Set 4500 (60 %) 
Validation Set 1500 (20 %) 
Test Set 1500 (20 %)  
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depthwise and pointwise convolutions. These depth-separable convo
lution layers are interspersed with skip connections [51]. In addition to 
batch normalization for regularization, the network employs the ReLU 
activation function. The architecture of Xception enables efficient 
feature extraction and has demonstrated outstanding performance on 
various computer vision problems. 

3.6.13. DenseNet201 network 
DenseNet201 is a convolutional neural network architecture 

renowned for its exceptional performance in image classification tasks 
and dense connectivity. It has 201 layers, making it more profound and 
potent than earlier versions. DenseNet201 consists of dense blocks in 
which each layer is connected to every other layer. This dense connec
tivity improves feature reuse and gradient flow, thereby enhancing 
precision. Transition layers consisting of 1 × 1 convolutions and pooling 
are used to control the number of parameters and reduce dimensionality 
[52]. DenseNet201 also implements batch normalization and the ReLU 
activation function for regularization. With its dense connectivity and 
significant structure, DenseNet201 accomplishes cutting-edge perfor
mance on various computer vision problems. 

3.6.14. DarkNet19 network 
DarkNet19 is a convolutional neural network architecture well- 

known for its ease of use, efficiency, and great performance in various 
computer vision applications. It has 19 convolutional layers and is 
equipped with a YOLO object recognition system [53]. DarkNet19 has a 
simple topology, including 3 × 3 and 1 × 1 convolutional layers and 
max-pooling layers. There are no residual connects or complicated skip 
connections in the network. It relies on powerful feature extraction skills 
to recognize objects accurately. DarkNet19 is designed to be small, 
needing fewer processing resources than more complicated networks. 
This makes it appropriate for applications that operate in real-time 
where efficiency is critical while retaining competitive performance. 

3.6.15. DarkNet53 network 
DarkNet53 is an architecture of convolutional neural networks that 

functions as the basis of the YOLOv3 object recognition system. It 
comprises 53 convolutional layers and is known for its intricate struc
ture and high accuracy. DarkNet53 employs primarily 3 × 3 and 1 × 1 
convolutional layers to achieve a straightforward and efficient archi
tecture. The network contains neither residual nor intricate skip con
nections [54]. Instead, it concentrates on extensive feature extraction to 
enable robust object detection. DarkNet53 provides superior detection 
capabilities and enhanced precision in comparison to its predecessors. 
Widely utilized for real-time object detection tasks, it offers a decent 
compromise between computational efficiency and precision. 

3.6.16. Proposed DRNet13 network 
Diabetic retinopathy is a condition characterized by harm to the 

retina caused by diabetes, often resulting in vision loss. Early identifi
cation of this disease is crucial, as timely, appropriate treatment may 
stop or delay vision loss. Our proposed DRNet13 model demonstrated 
outstanding results in the recognition of retinopathy images tasks. The 
proposed DRNet13 model comprises various components, including the 
input layer, three sets of convolutional layers and pooling layers, a 
normalization layer, two fully connected layers (dense layers), a dropout 
layer, and the output layer. The architecture of the proposed model is 
given below:  

• Input Layer: The DRNet13 model takes in retinal images Iin with 
dimension 224 × 224 and three-color channels (RGB). 

Iin =R224×224×3 (3)    

• Convolutional Layer 1 & Pooling Layer 1: Initiates feature 
extraction with 64 filters f64, applying a ReLU activation ∅, followed 
by a pooling operation PL1 having the dimensionally. Here, ConvL 
indicates convolutional layer. 

ConvL1 =∅(f64 ∗ Iin) (4)  

PL1 = pool(ConvL1) (5)    

• Convolutional Layer 2 & Pooling Layer 2: Enhance feature 
detection with 128 filters f128, followed by pooling PL2 to reduce 
dimensions while preserving essential features. 

ConvL2 =∅(f128 ∗ PL1) (6)  

PL2 = pool(ConvL2) (7)    

• Convolutional Layer 3 & Pooling Layer 3: Extracts higher-level 
features with 256 filters f256, then a pooling layer PL3 further re
duces dimensionality. 

ConvL3 =∅(f256 ∗ PL2) (8)  

PL3 = pool(ConvL3) (9)    

• Normalization Layer: Normalizes the outputs from PL3 to aid model 
training and robustness. Here, NL indicates normalization layer. 

NL = norm(PL3) (10)    

• Flattening Layer: Transforms the 3D tensor from the normalization 
layer into 1D vector FLL. Here, FLL indicates the flattened layer. 

FLL = flatten (NL) (11)    

• Fully Connected Layer 1: Utilizes the flattened vector for initial 
classification, reducing dimensions to 1024 nodes. Here, FCL denoted 
as fully connected layer, W1 are the learned weights, FLL is the input 
vector from the flattened layer, b1 is the bias term and ∅ is the 
activation function. 

FCL1 =∅(W1.FLL + b1) (12)    

• Dropout Layer: Randomly drops out neurons to prevent overfitting 
while maintaining the dimensionally. Here, DOL represent dropout 
layer. 

DOL = dropout (FCL1) (13)    

• Fully Connected Layer 2: Continues the classification process, 
decreasing nodes from 1024 to 512. 

FCL2 =∅(W2.DOL + b2) (14)    

• Output Layer: Determines the class probabilities using a softmax 
function. Here, σ indicates the softmax activation function. 

OL = σ (W3.FCL2 + b3) (15) 

The DRNet13 network is a robust convolutional neural network 
specifically created for the purpose of diabatic retinopathy (DR). It 
contains a variety of features that collectively improve its effectiveness 
in diagnosing the disease. The fundamental component of DFNet13’s 
architecture is a specialized input layer designed for analyzing retinal 
images. The images labelled as Iin, have dimensions of 224 × 224 pixels 
and include color channels (RGB), allowing for a detailed capture of 
retinal features essential for DR identification. The network’s power is 
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enhanced by its convolutional and pooling layers. DRNet13 utilizes 
three sets of these layers, whereas the convolutional layers progressively 
escalate in intricacy, commencing with 64 filters in the initial layer and 
expanding to 256 in the third layer. This design allows the network to 
extract a diverse range of features, ranging from basic to more complex 
ones, that are necessary for identifying different signs of DR. The pooling 
layers (PL1, PL2, PL3) are applied after each convolutional layer to 
decrease the feature maps’ spatial dimensions progressively. This helps 
to reduce the computational burden and the model’s vulnerability to 
overfitting. A normalization layer (NL) has been included to normalize 
the outputs of the third pooling layer (PL3). Normalization is essential as 
it stabilizes the learning process and improves the model’s overall 
resilience, a critical aspect in accurately detecting DR. 

The flattening layer (FLL) is responsible for transforming the multi- 
dimensional feature maps into a format that is appropriate for classifi
cation. It achieves this by reshaping the 3D tensor from the normaliza
tion layer into a 1D vector. This transformation has significance for 
combining the spatial information that has been extracted in the con
volutional stages. Furthermore, the network consists of two fully con
nected layers (FCL1, FCL2) that utilize the flattened vector for 
classification. The initial layer decreases the dimensionality to 1024 
nodes, while the subsequent layer further decreases it to 512 nodes. 
Each layer in the model incorporates a Rectified Linear Unit (ReLU) 
activation function to introduce non-linearity. In addition, a dropout 
layer (DOL) is strategically included to mitigate overfitting, ensuring the 
model’s efficacy and generalizability to new data. The final stage of this 
sequential architecture is the output layer, which employs a softmax 
function to produce the probabilities associated with each class. This is 
especially appropriate for problems involving several classes, such as the 
identification of diabetic retinopathy, where the model must accurately 
categorize whether the condition is present or absent. 

The algorithm is significant for the DRNet13 model in particular 
since it describes a cutting-edge method for detecting diabetic retinop
athy. In the discipline of ophthalmology, this may result in better 
diagnostic equipment and patient outcomes. Fig. 6 visualizing the 
overall architecture of DRNet13. Where the different layers are indi
cated as follows: ’ConvL’ means for ’Convolutional Layer,’ ’PL’ stands 
for ’Pooling Layer,’ ’N L′ stands for ’Normalization Layer,’ ’FL L′ stands 
for ’Flatten Layer,’ ’FC L′ stands for ’Fully Connected Layer,’ and ’DO L′ 
is for ’Dropout Layer. Each layer serves a distinct and critical role in the 
operation and performance of the DRNet13 model, adding to its superior 
capabilities in Diabetic Retinopathy diagnosis. Table 6 described each 
layer properties with functionalities and the associations throughout the 
layer and the novel features of the DRNet13 model are described 
sequentially below:  

Algorithm 1 DRNet13 A Deep Neural Model for DR Detection. 

Input: Preprocessed retinal images. 
Output: Probability of Diabetic Retinopathy Existence. 

(continued on next column)  

(continued ) 

Algorithm 1 DRNet13 A Deep Neural Model for DR Detection. 

Conv L1: 64 filters, followed by activation function (ReLU) 
Pooling L1: Reduce size to 112 × 112 × 64 
Conv L2: 128 filters, followed by activation function (ReLU) 
Pooling L2: Reduce size to 56 × 56 × 128 
Conv L3: 256 filters, followed by activation function (ReLU) 
Pooling L3: Reduce size to 28 × 28 × 256 
N L: Normalize the output 
FL L: Flatten the output one dimension 200704 
FC L1: Reduce dimension to 1024 nodes, apply activation function (ReLU). 
DO L: Apply for prevent overfitting 

FC L2: Reduce dimension to 512 nodes, apply activation function (ReLU) 
Output: Apply softmax function.  

Here, Conv L denoted by “Convolutional layer”, N L denoted by 
“Normalization Layer”, FL L denoted by “Flatten Layer”, FC L denoted by 
“Fully Connected Layer”, DO L denoted by “Dropout Layer”. 

Table 4 describes the construction of the DRNet13 model. Each row 
corresponds to a layer. "Stride & Padding" are convolution and pooling 
layer parameters that regulate the movement and adjustment of the 
kernels. "Output Shape" specifies the dimensions of the output from each 
layer. The "Kernel" size denotes the size of the filter utilized. The 
"Activation Function" describes the function used to create non-linearity, 
with ReLU employed in intermediate layers and SoftMax in the output 
layer. "Dropout" is a regularization method used to avoid overfitting. 
"Parameters" refer to the weights and biases learnt by the model during 
training. The design begins with input layer and proceeds through 
convolution, pooling, normalization, and flattening before ending with 
fully connected and output layers. 

3.6.17. Comparative analysis of model architectures 
Table 5 summarizes the parameters of different deep learning models 

employed in this study, including ZFNet, GoogLeNet, AlexNet, Incep
tionV3, InceptionResV2, SqueezeNet, ResNet50, ResNet101, VGG16, 
VGG19, ShuffleNet, Xception, DenseNet201, DarkNet19, DarkNet53, 
and the proposed DRNet13. Details such as the number of total layers, 
the number of learnable layers, the network size in megabytes (MB), the 
input image size, and the number of parameters is provided for each 
model. For example, ZFNet is an 8-layer model with all levels learnable. 
The network is 240 MB in size and needs a 224x224 pixel input image. 
The model has approximately 60,000,000 parameters. However, the 
proposed framework, DRNet13, contains 13 layers, 6 of which can be 
learned. The network is only 35 MB in size, which is far smaller than 
ZFNet. The required input image size is 224x224 pixels, which is similar 
to ZFNet. In contrast, DRNet13 has 206,417,249 parameters, which is a 
substantially bigger quantity. In general, the table enables a comparison 
of various models based on their complexity and organizational 
structure. 

Fig. 6. This diagram depicts the structure of our novel DRNet13 model.  

F.M.J. Mehedi Shamrat et al.                                                                                                                                                                                                                



Healthcare Analytics 5 (2024) 100303

11

4. Experimental result 

4.1. Environment installation 

The studies were conducted on a computer system powered by an 
AMD Ryzen 7 3800 processor with a base clock speed of 3.90 GHz and 8 
cores with a 32 MB L3 cache. The CPU also has 16 threads, which allows 
for effective multitasking. The machine was also upgraded with 64 GB of 
RAM to guarantee enough capacity for data processing. Google Collab 
was utilized as the software environment. The machine was outfitted 
with an MD Radeon RX 580 series GPU to maximize graphics processing 
capabilities. This GPU, which is well-known for its performance and 

efficiency, helped to speed up the calculations necessary for the tests. 
Using a strong CPU in conjunction with a dedicated GPU enabled effi
cient and rapid execution of the experimental activities. Among the 
fifteen pre-trained various models assessed, the unique technique known 
as DRNet13 displayed the greatest accuracy and was chosen as the best 
model. Python, a popular programming language for data analysis and 
machine learning, was used to conduct the study. To handle image 
processing tasks, the OpenCV package, which has a wide variety of 
computer vision methods, was used. 

Table 4 
Detailed construction of the DRNet13 model.  

Layer (Type) Stride & Padding Output Shape Karnel Activation Function Dropout Parameters 

Input Layer – 224 × 224 × 3 – – – 0 
Conv 1 Stride: 1, Padding: Same 224 × 224 × 64 3 × 3 ReLU 0.5 1792 
Pool 1 Stride: 2, Padding: None 112 × 112 × 64 2 × 2 – – 0 
Conv 2 Stride: 1, Padding: Same 112 × 112 × 128 3 × 3 ReLU 0.5 73,856 
Pool 2 Stride: 2, Padding: None 56 × 56 × 128 2 × 2 – – 0 
Conv 3 Stride: 1, Padding: Same 56 × 56 × 256 3 × 3 ReLU 0.5 295,168 
Pool 3 Stride: 2, Padding: None 28 × 28 × 256 2 × 2 – – 0 
Normalization Layer – 28 × 28 × 256 – – 0.5 0 
Flatten Layer – 200704 – – 0.5 0 
FC Layer 1 – 1024 – ReLU 0.5 205,521,92 
Dropout Layer – 1024 – – 0.5 0 
FC Layer 2 – 512 – ReLU 0.5 524,800 
Output Layer – 5 – softmax – 513  

Table 5 
Comparing the efficiency of the deployed transfer learning models.  

Network No. of Layers Learnable Layers Network Size (MB) Input Image Size Parameters 

ZFNet 8 8 240 224 × 224 60,000,000 
GoogLeNet 144 22 27 224 × 224 7,000,000 
AlexNet 25 8 227 227 × 227 61,000,000 
InceptionV3 315 48 89 299 × 299 23,900,000 
InceptionResV2 824 164 209 299 × 299 55,900,000 
SqueezeNet 68 18 5.2 227 × 227 1,240,000 
ResNet50 177 50 96 224 × 224 1,240,000 
ResNet101 347 101 167 224 × 224 1,240,000 
VGG16 41 16 515 224 × 224 20,000,000 
VGG19 47 19 535 224 × 224 144,000,000 
ShuffleNet 172 50 5.4 224 × 224 1,400,000 
Xception 170 71 85 299 × 299 22,900,000 
DenseNet201 708 201 77 224 × 224 20,000,000 
DarkNet19 64 19 78 256 × 256 20,800,000 
DarkNet53 184 53 155 256 × 256 41,600,000 
Proposed Model (DRNet13) 13 6 35 224£224 206,417,249  

Table 6 
Comparing the efficiency of the deployed transfer learning models.  

Network T_Acc V_Acc Ts_Acc T_Loss V_Loss Ts_Loss Precision F1–S SEN SPE AUC MSE FPR FNR 

ZFNet 89 87 86 0.20 0.22 0.24 0.86 0.87 0.88 0.86 0.92 0.13 0.14 0.12 
GoogLeNet 94 92 91 0.92 0.12 0.14 0.16 0.92 0.93 0.91 0.96 0.08 0.09 0.07 
AlexNet 92 90 89 0.16 0.18 0.20 0.89 0.90 0.91 0.89 0.94 0.10 0.11 0.09 
InceptionV3 96 94 93 0.10 0.12 0.14 0.94 0.94 0.95 0.93 0.97 0.06 0.07 0.05 
InceptionResV2 93 91 90 0.15 0.17 0.19 0.90 0.91 0.92 0.90 0.95 0.09 0.10 0.08 
SqueezeNet 83 81 80 0.27 0.29 0.31 0.80 0.80 0.81 0.82 0.80 0.85 0.19 0.18 
ResNet50 87 85 84 0.23 0.25 0.27 0.85 0.85 0.86 0.84 0.89 0.15 0.16 0.14 
ResNet101 91 89 88 0.17 0.19 0.21 0.89 0.89 0.90 0.88 0.93 0.11 0.12 0.10 
VGG16 92 90 89 0.16 0.18 0.20 0.89 0.90 0.91 0.89 0.94 0.10 0.11 0.09 
VGG19 94 92 91 0.12 0.14 0.16 0.92 0.92 0.93 0.91 0.96 0.08 0.09 0.07 
ShuffleNet 88 86 85 0.22 0.24 0.26 0.86 0.86 0.87 0.85 0.90 0.14 0.15 0.13 
Xception 93 91 90 0.15 0.17 0.19 0.91 0.91 0.92 0.90 0.95 0.09 0.10 0.08 
DenseNet201 95 93 92 0.11 0.13 0.15 0.93 0.93 0.94 0.92 0.97 0.07 0.08 0.06 
DarkNet19 94 92 91 0.12 0.14 0.16 0.92 0.92 0.93 0.91 0.96 0.08 0.09 0.07 
DarkNet53 96 94 93 0.10 0.12 0.14 0.94 0.94 0.95 0.93 0.97 0.06 0.07 0.05 
DRNet13 99 97 96 0.07 0.10 0.12 0.97 0.97 0.98 0.96 0.99 0.03 0.04 0.02  
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4.2. Performance analysis 

In this section, extensive experiments are performed to evaluate the 
putative therapeutic. Within the context of this investigation, the dataset 
identified as fundus [37]. A total of 7500 fundus eye images of Diabetic 
retinopathy (DR) data were divided into 5 classes. These are gradually 
No DR, mild DR, moderate DR, proliferative DR and severe DR. Each 
class contains 1500 images. Each DR image was first put into one of five 
groups: healthy DR (DR1), mild DR (DR2, gentle DR with proliferative 
characteristics), moderate DR (RDR), or severe DR (SDR). The presence 
of diabetic macular edema and a severity level of mild, non-proliferative 
DR or above established a diagnosis of referable diabetic retinopathy 
(DME). After distinguishing it from RDR, the subtype of gentle DR 
without proliferative characteristics is called DR2. 

In this dataset, some image data shapes were different. For this 
reason, all images are resized to ensure the same scale as required for 
different models (e.g., for InceptionV3 (299 × 299), DarkNet53 (256 ×
256), and Proposed model (224 × 224)). After ensuring the same scale, 
we separated our dataset into three parts: training, validation, and 
testing. The ratios among training, validation, and testing are 60:20:20, 
respectively. At first, fifteen individual pre-train models were devel
oped, verified, and put to the test. ZFNet, GoogLeNet, AlexNet, Incep
tionV3, InceptionResV2, SqueezeNet, ResNet50, ResNet101, VGG16, 
VGG19, ShuffleNet, Xception, DenseNet201, DarkNet19, and DarkNet53 
are some of the pre-trained models available here. After assessing the 
effectiveness of existing models, we developed a CNN model named 
DarkNet13 that outperformed all other pre-trained models. 

4.2.1. Evaluation metrics 
Several metrics, such as accuracy, precision, F1 Score, recall, Spec

ificity, MSE, FPR, and FNR, are used to assess the efficacy of the pro
posed approach. This research employs several performance evaluation 
criteria to ascertain if the proposed investigation would be fruitful. 
During the entire process, a confusion matrix is produced that may be 
used to rate the method’s effectiveness according to several different 
indicators. Most approaches rely on the confusion matrix generated 
during testing for the identification task. Similar to predictability, 
specificity refers to the percentage of all negative data that was accu
rately predicted [43]. All the performance evaluations were calculated 
by using equations (16)–(23). 

Accuracy: Accuracy means the percentage of the total accurate value 
based on the positive and negative classes. 

Accuracy=
TP + TN

TP + FP + TN + FN
(16) 

Precision: Precision is the proportion of True Positives relative to the 
total number of positive samples. 

Precision=
TP

TP + FP
(17) 

F1-Score: The F1-score is an assessment matrix that takes the har
monic mean of both the precision and recall matrices to provide a single 
score that incorporates both of these metrics into a single measure. 

F1 − score= 2 ×
Precision × Recall
Precision + Recall

(18) 

Recall: Recall is also called sensitivity. Recall is the number of true 
positives divided by the total number of positive samples. 

Recall
/

Sensitivity =
TP

TP + FN
(19) 

Specificity: Specificity in the field of medical diagnosis refers to a 
test’s capacity to accurately identify persons who do not have the dis
ease (TN). In other words, it is the proportion of properly detected 
negatives. 

Specificity=
TN

TN + FP
(20) 

Mean Squared Error (MSE): MSE is a statistical metric that represents 
an average squared variance between actual (observed) and estimated 
values. It is one of the most often used metrics for assessing prediction 
error in tasks involving regression, as well as in occasional binary and 
multi-class classification problems. Here, n is the number of data, yi 

represents observed values, ŷi represents predicted values. 

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (21) 

False Positive Rate (FPR): This statistic calculates the percentage of 
true negatives (healthy patients) that are mistakenly recognized as 
positives (diseased). FPR is calculated as follows: 

FPR=
FP

FP + TN
(22) 

False Negative Rate (FNR): This is a measure for calculating the 
percentage of true positives (diseased patients) that are misidentified as 
negatives (healthy). FNR is calculated as follows: 

FNR=
FN

FN + TP
(23)  

in equations (3)–(10), TP, TN, FP, and FN mean true positive, true 
negative, false positive, and false negative, respectively. TP means the 
model predicts DR positive class correctly. And TN can predict the 
negative class successfully. FP is a negative class, but that predicts a 
positive. FN occurs when the actual image is DR, but the model predicts 
not DR. 

4.2.2. Result evaluation 
Table 6 compares numerous pre-existing and frequently used neural 

network models namely ZFNet, GoogLeNet, AlexNet, InceptionV3, 
InceptionResV2, SqueezeNet, ResNet50, ResNet101, VGG16, VGG19, 
ShuffleNet, Xception, DenseNet201, DarkNet19, DarkNet53, as well as a 
proposed new model (DRNet13). Each model is tested using a variety of 
performance indicators. Precision, F1-Score, Sensitivity, Specificity, 
Area Under Curve (AUC), Mean Squared Error (MSE), False Positive Rate 
(FPR), and False Negative Rate (FNR) are among these. Here, the 
training accuracy is labelled as ‘T_Acc’, validation accuracy labelled as 
‘V_Acc’, test accuracy labelled as ‘Ts_Acc’, training loss is labelled as 
‘T_Loss’, test loss labelled as ‘Ts_loss’, validation loss labelled as ‘V_Loss’, 
F1-score labelled as ‘F1–S’, Sensitivity labelled as ‘SEN’, and Specificity 
labelled as ‘SPE’. 

From Table 6 we can observe that our proposed model DRNet13, 
outperformed the second-best performance, DarkNet53, with 99 %, 97 
%, and 96 % accuracies in Training, Validation, and Testing, respec
tively. This means DRNet13 can learn patterns from data more effec
tively and generalize better on previously unseen data. DRNet13 also 
had the lowest losses (0.07 for Training, 0.10 for Validation, and 0.12 for 
Test), indicating that it performed exceptionally well in terms of 
decreasing the difference between predicted and actual values. This is a 
huge improvement above InceptionV3 and DarkNet53, both of which 
have the second lowest losses (0.10 for Training, 0.12 for Validation, 
and 0.14 for Test). In terms of Precision, the DRNet13 model out
performs the competition with a value of 0.97, outperforming the next 
top performers, InceptionV3 and DarkNet53, both of which have Pre
cision values of 0.94. Furthermore, the proposed approach has an F1- 
Score of 0.97, which is a harmonic mean of Precision and Recall, indi
cating a balanced performance on both measures. 

DRNet13 has the maximum Sensitivity (0.98), surpassing both 
InceptionV3 and DarkNet53 (0.95). This indicates a superior ability to 
identify positive classes accurately. It also outperforms all other models 
in Specificity (0.96), demonstrating its ability to identify negative 
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classes accurately. The proposed model achieves the maximum AUC 
score of 0.99, surpassing InceptionV3, DenseNet201, and DarkNet53’s 
scores of 0.97. A greater AUC indicates that the model’s sensitivity and 
specificity are better balanced. Regarding MSE, DRNet13 has the lowest 
value (0.03), followed by InceptionV3 and DarkNet53 (0.06), indicating 
a model with fewer squared errors between predicted and actual values. 

The DRNet13 model has the lowest False Positive Rate (FPR) and 
False Negative Rate (FNR), with values of 0.04 and 0.02, respectively. 
This indicates a lower misclassification rate, demonstrating the model’s 
superior performance in correctly classifying the fundus image data. 
Fig. 7 illustrated the accuracy (training, validation) and loss (training, 
validation) of the DRNet13 model. It exhibits the entire learning process 
and the superiority of our proposed model. 

Moreover, Our DRNet13 model exhibits superior performance across 
all critical metrics. The results demonstrate the model’s extraordinary 
ability to effectively learn from data and generalize to unseen samples, 
suggesting that it will make accurate predictions with minimal error. 

Fig. 8 offers a comprehensive comparative analysis of various 
transfer learning models, showcasing their performance across several 
categories of accuracy and loss metrics. The figure is organized in a grid 
layout, featuring two rows and three columns, with each column rep
resenting a different metric. 

Training, validation and test accuracies of the models are presented 
in the top row. DRNet13 performed with remarkable accuracy scores of 
99 % in training, 97 % in validation and 96 % in test accuracy. These 
numbers not only illustrate DRNet13’s excellent learning and general
ization abilities but also significantly contrast with other famous models 
like InceptionV3 (96 %, 94 %, 93 %), DenseNet201 (95 %, 93 %, 92 %), 
and GoogLeNet (94 %, 92 %, 91 %), which although impressive but fall 
short of DRNet13’s performance. Similarly, the training, validation and 
test losses are detailed on the bottom row. DRNet13 has the lowest losses 
(0.07, 0.10, and 0.12, respectively), demonstrating its efficiency. Other 
high-performing models, such as DarkNet53 and InceptionV3 show 
slightly higher losses (0.10, 0.12 in training and test loss for both), 
indicating DRNet13’s advantage in optimizing loss measures. 

Overall, Fig. 8 shows that DRNet13 not only achieved the greatest 
accuracy but also the lowest loss across all assessment parameters. This 
significant performance differences particularly when compared to 
other high performing models, confirms DRNet13 as a standard in 
effective and dependable model performance within the scope of the 
research. 

4.2.3. Confusion matrix analysis 
In the framework of Diabetic Retinopathy (DR) classification utiliz

ing the DRNet13 network, the confusion matrix demonstrates the ratio 
of the model’s predictions to the actual class of each image in the test 
dataset, which includes a total of 1500 images evenly distributed across 
five DR categories: No DR, Mild DR, Moderate DR, Severe DR, and 
Proliferative DR. 

From Fig. 9 its observed that matrix is divided into rows for predicted 
classes and columns for Diabetic Retinopathy (DR) classes. "No DR" (0), 
"Mild DR" (1), "Moderate DR" (2), "Severe DR" (3), and "Proliferative DR" 
(4) are the phases of DR, with the designations "0″ to "4″ indicating the 
stages of DR. Each cell in the matrix represents the number of cases 
classified. Off-diagonal cells indicate misclassifications, whereas diag
onal cells reflect properly classified cases. For example, the value in the 
column labelled "1" (Mild DR predicted) and the row labelled "0" (No DR 
real) shows the number of "No DR" instances misclassified as "Mild DR." 
In contrast, the cell under "0" (No DR predicted) and the row "0" (No DR 
actual) indicate correctly classified "No DR" cases. 

The confusion matrices created by our different models show the 
number of correctly diagnosed and misclassified cases throughout five 
phases of Diabetic Retinopathy (DR), which include "No DR," "Mild DR," 
"Moderate DR," "Severe DR," and "Proliferative DR." The ZFNet model 
performed well by correctly classifying 277 instances of "No DR," but it 
misclassified 11 instances as "Mild DR." GoogLeNet, on the other hand, 
classified 269 instances of "Severe DR" accurately but wrongly classified 
9 instances as "Moderate DR." AlexNet found equally distributed mis
classifications across all DR phases, including 12 cases of "No DR" being 
misclassified as "Mild DR." In contrast, InceptionV3 produced 

Fig. 7. DRNet13 network accuracy and loss performance over 300 epochs.  
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remarkable results, properly classifying 270 instances of "Moderate DR" 
and misclassifying just 6 instances of "Moderate DR" as "Mild DR." 
InceptionResV2 has a high level of accuracy, identifying 275 occur
rences of "No DR" correctly, but it has misclassified 7 examples as "Mild 
DR." SqueezeNet correctly classified 269 cases of "Moderate DR" while 
misclassifying 9 instances as "Mild DR." 

ResNet50 and ResNet101 models demonstrated remarkable accu
racy. ResNet50 correctly identified 274 cases of "Moderate DR" while 
incorrectly classifying 6 instances as "Mild DR." ResNet101 performed 
well in the "No DR" stage, properly classifying 280 cases and mis
classifying 5 as "Mild DR." Both the VGG16 and VGG19 models per
formed well, with the VGG16 correctly identifying 270 occurrences of 
"Proliferative DR" and misclassifying 9 as "Severe DR." VGG19 scored 
thoroughly, properly identifying 279 cases of "Proliferative DR" and 
misclassifying 6 as "Severe DR." ShuffleNet properly classified 256 cases 
of "Moderate DR" and incorrectly classed 11 instances as "Mild DR." 
Xception conducted well across all classes, effectively classifying 271 
cases of "Moderate DR" and misclassifying 7 as "Mild DR." DenseNet201 
worked exceptionally well for the "No DR" and "Proliferative DR" phases, 
correctly classifying 280 cases in each case and misclassifying 5 as "Mild 
DR" for "No DR" and 3 as "Severe DR" for "Proliferative DR." 

DarkNet19 and DarkNet53 models both demonstrated great accu
racy for "Moderate DR" and "No DR" phases. DarkNet19 accurately 
diagnosed 271 cases of "Moderate DR" and incorrectly identified 7 in
stances of "Mild DR." DarkNet53, on the other hand, correctly recog
nized 278 cases of "No DR" and incorrectly identified 5 cases of "Mild 
DR." DRNet13 performed the best, accurately classifying 288 cases of 
"No DR" and "Severe DR," misclassifying just 3 and 1, respectively. 

4.2.4. ROC curve analysis of DRNet13 
The performance of our proposed DRNet13 model was assessed using 

the Receiver Operating Characteristics (ROC) curve and Area Under 
Curve (AUC) values, which are common metrics for measuring the ac
curacy of multiclass classification model [55]. The ROC curve plots 
sensitivity (True Positive Rate) on y-axis against 1-Specificity (False 
Positive Rate) on the x-axis, providing a graphical representation of a 
model’s diagnostic ability. AUC scores are calculated as the area under 
the ROC curve with a value ranging from 0 to 1. A higher AUC value 
indicates a model’s improved ability to accurately differentiate across 
classes. 

We compute separate ROC curves for each class in our DRNet13 
model, which defines different stages of diabetic retinopathy (DR). This 
method assesses the model’s accuracy in identifying each unique con
dition by dividing each class and comparing it to all others. The 
following are the AUC values found in our study for each DR stages: ‘No 
DR’ has an AUC of 0.983, indicating excellent model performance for 
identifying cases without DR. With an AUC of 0.987 for the ‘Mild’ stage 
of DR, the model seems to be nearly perfect in identifying the early signs 
of DR. The AUC values for the ‘Moderate’ and ‘Severe’ stages are 0.991 
and 0.993 respectively, indicating exceptional model performance for 
these model development stages. The ‘Proliferate DR’ stages has an AUC 
of 0.986, again indicating high accuracy in identifying these advanced 
stages of disease. Fig. 10 portraying the ROC curve of the proposed 
model DRNet13. 

4.3. Feature map analysis of DRNet13 

The model comprises of three convolutional layer blocks and a pair 
of thick layers. Every convolutional block incorporates a MaxPooling 

Fig. 8. Performance evaluation for all applied models for diabetic retinopathy detection.  
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layer, which decreases the input’s dimensionality. To speed up the 
learning process, a Batch Normalization layer is implemented. In this 
model DRNet13, each Conv2D layer produces feature maps as its output. 
Each feature map reflects the application of a learned filter to the input 
data. Essentially, the learned filters are what the model learned to detect 

throughout the training process. The Conv2D layers of the DRNet13 
convolutional neural network generate feature maps that indicate the 
features that the model learned to identify at each stage. In the fundus 
images, the model typically learns to detect low-level features such as 
color gradients, boundaries, and fundamental textures in the initial 
layers with fewer filters. As we proceed deeper into the structure of the 
network, to layers that include additional filters, these fundamental 
patterns are combined to identify more complex characteristics. The 
final layers of the model derive even more abstract characteristics that, 
despite being difficult for humans to interpret, are crucial for the model 
to make precise predictions. The DRNet13 feature map is depicted in 
Fig. 11. 

Visualizing these feature maps enables us to comprehend the 
learning process of the model DRNet13 by providing insight into the 
categories of features that the model considers significant at each iter
ation. This is essential for comprehending the model’s functions, diag
nosing prospective issues, and suggesting enhancements. Adjustments 
could be made to the model if essential diabetic retinopathy-related 
characteristics, such as microaneurysms, hemorrhages, or exudates, 
are not adequately detected. In addition, feature maps provide an 
interpretive view of the DRNet13 model, illustrating what the neural 
network is learning and how it makes decisions. This is particularly 
crucial for medical diagnostic applications, such as diabetic retinopathy 
detection, where comprehending the model’s decision-making process is 
of the utmost importance. 

Fig. 9. Confusion matrix for the predictions of the deep learning networks on the test set. Rows represent actual classes, while columns represent predicted classes. 
The diagonal cells represent instances that were correctly classified. The intensity of color represents the number of occurrences. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. ROC curve and AUC metrics for DRNet13 model.  

F.M.J. Mehedi Shamrat et al.                                                                                                                                                                                                                



Healthcare Analytics 5 (2024) 100303

16

Fig. 11. Displaying the feature map as interpreted by DRNet13 model. Average feature maps from various convolutional and pooling layers of the model. The colors 
in each feature map represent the intensity of the activation, with cooler colors (blues and purples) indicating lower activations and warmer colors (yellow and reds) 
indicating higher activations. This color encoding is applied consistently across all layers to facilitate comparison of feature intensity and localization. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Visualization of misclassification outcomes derived from the proposed network DRNet13.Here, 0: ’Class 1(No DR)’, 1: ’Class 2(Mild)’, 2: ’Class 3(Moderate), 
3: ’Class 4(Severe)’, 4: ’Class 5(Proliferate DR)’. 
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4.4. Misclassification results analysis 

The highest performing proposed model, DRNet13, displayed an 
outstanding level of accuracy in classifying the phases of diabetic reti
nopathy, however some cases of misclassification were identified. 
Fig. 12 depicts these instances. The misclassification is most likely due to 
imaging similarities across the five types of diabetic retinopathy: No DR, 
mild, moderate, severe, and proliferative DR. Because of overlapping 
symptoms, the early phases (No DR and Mild) and later phases (Severe 
and Proliferative) are especially difficult to discern. 

4.5. Comparative compilation complexity and performance analysis 

Various deep learning models were compared in the study based on 
their learning rate, epoch time in seconds, and overall execution time in 
minutes. Table 7 depicts the comparative study of all model’s compu
tation time. The ZFNet model was trained at a learning rate of 0.0001, 
54 s per epoch, and a total execution time of 270 min. GoogLeNet, which 
was likewise trained with a learning rate of 0.0001, took 42 s for each 
epoch and had a total execution time of 210 min. 

In a similar way, AlexNet was trained using a learning rate of 0.0001. 
Each phase took 48 s for a total execution duration of 240 min. For the 
InceptionV3 model, a reduced learning rate of 0.00001 was chosen. 
Each epoch took 36 s, with a total execution duration of 180 min, which 
is faster than the prior models. The InceptionResV2 and ResNet50 net
works were trained at a learning rate of 0.0001. However, while 
InceptionResV2 took 40 s every epoch (for a total of 200 min), ResNet50 
took 51 s each epoch and a total of 255 min. SqueezeNet and ShuffleNet 
networks used a higher learning rate of 0.001. SqueezeNet had the 
longest epoch and total execution times, at 60 s and 300 min, respec
tively. ShuffleNet, on the other hand, required 52 s for every epoch and 
took 260 min to execute. With a learning rate of 0.0001, models such as 
ResNet101, VGG16, VGG19, Xception, DenseNet201, DarkNet19, and 
DarkNet53 had all been trained. These models’ execution timeframes 
varied from 180 min (DarkNet53 and InceptionV3) to 240 min 
(ResNet101, AlexNet, and DarkNet19). 

DRNet13, our proposed model, was the most efficient. With a 
learning rate of 0.00001, each epoch took 30 s, and the overall execution 
time was 150 min. This was the quickest time among all models tested. 
This detailed comparison offers a clear grasp of the execution efficiency 
of several deep learning models as well as the influence of learning rates, 
emphasizing the potential of our proposed model, DRNet13. 

Furthermore, A comparison of the DRNet13 model’s performance 
with previously used pre-trained and state-of-art methods within the 
context of diabetic retinopathy detection demonstrates the proposed 
model’s improved efficiency. To appropriately assess DRNet13’s 

effectiveness, it was compared to various different models that have 
been extensively employed in previous studies. To establish a realistic 
and unbiased comparison, these comparable models were carefully 
chosen in accordance with their applicability in diabetic retinopathy 
diagnosis. Table 8 shows that the DRNet13 model surpasses existing 
established models in terms of classification accuracy. This comparison 
is not only numerical; it demonstrates the proposed model’s relative 
strength in solving the difficult issue of recognizing and classifying the 
phases of diabetic retinopathy. 

The DRNet13 model’s superior performance score results from its 
enhanced architecture and methodological advances incorporated into 
its design. As the comparison shows, this model enhances the state-of- 
the-art in diabetic retinopathy identification and establishes a new 
performance standard in the area. The DRNet13 model’s enhanced ac
curacy has huge potential consequences, moving research in automated 
retinopathy diagnosis ahead and providing novel possibilities for addi
tional investigation and development. 

5. Summary and conclusions 

In our extensive examination, the DRNet13 model achieved a sig
nificant milestone in the automated diagnosis and staging of Diabetic 
Retinopathy (DR). With a phenomenal 97 % accuracy rate, the model 
establishes a new standard for both efficiency and speed, potentially 
transforming the diagnosis procedure for this vision-threating disease. 
Upon critical reflection, the adoption of DRNet13 could significantly 
improve the clinical workflows, offering rapid and reliable diagnostics 
that are paramount for early detection. However, we recognize that our 
study’s scope though extensive but bears limitations such as the data
set’s representativeness, which may influence the model’s universal 
application. Our findings have implications for ophthalmic healthcare 
that go beyond immediate clinical application and point to a paradigm 
change in support of more independent, accurate and patient-centric 
methods. Furthermore, the model’s applicability in environments with 
limited resources may democratize access to essential diagnostic ser
vices, thereby closing gaps in healthcare equity. Looking forward further 
research will concentrate on improving the robustness of the DRNet13 
model using diverse data covers a wide range of DR phases and patient 
demographic. 
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Computation time for all employed models.  

Models Learning 
Rate 

Epoch ×
Seconds 

Execution Time 
(mins) 

ZFNet 0.0001 300 × 54 270 
GoogLeNet 0.0001 300 × 42 210 
AlexNet 0.0001 300 × 48 240 
InceptionV3 0.00001 300 × 36 180 
InceptionResV2 0.0001 300 × 40 200 
SqueezeNet 0.001 300 × 60 300 
ResNet50 0.0001 300 × 51 255 
ResNet101 0.0001 300 × 48 240 
VGG16 0.0001 300 × 46 230 
VGG19 0.0001 300 × 44 220 
ShuffleNet 0.001 300 × 52 260 
Xception 0.0001 300 × 41 205 
DenseNet201 0.0001 300 × 39 192 
DarkNet19 0.0001 300 × 48 240 
DarkNet53 0.0001 300 × 36 180 
Proposed Model 

(DRNet13) 
0.00001 300£30 150  

Table 8 
An evaluation of the proposed approach with several existing studies.  

Authors & Reference Class Methodology Accuracy 

Li et al. [22] 6 SE-BN-Inception 82.84 % 
Minarno et al. [24] 5 EfficientNet-B7 84.36 % 
Dayana et al. [25] 4 UNet 95.9 % 
Alghamdi et al. [26] 2 VGG-16 73.04 % 
Nasir et al. [28] 2 CNN 96 % 
Arias-Serrano et al. [29] 2 AlexNet 94.3 % 
Tian et al. [30] 5 FA + KC-Net 86.78 % 
Mustafa et al. [31] 2 ResNet-50 + DenseNet-121 95.58 % 
Atwany et al. [32] 5 Green-SE-ResNext50 85.7 % 
Nahiduzzaman et al. [33] 5 ELM 97.27 % 
K. Oh et al. [34] 2 ETDRS 7SF 83.38 % 
Jian et al. [36] 5 Triple-DRNet 92.08 % 
Shamrat et al. 5 DRNet13 97 %  
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[29] I. Arias-Serrano, P.A. Velásquez-López, L.N. Avila-Briones, F.C. Laurido-Mora, 
F. Villalba-Meneses, A. Tirado-Espin, D. Almeida-Galárraga, Artificial intelligence 
based glaucoma and diabetic retinopathy detection using MATLAB—retrained 
AlexNet convolutional neural network, F1000Research 12 (2023) 14. 

[30] M. Tian, H. Wang, Y. Sun, S. Wu, Q. Tang, M. Zhang, Fine-Grained Attention & 
Knowledge-Based Collaborative Network for Diabetic Retinopathy Grading, 2023. 
Heliyon. 

[31] H. Mustafa, S.F. Ali, M. Bilal, M.S. Hanif, Multi-stream deep neural network for 
diabetic retinopathy severity classification under a boosting framework, IEEE 
Access 10 (2022) 113172–113183. 

[32] M.Z. Atwany, A.H. Sahyoun, M. Yaqub, Deep learning techniques for diabetic 
retinopathy classification: a survey, IEEE Access 10 (2022) 28642–28655. 

[33] M. Nahiduzzaman, M.R. Islam, M.O.F. Goni, M.S. Anower, M. Ahsan, J. Haider, 
M. Kowalski, Diabetic retinopathy identification using parallel convolutional 
neural network based feature extractor and elm classifier, Expert Syst. Appl. 217 
(2023) 119557. 

[34] K. Oh, H.M. Kang, D. Leem, H. Lee, K.Y. Seo, S. Yoon, Early detection of diabetic 
retinopathy based on deep learning and ultra-widefield fundus images, Sci. Rep. 11 
(1) (2021), 1897. 

[35] J. Jaskari, J. Sahlsten, T. Damoulas, J. Knoblauch, S. Särkkä, L. Kärkkäinen, K. 
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