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Abstract 

The convergence of artificial intelligence (AI) with genomics, radiology, and 

electronic health records (EHRs) marks a transformative era in precision medicine. 

Multimodal AI, which integrates data from multiple sources, enhances diagnostic 

accuracy, treatment personalization, and disease prediction. This paper examines the 

current state and future potential of multimodal AI in healthcare by synthesizing key 

developments, analyzing case studies, and discussing implementation challenges. 

The integration of heterogeneous data types leads to improved model robustness and 

interpretability, offering a powerful toolkit for personalized healthcare. 
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1. Introduction 

The increasing availability of healthcare data from multiple sources—genomic sequences, 

radiological scans, and electronic health records—presents a profound opportunity for data-driven 

clinical decision-making. Precision medicine aims to tailor treatments based on individual 

variability, yet traditional uni-modal analyses fall short in capturing the full patient context. 

Multimodal artificial intelligence (AI) bridges this gap by integrating diverse datasets, 

enabling a holistic understanding of disease. For instance, by combining genetic markers with 



  

https://qitpress.com/journals/QITP-IJAI   2 

radiographic features and longitudinal EHR data, AI systems can provide more accurate prognostic 

models and guide individualized therapy. 

The challenge lies in data harmonization, computational complexity, and the need for 

transparent, explainable models. Nevertheless, advancements in deep learning, data representation, 

and federated learning have brought us closer to clinical-grade multimodal systems. 

 

2. Literature Review  

Studies explored the synergy of combining data modalities: 

Study Year Data Types Integrated Key Findings 

Huang et al. 2021 Genomics + EHR Improved risk stratification in oncology patients 

Rajkomar et 

al. 
2018 EHR + Imaging 

Predictive models outperformed clinicians in some 

tasks 

Esteva et al. 2019 Imaging + Clinical Notes 
Dermatology diagnostics improved using 

multimodal inputs 

Miotto et al. 2016 EHR 
Deep Patient model showed predictive power for 

future disease 

Gevaert et al. 2017 Radiology + Genomics 
Radiogenomics used to non-invasively predict gene 

expression 

Chen et al. 2020 
Genomics + Proteomics + 

EHR 
Novel biomarker discovery using deep learning 

 

These efforts demonstrate that integrating even two modalities (e.g., radiology and 

genomics) significantly enhances accuracy. However, scaling these approaches to clinical settings 

remains non-trivial due to interoperability and data privacy concerns. 

 

3. Methodologies of Multimodal AI Integration 

Multimodal Artificial Intelligence (AI) integration refers to the process of combining data 

from different sources—such as genomics, radiologic imaging, and electronic health records 

(EHRs)—to train models that can understand and make predictions based on a comprehensive view 

of the patient. To effectively utilize these heterogeneous datasets, AI systems use fusion strategies 

that determine how and when data from different modalities are combined in the model pipeline. 

The three primary strategies are Early Fusion, Intermediate Fusion, and Late Fusion. 
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3.1 Early Fusion 

In early fusion, the data from various modalities are combined at the input level—before 

being processed by the AI model. This approach involves preprocessing the data from each modality 

into a compatible format (e.g., numerical vectors) and then concatenating or aligning them to create 

a single joint input feature vector for the model. 

Advantages: 

• Simplicity and lower computational complexity 

• Easier to implement for small-scale problems 

• Good when modalities are tightly synchronized or represent similar abstractions 

Disadvantages: 

• Assumes all modalities are available at all times 

• Can fail to capture modality-specific features 

• Susceptible to missing data and misaligned features 

Example: 

Combining genetic mutation data and patient demographics into a unified vector for input to a neural 

network for cancer risk prediction. 

3.2 Intermediate Fusion 

Intermediate fusion is considered a more sophisticated and flexible approach. In this strategy, each 

data modality is first processed independently using a dedicated encoder (such as a CNN for 

imaging data and a transformer for text). The encoded representations are then fused (e.g., via 

concatenation, attention mechanisms, or bilinear pooling) before the final decision layer. 

Advantages: 

• Captures both modality-specific and cross-modal interactions 

• More resilient to missing or noisy data 

• Modular and allows for transfer learning from pre-trained models 

Disadvantages: 

• Increased architectural complexity 

• Requires careful tuning of fusion layers 

Example: 

Using separate deep neural networks to encode radiology images, gene expression profiles, and EHR 

sequences, and merging their embeddings to predict disease progression. 
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3.3 Late Fusion 

In late fusion, each modality is processed completely independently, and predictions (or high-level 

features) from separate models are combined at the decision level. This can involve simple methods 

like majority voting or more complex meta-models (ensemble methods) to merge predictions. 

Advantages: 

• Maximum flexibility; modalities can operate in isolation 

• Useful when modalities are asynchronous or only partially available 

• Easier to debug and interpret 

Disadvantages: 

• May overlook fine-grained intermodal interactions 

• Lower performance in tasks requiring deep cross-modal understanding 

 

 

Table 1: Comparison of Fusion Strategies 

Fusion Type Advantages Disadvantages 

Early Low complexity, unified input Ignores modality-specific features 

Intermediate Flexible architecture Higher training cost 

Late Modularity Loss of intermodal relationships 

 

 

4. Applications in Precision Medicine 

4.1 Oncology 

Genomics and radiology fusion enables radiogenomics, which predicts molecular signatures 

from imaging alone. 

4.2 Cardiovascular Diseases 

AI models incorporating EHR + echocardiograms predict adverse events with high AUROC 

(0.92+ in some models). 

4.3 Rare Diseases 

Multimodal integration helps in diagnosing undiagnosed rare conditions by identifying 

subtle phenotype-genotype associations. 
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5. Challenges and Ethical Considerations 

As promising as multimodal artificial intelligence (AI) is for advancing precision 

medicine, its real-world deployment introduces significant challenges—both technical and ethical. 

Understanding and addressing these challenges is crucial to ensuring that AI not only enhances 

healthcare outcomes but does so responsibly, equitably, and safely. 

5.1 Data Interoperability and Integration Complexity 

Multimodal AI requires integrating data from vastly different sources such as genomic 

sequencing platforms, radiologic imaging systems, and EHR software. Each of these sources comes 

with its own data formats, standards, and terminologies. The lack of unified data models makes 

seamless integration difficult. 

• Genomic data are often high-dimensional and sequence-based 

• Radiologic data are image-based and large in size 

• EHR data are time-series structured and vary across institutions 

Challenge: Creating unified representations or embeddings across such diverse formats requires 

advanced preprocessing pipelines and harmonization tools, which are not always standardized or 

scalable. 

5.2 Explainability and Interpretability 

In clinical contexts, black-box AI models—especially deep neural networks—can be difficult 

to interpret. Physicians are trained to rely on evidence-based, understandable reasoning. When an 

AI system outputs a decision (e.g., high cancer risk), clinicians need to understand why the model 

made that call. 

• Lack of transparency reduces clinical trust 

• Hinders regulatory approval (e.g., FDA demands model auditability) 

• Difficult to use in critical decisions, such as surgical planning or life-saving therapies 

Solution Directions: Explainable AI (XAI), attention maps, feature attribution methods (like SHAP 

or LIME), and hybrid models with rule-based components. 

5.3 Bias and Fairness 

Multimodal AI models are only as unbiased as the data they're trained on. Healthcare data often 

reflect existing inequalities—whether due to socioeconomic, racial, geographic, or gender 

disparities. If not carefully managed, AI may exacerbate health disparities rather than reduce them. 

• Genomic datasets are often skewed toward populations of European descent 

• EHR data may underrepresent marginalized communities 

• Imaging data may come from well-funded urban hospitals only 

Example: An AI trained mostly on MRI data from white male patients may yield less accurate 

predictions for minority women. 
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Mitigation Strategies: Bias audits, diverse data collection, fairness-aware learning algorithms, and 

stakeholder input during model development. 

5.4 Data Privacy and Security 

Multimodal data includes some of the most sensitive types of patient information. Genomic 

data can uniquely identify individuals and even expose information about their relatives. Imaging 

and EHR data often contain private health conditions, treatment history, and social data. 

• Regulations like HIPAA (US) and GDPR (EU) strictly control data use 

• Data breaches in healthcare are on the rise 

• Federated learning and secure multi-party computation are being explored to keep data on-

premise while still training shared models 

Ethical Imperative: Ensuring that patient consent is informed and specific to AI use, 

implementing de-identification measures, and maintaining strict data governance protocols. 

5.5 Generalization and Robustness 

AI models often fail to generalize across institutions or populations not seen during training. 

This is especially true in multimodal settings, where data collection processes, imaging protocols, 

or genetic testing panels differ. 

Problem: A model trained at Hospital A may not perform well at Hospital B without retraining or 

calibration, limiting scalability. 

Approach: External validation, transfer learning, and domain adaptation methods are essential for 

developing robust models. 

 

6. Conclusion 

Multimodal AI holds enormous promise for precision medicine. It not only improves 

diagnostic accuracy but also enriches our understanding of disease mechanisms. Despite challenges, 

the trajectory of innovation and increasing collaboration between technologists and clinicians point 

toward a future where AI-integrated care becomes the standard. 
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