
Md Asif Nashiry received his PhD degree from the University of Lethbridge, Alberta, Canada in 2018. Currently, he is working as an associate professor at
the Department of Computer Science and Engineering of the Jashore University of Science and Technology. His research areas of interest include machine
learning, data science and bioinformatics.
Shauli Sarmin Sumi is working as an assistant professor at the Department of Computer Science and Engineering of Jashore University of Science and
Technology. She received her MSc in Computer Science from the University of Lethbridge, Canada. She works in the areas of natural language processing,
data mining and bioinformatics.
Mohammad Umer Sharif Shohan is a lecturer at the Department of Biochemistry and Molecular Biology of the University of Dhaka. He has worked in
different organizations around the world including European Bioinformatics Institute (UK), International Research Center for Medical Sciences (Japan) and
University of Queensland (Australia). His area of expertise is single-cell transcriptomics, mathematical modeling, machine learning and biostatistics.
Salem A. Alyami received the PhD degree from Monash University, Australia in biostatistics in 2017. He is an assistant professor in the School of
Mathematics and Statistics, IMAMU Riyadh, since 2017, contributing/leading several grants in bioistatistics projects. Recently, he has appointed as the
Dean of the Deanship of Scientific Research at IMAMU, Riyadh, KSA. His research interest includes, Bayesian networks, neural networks, Bayesian statistics,
MCMC methods, applications of statistics in biology and medicine.
A.K.M. Azad received a PhD degree from Monash University, Australia in computational systems biology and biostatistics in 2017, followed by his first
postdoctoral fellowship in the Faculty of IT, Monash University. He was a postdoctoral research associate in the AI Lab in the School of BABS, UNSW
Sydney, contributing/leading several bioinformatics and computational biology projects. Recently, he has joined the University of Technology, Sydney as
a Research Fellow for developing cutting-edge methodologies and tools for online inference of phylogenetic trees from COVID-19 sequences. His research
interest includes AI/ML/DL, Bayesian statistics, MCMC, Bayesian network, bioinformatics and computational biology.
Mohammad Ali Moni is a research fellow and conjoint lecturer at the University of New South Wales, Australia. He received his PhD in clinical
bioinformatics and machine learning from the University of Cambridge. His research interests encompass artificial intelligence, machine learning, data
science, medical image processing and clinical bioinformatics.
Submitted: 1 January 2021; Received (in revised form): 16 March 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 22(6), 2021, 1–16

https://doi.org/10.1093/bib/bbab126
Case Study

Bioinformatics and system biology approaches
to identify the diseasome and comorbidities
complexities of SARS-CoV-2 infection
with the digestive tract disorders
Md Asif Nashiry, Shauli Sarmin Sumi, Mohammad Umer Sharif Shohan,
Salem A. Alyami, A.K.M. Azad and Mohammad Ali Moni
∗Corresponding author: Mohammad Ali Moni, Healthy Ageing Theme, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; WHO
Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, University of New South
Wales, Sydney, NSW 2052, Australia. E-mail: m.moni@unsw.edu.au

Abstract

Coronavirus Disease 2019 (COVID-19), although most commonly demonstrates respiratory symptoms, but there is a growing
set of evidence reporting its correlation with the digestive tract and faeces. Interestingly, recent studies have shown the
association of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with gastrointestinal symptoms in
infected patients but any sign of respiratory issues. Moreover, some studies have also shown that the presence of live
SARS-CoV-2 virus in the faeces of patients with COVID-19. Therefore, the pathophysiology of digestive symptoms associated
with COVID-19 has raised a critical need for comprehensive investigative efforts. To address this issue we have developed a
bioinformatics pipeline involving a system biological framework to identify the effects of SARS-CoV-2 messenger RNA
expression on deciphering its association with digestive symptoms in COVID-19 positive patients. Using two RNA-seq
datasets derived from COVID-19 positive patients with celiac (CEL), Crohn’s (CRO) and ulcerative colitis (ULC) as digestive
disorders, we have found a significant overlap between the sets of differentially expressed genes from SARS-CoV-2 exposed
tissue and digestive tract disordered tissues, reporting 7, 22 and 13 such overlapping genes, respectively. Moreover, gene set
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enrichment analysis, comprehensive analyses of protein–protein interaction network, gene regulatory network,
protein–chemical agent interaction network revealed some critical association between SARS-CoV-2 infection and the
presence of digestive disorders. The infectome, diseasome and comorbidity analyses also discover the influences of the
identified signature genes in other risk factors of SARS-CoV-2 infection to human health. We hope the findings from this
pathogenetic analysis may reveal important insights in deciphering the complex interplay between COVID-19 and digestive
disorders and underpins its significance in therapeutic development strategy to combat against COVID-19 pandemic.

Key words: SARS-CoV-2; COVID-19; digestive disorders; differentially expressed genes; functional enrichment; gene
regulatory networks

Introduction
On the 11 March 2020, the World Health Organization (WHO)
characterized the novel Coronavirus disease 2019 (COVID-19)
resulting from the highly contagious Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) as a pandemic, which
is, at present, still a major public health concern around the
globe. According to the WHO report, there have been globally
78 299 811 confirmed cases of COVID-19 with more than 1.7
million deaths as of 22 December 2020 [1, 2]. Although at the
early stage of the outbreak, the commonly reported symptoms
in COVID-19 were related to the respiratory tract, recent data
show that the digestive system of the human body might also
be affected by SARS-CoV-2 infection. In one study, 204 COVID-
19 patients were analyzed, and it was found that 103 patients
presented symptoms related to the digestive system such as lack
of appetite, diarrhoea, vomiting and abdominal pain. Although
most patients reported fever or respiratory symptoms, for six
patients, only digestive related side effects were presented amid
the entire course of SARS-CoV-2 infection [3–5]. In another study,
1099 COVID-19 patients were analyzed from different hospitals
of China, and it was observed that 55 of them (5.6%) had nausea
or vomiting, or both, and 42 (3.8%) had diarrhoea [6, 7]. Jin and
colleagues performed a similar study with COVID-19 patients
and found that patients with SARS-CoV-2 with gastrointestinal
(GI) symptoms such as diarrhoea, nausea and vomiting. They
found 28% of those with GI symptoms did not have respiratory
symptoms [8, 9]. In another investigation, the authors considered
95 SARS-CoV-2 infected patients and observed 58 cases (61.1%)
of explicit GI symptoms with diarrhoea (24.2%), nausea (17.9%),
vomiting (4.2%) [10]. In [11], the authors report that nearly 10%
of SARS-CoV-2 infected patients presented with GI symptoms
without respiratory symptoms. Several studies show that the
presence of SARS-CoV-2 messenger RNA (mRNA) on stool sam-
ples, which indicates the relevance of GI tract symptoms with
COVID-19 [12–15]. These findings indicate that the faecal–oral
transmission could be an additional route for the spread of
SARS-CoV-2 [16]. The characteristics of GI tract symptoms in
COVID-19 are more deceptive than that of the respiratory tract
symptoms. Some patients might have only GI symptoms amid
the total course of infection, and some keep on shedding the
infection in faeces regardless of respiratory samples testing
negative.

However, the mechanism of how SARS-CoV-2 infection
induces GI symptoms is still not elucidated and evidence
for whether the infection can be transmitted through the GI
tract other than the respiratory tract is yet to be examined.
SARS-CoV-2 uses angiotensin-converting enzyme-2 (ACE-2)
as a viral receptor to enter host cells [17–19]. Expression of
the ACE-2 gene was reported in varieties of human tissues
including intestine, testis, kidneys, heart and lungs [20, 21]. In
addition, ACE-2 is a crucial regulator of intestinal inflammation

[22], and an investigation on single-cell RNA sequencing data
reveals that ACE-2 is highly expressed in the small intestine
especially in proximal and distal enterocytes [23]. In another
analysis on single-cell transcriptomes of lung, oesophagus,
gastric, ileum and colon, Zhang et al. [24] found that, in addition
to the presence of ACE-2, the SARS-CoV-2 virus also enters
to the human body with the presence of the cellular serine
protease, transmembrane protease serine-2 (TMPRSS-2). ACE-2
and TMPRSS-2 were not only coexpressed in lung alveolar type
2 cells and oesophageal upper epithelial and gland cells but
also highly expressed in the ileum and colon. This indicates
that SARS-CoV-2 can attack the enterocytes of the GI tract. In
the oesophagus, ACE-2 was highly expressed in the upper and
stratified epithelial cells. ACE-2 is more highly expressed in the
ileum and colon than the lung [24].

The presence of SARS-CoV-2 on faeces, the interaction of
ACE-2 and TMPRSS-2 and several GI symptoms suggest that
further studies are required in order to understand the complex
relevance of COVID-19 with the human digestive system. Since
the GI tract is one of the crucial components of the digestive
system, we have chosen three GI disorders in order to find the
genetic relevance between COVID-19 and digestive disorder. In
this work, we have considered celiac disease, Crohn’s disease
and ulcerative colitis. Celiac disease (CEL) [25, 26] is an autoim-
mune condition that is also a digestive disorder that damages
the small intestine’s lining and prevents it from absorbing some
nutrients. The intestinal damage often causes GI problems such
as diarrhoea, fatigue, weight loss, abdominal pain, nausea and
vomiting, constipation, bloating and anaemia and can lead to
serious complications. Crohn’s (CRO) and ulcerative colitis (ULC)
belong to a group of conditions known as inflammatory bowel
diseases (IBD) [27]. Crohn’s disease is a chronic inflammatory
condition of the GI tract. Crohn’s disease causes inflammation
in part of the digestive system and can affect any part of the GI
tract from the mouth to the anus, but most commonly affects
the end of the small intestine (ileum) and the beginning of the
colon. Symptoms inside the GI tract often include abdominal
pain, diarrhoea (with blood if inflammation is severe), fever,
abdominal distension and weight loss [28]. Ulcerative colitis
causes long-lasting inflammation and ulcers (sores) in the GI
tract. Ulcerative colitis affects the innermost lining of the large
intestine (colon) and rectum. The symptoms of active disease are
abdominal pain, diarrhoea mixed with blood, weight loss, fever
and anaemia [29, 30]. The exact causes of these diseases remain
unknown, however, since the symptoms of these diseases are
observed in COVID-19 samples, in this work, we have used the
mRNA expression analysis in order to understand the complex
interaction between COVID-19 and the digestive disorders. In
other words, we have performed infectome and diseasome net-
work analysis in order to discover the underlying genes and
the ways these genes are expressed from the perspective of the
interaction between COVID-19 and digestive disorders. We have
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used a statistical method to determine differentially expressed
genes (DEGs) and used the shared DEGs to determine protein–
protein interaction (PPI), gene regulatory networks (GRN) and
protein–chemical interactions. We have also performed gene
set enrichment analysis (GSEA) for discovering cell signalling
pathways and ontology shared by common DEGs.

Materials and Methods
Overview of the workflow

Bioinformatics and system biology approaches are common
to identify and analyze the comorbidity complexities [31–
37]. Datasets required in this work have been identified and
collected at the initial phase, which is detailed in the following
subsection. Gene expression analysis has been performed in
order to identify the DEGs from each of the datasets. Next,
the common DEGs between COVID-19 and the other three
disorders have been identified. These common DEGs are used to
discover their PPIs and to perform GSEA to identify enriched cell
signalling pathways and functional Gene Ontology (GO) terms.
Next, the same set of common DEGs are used to discover two
types of GRNs: DEGs–micro RNAs (miRNA) network and DEGs–
transcription factors (TFs) network. Finally, protein–chemical
compound interactions have also been discovered for the
common DEGs.

Gene expression dataset

In this work, we have considered two RNA-Seq datasets of SARS-
CoV-2 infection on the human body. Samples of the first dataset
are taken from whole blood and peripheral blood mononuclear
cells (PBMCs) from three SARS-CoV-2 patients and three healthy
individuals [38]. The second dataset (E-MTAB-8871) is taken from
European Bioinformatics Institute Array Express Database [39],
where the samples were collected from whole blood cells of
COVID-19 patients and healthy individuals by analyzing the
immune responses using the NanoString Human Immunology
Panel. We have used DESeq2 R package [40] to analyze the RNA-
Seq data for SARS-CoV-2. For the digestive disorders, we have
collected microarray data from the Gene Expression Omnibus
(GEO), National Center for Biotechnology Information [41]. The
dataset with GEO accession number of GSE113469 is consid-
ered in this work for celiac disease. The dataset investigates
changes in the whole-genome profile of the PBMC of 17 patients
with celiac disease with respect to 20 healthy controls. The
dataset for the Crohn’s disorder (GSE3365) represents a com-
parison of PBMC transcriptional profiles between 42 healthy
individuals and 59 patients with Crohn’s disease. The dataset
with GEO accession number of GSE3365 is chosen for ulcerative
colitis. In this dataset, transcriptional profiles in PBMCs from 42
healthy individuals and 26 ulcerative colitis patients were ana-
lyzed by hybridization to microarrays interrogating more than
22 000 sequences. The alterations in transcript levels observed by
microarray were verified by real-time polymerase chain reaction.

Identification of DEGs

Several statistical operations have been performed on the
datasets in order to determine the DEGs. The limma (Linear
Models for Microarray Analysis) R package has been used to
perform statistical tests for identifying DEGs [37, 42]. In addition,
the Benjamini–Hochberg false discovery rate method is used to
provide a good balance between the discovery of statistically
significant genes and the limitation of false positives. In this
work, genes having adjusted P-value < 0.05 and absolute

value of log2 fold-change � 1 are considered as DEGs. We
have also identified the DEGs from all the five datasets under
consideration in this study: two for COVID-19 samples and three
for digestive disorders. We have also identified the DEGs that
are common in each of the COVID-19 datasets and digestive
disorders. We have combined two sets of DEGs: (1) DEGs that
are common in SARS-CoV-2 PBMC and digestive disorders and
(2) DEGs that are common between SARS-CoV-2 immune and
digestive disorders. In this article, we use the term combined
DEGs’ to refer to the collection of these two sets of DEGs, which
have been used in the downstream bioinformatics analyses.

PPI analysis

We have constructed PPI networks using the combined DEGs
that are common between COVID-19 and digestive disorders. PPI
analysis provides insight among the proteins and their asso-
ciation. We have identified protein subnetworks using STRING
[43]—a protein interactome database. Gene clusters have been
identified using the Markov cluster algorithm (MCL). We have
used Cytoscape [44, 45] in order to generate the hub proteins
network.

Functional enrichment analysis

To conduct the functional enrichment analysis with the com-
bined DEGs, we have used Enrichr [46] with Fisher’s exact test.
This overrepresentation analysis identified a set of enriched cell
signalling pathways and functional GO terms that reveal the bio-
logical significance of the identified DEGs. We have merged the
signalling pathways from six libraries in Enrichr including Bio-
Planet, BioCarta, KEGG, Panther, Reactome and WikiPathways.
The duplicate pathways are removed, and only the significant
pathways for which the adjusted P-value is less than 0.05 are
considered. For functional GO terms, we have considered GO
biological process (2018) dataset in Enrichr and determined the
significant GO terms with adjusted P-value < 0.05.

GRN analysis

GRN analysis includes the discovery of DEG–miRNA and TF–DEG
interaction networks. The shared dysregulated genes are used to
identify DEG–miRNA and TF–DEG networks using Network Ana-
lyst platform [47]. TarBase [48] and miRTarBase [49] databases are
used for discovering DEG–miRNA interaction networks. JASPAR
[50] database is used to identify TF–DEG interaction network. The
networks are filtered with the betweenness value of 100.

Protein–Chemical compound analysis

Protein–chemical compound analysis identifies the chemical
agents involved in the interaction of protein in comorbidity. In
this analysis, we have identified protein–chemical interactions
using the enriched gene (common DEGs) that COVID-19 shares
with digestive disorders. We have used Network Analyst [47] to
identify protein–chemical interactions using the Comparative
Toxicogenomics Database [51].

Result
Identifying genetic relevance between SARS-CoV-2
infection and digestive system

We have analyzed whole blood of SARS-CoV-2 infected patients
and identified 1290 genes that are differentially expressed as
compared with healthy control. Similarly, we have identified
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Table 1. A summary of experiments performed in this work to discover the comorbidity complexities between COVID-19 and digestive disorders

Experiments Input Materials/methods Presented in Findings

Identification of
DEG

Datasets of disorders with a
list of genes

condition used:
adjusted p-value
< 0.05 and absolute
value of log2

fold-change � 1

Volcano
plots, Venn
diagrams,
Heatmaps

List of DEGs

PPI Shared DEGs between
COVID-19 and digestive
disorders

STRING [43] PPI
interaction
network

Interaction among
proteins

Cell signalling
pathways

Shared DEGs between
COVID-19 and each of the
digestive disorders

Enricher [46] Bubble plots List of significant
signalling pathways

GO Shared DEGs between
COVID-19 and each of the
digestive disorders

Enricher [46] Bubble plots List of significant GO
pathways

DEGs–miRNA
interaction

Shared DEGs between
COVID-19 and each of the
digestive disorders

Network Analyst [47] Networks of
DEGs–
miRNA

Interactions between
DEGs and miRNAs

DEGs–TFs
interaction

Shared DEGs between
COVID-19 and each of the
digestive disorders

Network Analyst [47] Networks of
DEGs–TFs

Interactions between
DEGs and TFs

Protein–
chemical
interaction

Shared DEGs between
COVID-19 and each of the
digestive disorders

Network Analyst [47] Networks of
proteins–
chemicals

Interactions between
proteins-chemicals
agents

DEGs from the digestive disorders and found 108, 357 and 267
dysregulated genes for celiac, Crohn’s and ulcerative colitis dis-
orders, respectively. The volcano plots presented in Figure 1
shows the DEGs for digestive disorders with the red dots. The
number of shared DEGs between COVID-19 and three digestive
disorders are presented in the Venn diagram shown in Figure 1D.
COVID-19 shared 5, 11 and 13 dysregulated genes with celiac,
Crohn’s and ulcerative colitis. The five shared DEGs between
celiac and COVID-19 are KLRG1, NLRP3, IRAK3, MAFB and DDIT4.
The family of Chemokine (C-X-C motif) genes, such as CXCL1,
CXCL5, CLXL8, CXCR1, are highly expressed in the interaction
between COVID-19 and Crohn’s disorder. We have found that 3
out of 11 shared genes between ulcerative colitis and COVID-
19 are immunoglobulin-related DEGs such as IGKC, IGLJ3 and
IGHA1. The DEGs shared between COVID-19 and digestive condi-
tions and their relationships from the perspective of adjusted P-
value and log2 fold-change are presented in the heatmaps shown
in Figure 1E and F, respectively.

Identification of shared DEGs between the PBMC of
immune response COVID-19 and digestive diseases

We have also analyzed the immune response from the PBMC of
patients having SARS-CoV-2 infection and digestive comorbidity.
Figure 2 shows the shared DEGs between the immune response
of COVID-19 samples and digestive disorders. At first, we have
identified 153 dysregulated genes in the COVID-19 immune
response data. Next, we have discovered the overlapping genes
between COVID-19 and other digestive conditions, which is
depicted in the Venn diagram in Figure 2A. It is observed
that the COVID-19 immune response sample does not share
any DEGs with ulcerative colitis, whereas it shares 2 and 11
DEGs with celiac and Crohn’s disorders, respectively. The two
overlapping DEGs between celiac and SARS-CoV-2 infection are
CD79B and MBP. In the case of Crohn’s, two interleukin 1 receptor
DEGs (IL1RL2 and IL1RAP), CD247, GNLY, EGR2 are some of the

overlapping DEGs. We have also presented two heatmaps
to show the associations among the overlapping DEGs. The
heatmap presented in Figure 2B depicts the association between
gene and diseases with adjusted P-value, and the heatmap
shown in Figure 2C shows the relationship between gene and
diseases considering log2 fold-change.

I analysis shows the hub proteins and the interaction among
proteins Next, We have employed PPI analysis with the shared
DEGs between COVID-19 and digestive disorders. First, common
DEGs from both whole-blood and immune response samples are
used to construct the PPI network shown in Figure 3A. The rect-
angle boxes in the figure show the proteins involved in each of
the digestive disorders and COVID-19. The edges show the inter-
action among the proteins, and thickness between the edges
indicate the strength [43] of the relation among the proteins.
The proteins with several connecting edges can be identified as
hub proteins [52] [see Discussion for details]. Figure 3B shows
a network of hub proteins. The network has been generated
using Cytohubba [53] package of Cytoscape. As it is seen from
this figure, CXCL8 has the highest connectivity among other
proteins of the PPI network. The hub protein network displays
the interaction of the hub proteins among each other. CXCL1,
FN1, GZMB are also highly expressed among the hub proteins.

Functional enrichment analysis identifies significant
cell signalling pathways and GO terms

To identify significantly enriched cell signalling pathways and
functional GO terms (biological process) with DEGs, we con-
ducted functional enrichment test using Enrichr [46] tool. In this
analysis, we have combined all the DEGs that have been dis-
covered in the interaction of both COVID-19 PMBC and immune
response cells with the digestive tract diseases and merged all
the pathways from six pathway databases collected from Enrichr
[46] libraries, i.e. BioPlanet, BioCarta, KEGG, Panther, Reactome
and WikiPathways. We have considered the pathways for which
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Figure 1. Red dots presented in volcano plots as shown in (A, B,C) represent the significant DEGs of celiac, Crohn’s and ulcerative colitis, respectively. The criteria chosen

to be considered as DEGs are (i) absolute value of log2 fold-change � 1 (ii) adjusted P-value <0.05. The Venn diagram in (D) shows the number of DEGs and common

DEGs among the conditions including COVID-19. Heatmaps show the relationships among common DEGs of different conditions based on (E) adjusted P-value and (F)

log2 fold-change.

adjusted P-value is less than 0.05 and plotted the top 40 path-
ways for each of the digestive diseases in Figure 4. The pathways
with higher logarithmic adjusted P-value are considered as sig-
nificantly enriched. For example, the cytokine–cytokine receptor
interaction pathway is the most significantly enriched pathway
in the interaction between Crohn’s and COVID-19 as observed

from Figure 4A. In addition, the family of interleukin pathways
is most significantly enriched in Crohn’s–COVID comorbidity.
We have also discovered some liver disorder-related pathways
such as hepatitis C and hepatocellular carcinoma and hepatitis
B. Immune system pathway also show significant enrichment,
which represents the pathways between celiac and COVID-19 as
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Figure 2. The Venn diagram in (A) shows the number of DEGs and overlapping DEGs among the disorders. The criteria chosen to be considered as DEGs are (i) log2

fold-change � 1 (ii) adjusted P-value <0.05. Heatmaps show the relationships among overlapping DEGs of different disorders based on (B) adjusted P-value and (C) log2

fold-change.

show in Figure 4B. Several interleukin-1, Toll-like receptor (TLRs)
pathways are also enriched in the celiac disorder. Moreover,
the immune system, spinal cord injury, C-type lectin receptor
signalling and interleukin-1 signalling pathways are common in
both celiac and Crohn’s diseases with the influence of SARS-
CoV-2 infection. Similar to the case of Crohn’s, the immune
system pathway is also highly enriched in ulcerative colitis
and COVID-19 pathways (Figure 4C). Scavenging of haeme from
plasma, cytokine signalling in the immune system and FCERI-
mediated MAPK activation are also among highly enriched path-
ways. In addition, we have observed several FCERI, ERBB2 and
FGFR-related pathways in the association between COVID-19
and ulcerative colitis.

Furthermore, we have also conducted GO term enrichment
using the same set of common DEGs. For this purpose, we have
used the GO biological process (2018) database collected from
Enrichr [46] libraries. The significantly enriched GO terms are
identified if the enrichment yields high logarithmic value of
adjusted P-value. Figure 5 displays the top 40 GO pathways of
COVID-19 in relevance to digestive disorders. Positive regulation
of neutrophil chemotaxis ontology term is highly enriched in
Crohn’s disorder in presence of COVID-19 as observed from
Figure 5A. Several neutrophil-related GO pathways are also
highly enriched. Negative regulation of the immune system
process and negative regulation of immune response are

highly enriched GO pathways in celiac–COVID-19 interaction
(Figure 5B). Also, the family of several interleukins related and T-
helper 2 cell-related GO terms can be observed mostly between
celiac and SARS-CoV-2 infection. In the case of ulcerative colitis,
retina homeostasis is the most significantly enriched GO term.
There are several cytokine-related GO terms are observed from
Figure 5C.

GRN analysis identifies networks of DEGs–miRNA
and TF–gene interactions

We have used the common DEGs between COVID-19 and the
other three digestive diseases. As we have done in the pre-
vious analysis, we have combined DEGs from both PBMC and
immune response samples. The DEG–miRNA interactions net-
work is displayed in Figure 6. The circles in the figure repre-
sent the dysregulated genes, and the squares represent the
miRNAs. Lines connecting the nodes (circles or squares) of the
networks represent the association among the nodes. Nodes
in a network that connect several edges are termed significant
nodes than others. For example, the network representing the
DEG–miRNA association between COVID-19 and celiac is dis-
played in Figure 6A. In this figure, PTGS2, CXCL8, CXCL1, IL1RAP,
MME, EGR3, CXCL5, EGR2 connect several miRNAs. In the case
of COVID-19 and Crohn’s disorder interaction, we can observe
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Digestive disorder comorbidities of SARS-CoV-2 7

Figure 3. (A) PPI network of common DEGs in COVID-19 and digestive disorders. Square boxes represent the proteins shared by COVID-19 and corresponding disease.

For example, the top right box represents the proteins that are common in the interaction between COVID-19 and celiac diseases. Proteins having several edges are

highly expressed. (B) Hub protein network shows 10 hub proteins based on the number of interactions. CXCL8 has the highest interaction with other proteins.

DDIT4, MAFB, KLRG1, IRAK3 and MBP from Figure 6B, and among
them DDIT4 and MAFB are more significant since these two
DEGs have a higher degree (number of connecting edges) among
the others. As far as miRNA is concerned, hsa-mir-124-3p is
highly enriched. Other enriched miRNAs include hsa-mir-103a-
3p, hsa-mir-16-5p, hsa-mir-107 and has-let-7b-5p. In ulcerative
colitis–COVID-19 interaction (Figure 6C), the significant genes

from the DEGs–miRNA network can be observed as PLBKHA1,
CYP1B1, FN1, ZNF91 and PCTP. The dark brown squares repre-
sent significant miRNAs such as hsa-mir-7-5p, hsa-mir-30a-5p,
hsa-mir-335-5p.

We have also identifiedTF–DEGs interaction networks
of celiac, Crohn’s and ulcerative colitis with SARS-CoV-2
infection. The TF–DEGs networks are displayed in Figure 7.
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8 Nashiry et al.

Figure 4. Top 40 cell signalling pathways based on the adjusted p-values between COVID-19 and digestive disorders. The pathways have been formed by combining

the DEGs that are common in digestive disorder and both COVID-19 whole-blood and immune response samples. Figures (A, B and C) show the pathways for celiac,

Crohn’s and ulcerative colitis, respectively.

Circles and squares in the figure represent DEGs and TFs,
respectively. Figure 7A displays TF–DEGs network between
COVID-19 and celiac. As it can be seen, the significant DEGs in
this network include EGR2, EGR3, CAPN3, ZAP70, CXCL5, KLRD1,
LTF, CXCL1, GZMB. Significant TFs include FOXC1, GATA2, YY1,
FOXL1, GATA3, STAT3. Figure 7B shows the TF–DEGs network
between Crohn’s disorder and SARS-CoV-2 infection. The highly

expressed gene in this network includes NLRP3, IRAK3, MBP,
MAFB and KLRG1. FOXC1, GATA2, SREBF1 are among significant
TFs as we observe from Figure 7B. In ulcerative colitis–COVID-
19 interaction, the TF–DEGs network shows that FN1, PCTP,
KIR2DS4, IGJ, PLEKHA1, IL1R2, CYP1B1 are among the highly
expressed gene, and FOXC1, GATA2, FOXL1, YY1, NFKB1, PRDM1
are among significant TFs.
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Digestive disorder comorbidities of SARS-CoV-2 9

Figure 5. Top 40 GO terms based on the adjusted P-values between COVID-19 and digestive disorders. The GO terms have been identified with the combined DEGs that

are common in digestive disorder and both COVID-19 whole-blood and immune response samples. (A–C) display the GO pathways for celiac, Crohn’s and ulcerative

colitis, respectively.

Protein–chemical compounds analysis identifies
interactions between protein and chemical agents
Protein–chemical interaction is an important study to under-
stand the protein functionality of proteins underpinning the
molecular mechanisms within the cell, which may also help
in the process of drug discovery. We have discovered the
protein–chemical interaction networks of celiac, Crohn’s and

ulcerative colitis with SARS-CoV-2 infection. The protein–
chemical interaction networks are presented in Figure 7. Circles
and squares in the figure represent proteins and chemical
agents, respectively. Figure 8A displays the protein–chemical
interaction network between celiac and SARS-CoV-2 infection on
the human body. The significant proteins that can be identified
from this network include DDTI4, MBP, MAFB and NLRP3. As far
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Figure 6. DEGs-miRNA networks of (A) Crohn’s and COVID-19 (B) celiac and COVID-19 and (C) ulcerative colitis and COVID-19. The networks are filtered with the

betweenness value of 100. The circles represent DEGs and the squares represent miRNA. The highly expressed DEGs are presented with larger size and darker colour.

as chemical agents are concerned, Aflatoxin B1, Trichostatin
A, Valproic acid are some of the highly enriched as observed.
Figure 8B shows the protein–chemical network between Crohn’s
disorder and SARS-CoV-2 infection. The highly expressed protein
in this interaction includes PTGS2, CXCL8, CXCL1, CXCL5, CXCR1,
EGR2 and CD247. In the case of ulcerative colitis and SARS-CoV-
2 interaction, we have found CYP1B1, FN1, IL1R2 and EREG are
highly expressed proteins as we can observe from Figure 8C.

Discussion
This work investigates the influences of SARS-CoV-2 infection
on patients with digestive tract disorder. We have considered
three digestive disorders and two datasets on SARS-CoV-2
infection and determined the DEGs from each of the datasets
representing these diseases. Then, we have identified the shared
DEGs between each of the digestive disorders and each of the
datasets of SARS-CoV-2. In comparing the DEGs of celiac with

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab126/6276015 by guest on 18 D

ecem
ber 2024



Digestive disorder comorbidities of SARS-CoV-2 11

Figure 7. Association between COVID-19 and digestive tract disorders from the perspective of dysregulated gene and TFs. (A–C) displays the tf-gene networks of COVID-

19 with Crohn’s, celiac and ulcerative colitis, respectively. The circles represent DEGs and the squares represent TFs. The highly expressed DEGs are presented with

larger size and darker colour.

two datasets (whole blood and immune response) of SARS-
CoV-2 infection, we have identified 7 DEGs shared between
celiac and COVID-19. The heatmaps in Figures 1 and 2 show the
relationship between celiac and COVID-19 with respect to these
DEGs. We have found IRAK3 (Interleukin 1 Receptor Associated
Kinase 3), which belongs to the family of the interleukin-1
receptor-associated kinase protein is an important gene in

mucosal immunity in the intestine, which acts as a cytoplasmic
homeostatic mediator of inflammatory responses and inhibits
signalling cascades downstream of myddosome complexes
associated with TLRs. It has been reported that the alteration
in IRAK3 is associated with susceptibility to asthma [54]. In
addition, we have identified DDIT4 (DNA damage-inducible
transcript 4) and MBP (myelin basic protein). DDIT4 plays an
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Figure 8. Association between COVID-19 and digestive tract disorders from the perspective of protein and chemical agents. (A–C) displays the protein–chemical

networks of COVID-19 with celiac, Crohn’s and ulcerative colitis, respectively. The circles represent proteins and the squares represent chemical compounds. The

highly expressed proteins are presented with larger size and darker colour. The squares having several edges are most expressed chemical agents.

important role in DNA damage and energy stress, and the
diseases associated with this gene include tuberous sclerosis,
diabetes and bladder urothelial carcinoma [55], which has been
demonstrated to be a proliferation-promoting and oncogenic
protein in gastric cancer cells. Moreover, MBP is a significant
gene that is linked with the nervous system [56]. Besides, the

mutation in MBP is associated with the bone marrow and the
immune system. One study shows suggest that MBP suppressed
COX-2 expression play important role in the inhibition of growth
and progression of gastric cancer indicating its important role
in the immune defence system [57]. Altogether, these genes
play vital roles in facilitating the immune system to fight when
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infected with SARS-CoV-2. We have identified 22 genes from
both whole-blood and immune response samples of SARS-CoV-
2 with Crohn’s disorder. We have discovered several shared
genes from C-X-C Motif subfamilies of chemokine between
Crohn’s and COVID-19 such as CXCL1, CXCL5, CXCL8 and CXCR1.
Chemokines and their receptor families are important mediators
for leukocyte migration to inflammatory sites such as those
infected with SARS-CoV-2. The finding of these genes in our
analysis also validates the idea that the family of C-X-C Motif
genes might be the primary driver of the signature pathology
observed in COVID-19 patients [58]. Alternate expression of
CXCL1 is associated with the growth and progression of certain
tumours. CXCL8 is interlinked with melanoma and respiratory
distress. CXCR1 as well as CD247 and ZAP70 are responsible for
several immunodeficiency disorders [59–61]. These indicate that
the CXCL family proteins play a crucial role in inflammation
during SARS-CoV-2 infection. EGR2 and EGR3 belong to the EGR
family of C2H2-type zinc-finger proteins. Egr2 and Egr3 are
vital for humoral immune tolerance in T cells. In SARS-CoV-2
patients, this might be functioning as a negative regulator of the
T-cell activation so that there is a considerable balance between
the activation and overactivation after infection. Recent studies
show that the presence of GNLY can also be observed with
COVID-19 patients having heart disease [31]. GNLY functions as a
chemoattractant for T cells, monocytes and other inflammatory
cells and stimulates several other cytokines and also helps in the
recruitment of immune cells to the infection site as observed in
SARS-CoV-2 infection. These genes are associated with bone
disease, bipolar disorder and several neuronal developmental
disorders [62, 63]. The presence of this gene might lead to
further investigation towards the fact that SARS-CoV-2 affects
the cardiovascular system of patients yielding greater fatality
risks [64]. As far as ulcerative colitis is concerned, we have found
several immunoglobulin-related DEGs such as IGKC, IGLJ3 and
IGHA1, mutations in which might damage the human immune
system [65]. We have also found KIR2DS4, which is a killer cell
immunoglobulin-like receptor gene and responsible for other
disorders besides GI diseases such as eye diseases, skin diseases
and neuronal diseases. The finding of these genes presents
evidence in connection with COVID-19 with skin and neuronal
disorders [66–68]. Based on the number of shared signature
genes, we have observed that SARS-CoV-2 infection affects
mostly Crohn’s disease among the digestive disorders. Although
Crohn’s diseases primarily affect the small intestine of a human
body, this disease can attack any part of the digestive system
unlike the other two conditions, which generally affect specific
parts of the human digestive system.

With these dysregulated genes, we have conducted the PPI
network analyses. Here, proteins with a minimum degree of
5, i.e. proteins that are connected to at least five edges are
considered as hub proteins in the PPI network. As observed
from the Figure 3, NLRP3 is the only hub protein for celiac. FN1
and IL1R2 can be considered hub proteins for ulcerative colitis,
and in the case of Crohn’s, we may consider CXCR1, CXCL1,
CXCL8, GZMB, PTGS2 and CD247 as hub proteins. These proteins,
as have been discussed earlier, are involved in several other
disorders. We have also identified significantly enriched GO
terms and signalling pathways with the DEGs. These pathways
and GO terms might determine the linkage among genes to
identify potential therapeutic interventions. For example, the
influence of SARS-CoV-2 infection on Crohn’s disorder reveals
several Cytokine related pathways including chemokine and
interleukin. Cytokines are significant in defending against

infections and in other immune response [69]. The dysregulation
in Chemokine and Interleukin might lead to inflammation
and immune disorders. Interleukin-related pathways are also
most expressed in celiac comorbidity with SARS-CoV-2 as we
observe from our analysis. Interleukin-1 is an inflammatory
cytokine, which has diverse physiological functionality and
plays a significant role in health and disease. However, once
the normal functionality of the interleukin-1 and its family
such as interleukin-1-β are disrupted, they may significantly
contribute to the pathogenesis of not only inflammatory disease
but also malignancies [70]. The identified pathways also support
the findings presented in [71]. Overall, the GO terms indicate
the activation of immune system pathways that help in the
development, activation, regulation, migration and response in
both innate and adaptive immunity.

We have discovered DEG–miRNA, TF–DEG and protein–
chemical agents interaction networks in order to understand the
significance of the DEGs shared by SARS-CoV-2 infection with
digestive disorders. In the case of celiac, the most expressed
DEGs in these networks include DDIT4, MAFB, MBP, KLRG1,
IRAK3 and NLRP3. We have identified hsa-miR-124-3p as the
most expressed mi-RNA, which is associated with IRAK3, KLRG1,
MAFB and DDIT4 genes. The hsa-miR-124-3p is involved in
tumour progression, and the lower expression of hsa-miR-124-
3p is likely to be correlated with the poor survival of patients with
hepatocellular carcinoma [72]. We have found GATA2, FOXC1
and SREBF1 among more expressed TFs that are associated with
DEGs shared between celiac and COVID-19. These factors are
linked with other severe diseases such as neural, fatty liver
disease, cancer[73, 74]. We have identified several interactions
between proteins and several crucial chemical agents such as
Aflatoxin B1, Trichostatin A and Valproic acid. Aflatoxin B1 is a
common contaminant in a variety of foods including peanuts,
corn and other gluten-based products. This chemical agent is
a toxic substance that can damage the liver and can be the
primary cause of Hepatocellular Carcinoma (HCC) [75]. Valproic
acid is also a treat to the liver of the human digestive system.
This acid may cause serious birth defects and bring harm to the
spinal cord and brain [76]. These results provide evidence on the
pathways and ontology, which has been found in this work, as
we have found pathways that are related to the liver, spinal cord
injury and neural diseases. These three chemical components
are also associated with the protein-chemical interaction of
SARS-CoV-2 infection with IBD (Crohn’s and ulcerative colitis
disorders). We have discovered several significant miRNAs in
the interaction between Crohn’s and COVID-19 such as hsa-mir-
1-3p, hsa-mir-124-3p, hsa-mir-129-2-3p. Studies have shown
that miR-1-3p is known to be involved in heart diseases [31]
and also plays significant roles in the development of human
cancers such as lung cancer, bladder cancer or prostate cancer
[77]. These two mi-RNAs are also available in the network of
ulcerative colitis and COVID-19. Similar to the celiac disease,
we have found GATA2, FOXC1, SREBF1 TFs in Crohn’s and
ulcerative colitis. In addition, GATA3, PPARG, NFKB1, FOXL1
are also some highly expressed TFs in IBD. FOXC1 and FOXL1
belong to the forkhead box (FOX) family of TFs. These two
genes significantly regulate intestine functionality and also
play important role in the pathogenesis of heart diseases [78].
Karban et al. [79] showed that increased expression of NFKB1
(nuclear factor kappa B subunit 1) is one of the important causes
of ulcerative colitis, which is concordant with our findings.
Besides, NFKB1 is associated with immune deficiency and renal
diseases.
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Conclusion
In this work, we have considered RNA-seq data of SARS-CoV-
2 infection in human, and microarray datasets of three diges-
tive disorders. This study focuses on the identification of the
biomarkers between the association of SARS-CoV-2 and diges-
tive disorders from the perspective of molecular and cellular
levels. The result of this study has discovered several signifi-
cant genes such as IRAK3, DDIT4, MBP, CXCR1, CXCL1, CXCL8,
CD247, GNLY, EGR3, IGLJ3 and FN1 to name a few. Our result
also reveals that the number of shared genes between Crohn’s
and COVID-19 is greater than other two digestive disorders.
We have provided gene expression analysis with the identified
biomarker to discover the cell signalling pathways and GO terms.
In addition, we have performed PPIs to identify the significant
proteins and their relationships in COVID-19 patients’ bodies
with the presence of disorder on the GI tract. We have also
identified the hub proteins, and our result reveals CXCL8 is the
most expressed protein based on the number of interactions
with other proteins. Moreover, the GRN analysis identifies the
involvement of potential TFs and miRNA, which highlights the
risk factors associated with SARS-CoV-2 infection. The analysis
of the interaction between proteins and chemical compounds
reveals the presence of significant chemical agents. Our overall
analysis discovers the involvement of biomarkers in other risk
factors such as disorders of the cardiovascular, renal, brain and
autoimmune, which provides the evidence on the influence of
SARS-CoV-2 infection on different parts of the human body. We
hope that the results found in this study facilitate significant
insights that might help in developing novel/repurpose existing
therapeutic strategies to combat COVID-19.

Key Points
• This work focuses on the influences of SARS-CoV-2

infection on individuals having digestive disorders.
• Using RNA-seq datasets derived from COVID-19 posi-

tive patients with celiac, Crohn’s and ulcerative colitis
as digestive disorders, we have found a significant
association with the digestive tract disordered tissues.

• We employed global transcriptomic data to explore
their shared expression profile and their co-
expression, important biomarkers, regulatory
networks (transcription factors and miRNAs) and
signalling pathways that could influence each other’s
clinical outcome.

• The important genes, proteins and signalling path-
ways could be useful as therapeutic targets and molec-
ular checkpoints to control the COVID-19 pandemic.

• this study could aid in our understanding of COVID-19
progression due to prevalent health conditions and its
further health impact.
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