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One of the strengths of structural equation model-
ing (SEM) is the ability to test models that represent
a complex set of theoretical hypotheses. The set of
hypothesized relationships is specified and commonly
represented graphically in the compact form of a path
diagram. The model and its associated path diagram
contain one or more of three components. It may con-
tain a hypothesized measurement component that re-
lates the observed (measured) variables to underlying
constructs (Figure 13.1A). It may contain a structural
(path) component that portrays the hypothesized causal
relationships between the constructs (Figure 13.1B). It
may contain a hypothesized mean component that por-
trays similarities and differences in the level of the con-
structs, potentially as a function of other variables (Fig-
ure 13.1C). Once a path model is specified, an important
question arises: How well does the hypothesized model
fit observed data on each of the variables?

The path model diagram implies a set of algebraic
equations whose parameters (e.g., factor loadings in A,
factor variances and covariances in W) are estimated,
typically through maximum likelihood (ML) or gener-
alized least squares (GLS) estimation procedures. For
the confirmatory factor analysis (CFA) model in Figure
13.1A,

(13.1)
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where X is the population covariance matrix of the ob-
served variables, A, is the matrix of factor loadings, ¥
is the matrix of factor covariances, and ©, is the covari-
ance matrix of residuals. The parameters estimated for
the specified model, in turn, provide the machinery for
calculating what the variances, covariances, and means
of the variables would be, if in fact the model were true
(model-implied estimates). The key question for assess-
ing the overall fit of the model is how well the estimates
implied by the model match the variances, covariances,
and means of the observed data.

This chapter addresses two related but different
questions. First, we may wish to answer the question of
model fit: Does the hypothesized model provide an ad-
equate fit to the data? Second, we may wish to answer
the question of model selection: If multiple competing
models have been proposed, which of these models
provides the best account of the data? Or, alternatively,
which competing model is most likely to replicate in
another sample drawn from the same population? We
focus on the model fit question in the initial part of the
chapter, returning to brief consideration of the model
selection question at the end of the chapter. We also
briefly consider other key aspects of model evaluation
beyond those of overall model fit.

We begin by reviewing the properties of the chi
square (x?) test statistic and several “practical” indices
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FIGURE 13.1. (A) Two-factor confirmatory factor analy-
sis model. (B) Path model with four measured variables
(Fishbein—~Azjen model). (C) Linear growth model with
four time points.
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sample size in estimation, the criterion that dominated
the evaluation of fit indices in the last part of the 20th
century. We then consider other desiderata for good fit
indices, discovering that other model-related factors
can make it difficult to establish a threshold for good fit.
Most existing work has only studied the performance
of fit indices in simple CFA (measurement) models; we
initially follow this precedent but later consider the use
of fit indices with other, more complex models, such
as growth models and multilevel models. We consider
evaluating the fit of different model components as well
as overall global fit. We also consider other approaches
to evaluating the adequacy of a model. Finally, we con-
sider model selection indices useful for selecting the
best of a set of competing models.

ASSESSING OVERALL MODEL FIT:
THE CHI-SQUARE TEST
AND PRACTICAL FIT INDICES

Most of the practical fit indices involve the chi-square
(%?) test statistic for the hypothesized model, sometimes
in conjunction with same test statistic for a baseline
model (Yuan, 2005). A summary of some of the equa-
tions, original sources, and key properties of several
commonly used fit indices is presented in Table 13.1.
For covariance structure models, we use the follow-
ing notation. The number of observed variables being
modeled is denoted p, and their covariance matrix,
based on a sample size of N, is S. The corresponding
population covariance matrix is X. The covariance ma-
trix reproduced by the model using g estimated param-
eters is 3(0), where 0 represents a vector of free pa-
rameters estimated by the model (factor loadings in A;
factor variances and covariances in ¥; unique variances
and covariances in ©). Each of the covariance matrices
S, %, ﬁ:(e)), has p* nonredundant elements, where p* =
p(p + 1)/2. The model estimation procedure attempts
to minimize a discrepancy function F, which achieves
a minimum value £ A general form of the discrepancy
function is presented in Equation 13.2 (Browne, 1974):
F =(s—6(0)) W™ (s—6(0)) (13.2)
where s is a vector containing the p* nonredundant ele-
ments in the sample covariance matrix, 6(6) is a vector
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(Joreskog, 1967):

F=log|2(0 -tr|SX(0)"|-log|S|-p (13.3)

where tr is the trace of the matrix.

Chi-Square (Likelihood Ratio) Test

For standard ML estimation (Equation 13.3), under the
null hypothesis that the model-implied covariance ma-
trix equals Z(0), the population covariance matrix X,
the test statistic 7= (N — 1)f follows a central ¥ distri-
bution with degrees of freedom (df) equal to p* — g. fis
the minimum of . g is the number of parameters to be
estimated. Important assumptions underlying this test
statistic are that (1) the observed variables have a mul-
tivariate normal distribution, (2) N is sufficiently large,
and (3) none of the tested parameters is at a boundary
(e.g., variance = 0). We refer to this expression as the
¥? test (although other such tests are possible; Hu &
Bentler, 1995). If the observed y? exceeds the critical
value given the df and the nominal Type I error rate
(typically o = .05), the null hypothesis that £(6) = Z is
rejected. This means that the null hypothesis of perfect
fit in the population is false, the assumptions are wrong,
or both. As we discuss below, this y? test has limitations
and is not always the final word in assessing fit.

This %2 test can be considered a special case of the
likelihood ratio (LR) test for nested models. A model is
nested within another if its estimated parameters are a
subset of the estimated parameters in the other model
(see Bentler & Satorra, 2010). Typically, this occurs
when a parameter is set equal to a fixed value (e.g., ¥y,
= 1) or two or more parameters are set equal (e.g., A;, =
Ay, setting the factor loadings of indicators 1 and 4 on
their respective factors equal; see Figure 13.1A). The
null hypothesis is that the model estimating fewer pa-
rameters (Fewer) fits no worse in the population than
the model estimating more parameters (More). The LR
test statistic is presented in Equation 13.4:

AX2 = XzFewer - X2More Adf = df Fewer — df More (134)

Given that previous assumptions (1), (2), and (3) are
met and that the two tested models are not too discrep-
ant from the true model in the population (Steiger, Sha-

piro, & Br  ne, | Ayt thedi ‘enceb veenthe

» tested models' - values, follows a y? distribution
under the null hypothesis, with df equal to Adf (Bentler
& Bonett, 1980). The y? test of overall model fit tests
the null hypothesis that the tested model fits no worse
than a saturated model, which estimates p* parameters
and fits the data perfectly. The saturated model has a
%2 value of O with df = 0. A saturated model exists for
all covariance structure models; however, some more
complex models do not have a known saturated model
or the standard saturated model is incorrect.

Joreskog (1969), who introduced the %2 test of fit in
the context of covariance structure models, also noted
its limitations (see also Bentler & Bonett, 1980; James,
Mulaik, & Brett, 1982; Tucker & Lewis, 1973). A major
problem with the 2 test is that as N increases, its power
to detect even trivial differences between X(0) and S
approaches 1.0. A model that accounts for the major
sources of covariance in the data, even if it ignores what
Joreskog termed “minor factors,” can still be of practi-
cal value—"all models are wrong, some are useful”
(Box, 1979, p. 202). Models may be considered to be
approximations of reality a priori, so the null hypoth-
esis of exact fit is not expected to be retained (Cudeck
& Henly, 1991; Joreskog & Sorbom, 1981; MacCallum,
Widaman, Preacher, & Hong, 2001; Steiger & Lind,
1980). In short, the null hypothesis of exact overall fit
tested by the %2 test is often not of general interest.

Other problems with the %2 test have also been raised.
Because researchers hope to retain the null hypothesis
(thus supporting the theoretically hypothesized model),
the use of the 2 test statistic encourages the use of
small samples (Bentler & Bonett, 1980; Meehl, 1967).
Small samples, in turn, potentially obscure poor fit and
yield less precise estimates of the free (estimated) pa-
rameters in a model. The test statistic T is not likely
to follow a ¥? distribution when the observed variables
are not multivariate normal and or when N is small
(Bentler, 1990; Joreskog & Sorbom, 1981). Even when
its assumptions are met, the 2 test tends to reject true
models at higher than the nominal rate in small samples
(Boomsma, 1982); conversely, the %2 test often has low
power to detect meaningful levels of model misspecifi-
cation in small samples (Gallini & Mandeville, 1984).
Researchers have developed practical fit indices in an
attempt to overcome some of these problems. Special
emphasis has historically been placed on the criterion
that the value of fit indices for correctly specified or
slightly misspecified models should not be affected by
sample size (e.g., Marsh, Balla, & McDonald, 1988).
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Goodness- or

Theoretical ~ Cutoff Penalty for model
ex Reference badness-of-fit index range criterion  Sensitiveto N complexity?
T xZ=(N-1f Joreskog (1969) Badness 20 p<.05 Yes No
x2/df Joreskog (1969) Badness 20 < 5 Yes Yes
3 GFl=1— :a‘s’ Joreskog & Sorbom (1981)  Goodness 0-1 > 95¢ Yes No
AGFI =1—’;—f(1—GFI) Joreskog & Sérbom (1981) Goodness 0-12 N/Ade Yes Yes
* p

GF* - To=d Maiti & Mukherjee (1990); Goodness 0-1 > 95 No No

p+2 Steiger (1989)

N-1

AGFI* =1— Z—f(1 —GFI*) Maiti & Mukherjee (1990); Goodness 0-12 N/Ae No Yes

Steiger (1989)
RMR=[p*" (e’le)]" Joreskog & Sorbom (1981) Badness >0 N/Ae! Yes No
SRMR = [p*~' (e’'W,e)]"* Bentler (1995) Badness >0 < .08 Yes No

) mavin? _gf, 0) )
T9 RMSE/ T Steiger & Lind (1980) Badness >0 < .06 Yes to small N Yes
Ui \IV"
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T10 T =+ (22)  Tucker & Lewis (1973) Goodness 0125 > .95 No Yes
A0 Y0
h=f _xe-x
NF|=—f—=—7—(2— (7)  Bentler & Bonett (1980) Goodness 01 > .95¢ Yes No
0 0
2 a2
T2 R ) Bollen (1989); Marsh et al. Goodness > (b >.95  YestosmallN Yes
Ko~ (1988)
2_df)—(x2-df,
3 RNI= (x—"—(“—z,)?(;f")—k) 3 Bentler (1990); McDonald & Goodness > Qb >.95 No Yes
Xo —0hy Marsh (1990)
mav(y 2 _df 0)-max(y? -df,,0
T4 oA "% = 96.0) —max(y, ~d,0) (42)  Bentler (1990) Goodness 0-1 > .95 No Yes

max(x; — df,0)

 statistic; GFI = goodness-of-fit index; AGFI, adjusted goodness-of-fit index. GF{*, revised GFI; AGFI*, revised AGF!; RMR, root mean square residual; SRMR, standard-
ssidual; RMSEA, root mean square error of approximation; TLI, Tucker—Lewis index; NFI, normed fit index; IFI, incremental fit index; RN, relative noncentrality index; CFl,
minimized discrepancy function; o, baseline model; &, tested or hypothesized model; of, degrees of freedom; N, sample size; p*, the number of nonduplicated elements in
, a vector of residuals from a covariance matrix; s, a vector of the p* nonredundant elements in the observed covariance matrix; 1, an identify matrix; W, a weight matrix;
= amiagynal weignt matrix used to standardize the elements in a sample covariance matrix; Ay, noncentrality parameter, normed so that it is not negative. The numbers in parentheses in the “Fit
column represent the number out of 55 articles on structural equation models in substantive American Psychological Association journals in 2004 that reported each of the practical fit
lescribed here (see Taylor, 2008). No other practical fit indices were reported.
negative. Negative value indicates an extremely misspecified model.
xceeds 1, the fit index indicates extremely well-fitting model.
caien called non-normed fit index (NNFI).
ndex is affected by sample size.
sutoff criteria have been proposed for this index.
standardized, so will be affected by size of elements in covariance matrix.
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>ractical Fit Indices

1e decade of the 1980s was the heyday of the develop-
nent of new fit indices, and—with apologies to song-
vriter Paul Simon—there must be 50 ways to index
sour model’s fit (see Marsh, Hau, & Grayson, 2003, for
 list of 40). In this section we focus on several practi-
-al fit indices commonly reported in published articles.
ble 13.1 reports the fit indices identified based on a
-omputer and manual search of American Psychologi-
:al Association journals (Taylor, 2008; see also Jack-
on, Gillapsy, & Purc-Stephenson, 2009). Good (and
vad) reasons exist for the use of these particular indi-
es, such as the precedent of use by other researchers,
heir routine computation by SEM software, and posi-
ive evaluations in reviews (e.g., Hu & Bentler, 1998).
Following McDonald and Ho (2002), we distinguish
yetween absolute and comparative fit indices. Absolute
it indices are functions of the test statistic T or of the
esiduals (Yuan, 2005). In contrast, comparative fit in-
lices assess the improvement in fit of the hypothesized
nodel relative to a baseline model. The most restrict-
:d model that is “theoretically defensible” (Bentler &
Bonett, 1980) has become the standard baseline model
stimated by most SEM software packages (e.g., EQS,
_ISREL, Mplus). This independence model estimates
1 variance for each measured variable but permits no
sovariances between measured variables (see Figure
13.2A). This standard baseline model is not always ap-
yropriate for more complex SEM models (McDonald &
\  sh, 1990; Widaman & Thompson, 2003; see Figure
{3.2B). Other baseline models may be justified in some
arch contexts, even for CFA models (e.g., Sobel
johrnstedt, 1985). Another distinction is between
dness- and badness-of-fit indices. Goodness-of-fit
ndices increase (often to a maximum value of 1) with
mproving fit. Badness-of-fit indices decline (often to
)) with improving fit. All comparative fit indices are
1ess-of-fit indices; absolute fit indices can be ei-
oodness- or badness-of-fit indices.
the fit indices presented in Table 13.1, the root
ncan square error of approximation, the standardized
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FIGURE 13.2. (A) Baseline model for a confirmatory factor
analysis model with four indicators. (B) Baseline (intercept
only) model for linear growth model with four time points.

their order of introduction in the literature. Not all of
these fit indices are currently recommended; all con-
tinue to appear with some frequency in published SEM
applications. We note commonly used cutoff values
proposed for those indices that are not affected by N.

x2/df Ratio

The y?/df ratio was never formally introduced as a fit
index but appears to have evolved as an easily comput-
ed, ad hoc measure of fit. Jéreskog (1969), in his con-
sideration of limitations of the ¥? test of overall fit, sug-
gested that the y? value be used more descriptively in the
evaluation of model fit. with the df acting as a standard



13. Mode! Fit and Model Selection in SEM

reference value is heavily influenced by N (Marsh et al.,
1988). Given a fixed N, smaller values of the ¥2/df ratio
indicate better fit; it is a badness-of-fit index. The ¥2/df
ratio has a minimum of 0, which occurs when a model
with positive df has a ? value of 0. Saturated models,
which by definition fit perfectly, have O df; therefore,
they have an undefined ¥2/df. There is no theoretical
maximum for the ¥?/df ratio.

Unlike %2, which can only remain constant or im-
prove as parameters are added to a model, the ¥?/df
ratio can potentially get worse. The ¥?/df ratio penal-
izes model complexity. If added parameters fail to re-
duce a model’s y? appreciably, the ¥2/df ratio will get
worse because adding parameters reduces the model’s
df. The y*/df ratio suffers from the same problem as the
¥? test—its value is dependent on sample size for mis-
specified models (Marsh et al., 1988).

Goodness-of-Fit
and Adjusted Goodness-of-Fit Indices

Joreskog and Sérbom (1981) introduced the goodness-
of-fit (GFI) and adjusted goodness-of-fit (AGFI) in-
dices. They described these indices as proportions of
variance accounted for, but their formulas did not make
this interpretation transparent. Bentler (1983, Equation
3.5) later reexpressed the GFI formula, clarifying this
interpretation (see Table 13.1, Equation T3). Equation
T3 uses a weight matrix W that is computed from the
elements of 2(8)™' for ML and S-! for GLS. Thus, GFI
is calculated using the weighted sum of squared re-
siduals from a covariance matrix and weighted sums
of squared variances and covariances. It is similar to
the familiar R? measure used in ordinary least squares
(OLS) regression, which can be expressed as

SSresiduaI (1 35)

SS,

total

R =1-

The major difference? between Equation T3 and Equa-
tion 13.5 is the GFTI’s use of the weight matrix W. This
matrix, which appears in the fit function, relates the
( [directly to the estimation procedure, which is typi-
cally a desirable property for a fit measure (Menard,
2000y.
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fit. Equation 13.6 reexpresses Equation T4 to make the
relationship between the GFI and AGFI clearer:

(1-GFI) _df

(13.6)
(1-AGFI) p*

Equation 13.6 shows that the AGFI will be smaller than
the GFI for all realistic models in which at least one
parameter is estimated (df < p*). The AGFI will ap-
proach the GFI as fewer parameters are estimated (as
df approaches p*).

Both the GFI and the AGFI are goodness-of-fit
indices, increasing with improving fit. They are pro-
portions that conceptually have a range of 0 to 1, but
can potentially be negative (Joreskog & Sorbom 1981;
Maiti & Mukherjee, 1990). The GFI will be negative if
€'We > s'Ws (see Equation T3 in Table 13.1), meaning
that the weighted squared residuals are actually larger
than the weighted squared covariances in S! This result
is theoretically possible, but only in extremely badly
misspecified models that would never be entertained by
researchers. In contrast, the AGFI can become negative
whenever GFI < (p* - df)/p* = g/p*. In other words,
the AGFI will be negative whenever the proportion of
variance accounted for by a model, as measured by the
GF], is smaller than the proportion of the p* observed
covariances used to estimate parameters.

Mulaik and colleagues (1989) noted that the relation-
ship between the AGFI and the GFI is analogous to the
relationship between R? and adjusted R? (Wherry, 1931)
in OLS regression. They critiqued the AGFI because,
as noted earlier, it can fall below 0 (as can adjusted R?).
Given that the AGFI is in a proportion metric, negative
values are mathematically uninterpretable, although
such values could only occur with an extremely mis-
specified model. Mulaik and colleagues also questioned
the penalty used by the AGFI to choose more parsimo-
nious models: The GFI is not very sensitive to changes
in a model’s df when the model has a large df to begin
with, particularly as the GFI approaches 1.

Maiti and Mukherjee (1990, Equation 19) and Steiger
(1989, Equation 51) suggested a revised index known as
GFI* (a.k.a., gamma hat) that improves on the proper-
ties of the GFI (Table 13.1, Equation T5). Steiger dem-
onstrated that although the GFI and GFI* asymptoti-
cally estimate the same quantity, the GFI is biased and
the GFI* is unbiased in smaller samples. An unbiased

the AGFI*, can also be calcu-
: 1* fory inl ation
r6inT e co st to
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Ay = max(y’ —df, 0)/ (N —1) (13.8)
where the N subscript indicates that XN has been
normed to keep it non-negative.

Steiger and Lind (1980) suggested two adjustments
to A, to improve the RMSEA’s interpretation. First,
they added a penalty function to discourage research-
ers from overfitting models, dividing A, by its df. Sec-
ond, they took the square root of this result, so that the
RMSEA is in the same metric as the weighted residuals
(see Equation T9 in Table 13.1). Steiger (1989; Steiger
& Lind, 1980; see also Browne, 1974) showed that the
population noncentrality parameter being estimated by
A could be considered as a weighted sum of squared
residuals (see Equation 13.2)

A =¢e'We (13.9)
The residuals are then weighted in the same manner as
in the ML or GLS estimation procedure because the
weight matrix W is the same.

The RMSEA is a badness-of-fit index, declining
with improving fit. The RMSEA is bounded at a lower
value of 0. It has no theoretical maximum. Browne and
Cudeck (1993) suggested that a model with an RMSEA
of .10 is unworthy of serious consideration.

A confidence interval (CI) for the RMSEA is pro-
vided by most computer programs. An iterative proce-
dure is used to find limits of a CI for A, and then these
limits are substituted into the left formula of Equation
T9 in Table 13.1. Steiger and Lind (1980) advocated
using a 90% CI. Browne and Cudeck (1993) extended
the use of this CI to a test of close fit. Noting that in
their experience, RMSEA values of .05 or less indicated
“close fit,” they constructed a test of the null hypothesis

it the true value of the RMSEA < .05, now imple-
mented in many SEM software packages. This null hy-

thesis that the model closely fits the data is1 .ined

‘e lower limit of the RMSEA’s confidence interval
falls at or below .05. Alternatively, an RMSEA whose
upper limit.  eeded .08 or .10 could be deemed unac-

RMSEA underestimates fit at small sample
: 200; see Curran, Bollen, Chen, Paxton, &
)3).

nction F
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analysis they proposed the Tucker-Lewis index (TLI),
which compares M, for the hypothesized model to M,
for a baseline, independence model. (In this and subse-
quent equations for comparative fit indices, quantities
subscripted with 0 come from the baseline model and
quantities subscripted with k£ come from the hypoth-
esized model.)

Bentler and Bonett (1980) generalized the TLI to
the covariance structure analysis context and labeled
it the non-normed fit index (NNFI), although the TLI
designation remains more common. They formulated
the TLI in terms of /df ratios (see Table 13.1, Equa-
tion T10). Their formulation makes clear that the TLI
is conceptually in a proportion metric. In terms of %2/
df ratios, it gives the distance between the baseline and
target models as a proportion of the distance between
the baseline model and a true model. The 1 in the de-
nominator is the expected value of the y%/df ratio for a
true model.

Although the TLI is conceptually in a proportion
metric, it can potentially fall below 0 or above 1. TLI
can occasionally exceed 1 if ¥} / df, <1. By contrast,
TLI can be negative if the denominator is negative
and the numerator is positive. Both conditions under
which the TLI becomes mathematically negative,
x: /df, <x2!df,<1 and 1< /df <y} /df,, require
the baseline model to fit the data very well, a condition
that is unlikely to occur in practice.

The TLI penalizes models that estimate many pa-
rameters. McDonald and Marsh (1990) showed that
it could be rewritten in terms of James, Mulaik and
Brett’s (1982; see also Mulaik et al., 1989) parsimony
ratio (PR): PR = df,/df;,. Thus, PR is the proportion of
the number of parameters fixed in the hypothesized
model relative to the proportion of the number of pa-
rameters fixed in the baseline independence model.
McDonald and Marsh’s reexpression of the TLI is given
in Equation 13.10:

2 2 NN
TLI=1- G —df) Qe = dfy) —1- A (13.10)
df, ! df, PR

Given equal model fit, models with larger PRs yield
larger TLI values. Bollen (1986), in an early critique,
argued that the TLI would be affected by sample size;

vever, Monte Carlo studies (e.g., Marsh et al., 1988)
have cc  stently found that the TLT is not affected by

ety utzer fune alecs R setahn 10 )
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models tested in psychological research, the CFI and
RNI take on identical values. The RNI and CFI will
differ only when a model’s y? is smaller than its df,
characteristic of extremely well fitting models. Under
such circumstances, the RNI exceeds 1, whereas the
CFl is bounded at the maximum theoretical value of 1.
Goffin (1993) pointed out that the RNI and the CFI es-
timate the same population quantity, but this difference
means that they have different strengths. The RNI is a
less biased estimator than the CFI because it does not
truncate its distribution at 1. The CFI is a more efficient
estimator (smaller standard error) because its truncated
distribution discards values that the population index
cannot possibly take on. Goffin suggested that these
qualities make the RNI preferable for comparing com-
peting models, and the CFI preferable for reporting the
fitof asingle mc 1. Both the CFI and RNI are straight-
forward to interpret and are not affected by N.

Sur ary

Our review thus far has considered the characteristics
of commonly used practical fit indices and their perfor-
mance in simple CFA models in which each factor has
a small number of measured indicators. Researchers
have strongly preferred fit indices whose mean values
in simulation studies are independent of N (e.g., Marsh
et al., 1988). This preference parallels psychology’s
increasing use of effect sizes that are independent of
N rather than p-values, which are strongly related to
N (Wilkinson and Task Force on Statistical Inference,
1999). Other desirable unique properties of a specific
fit index (e.g., the confidence interval of the RMSEA;
the proportion of variance interpretation of GFI?) may
argue for its use so long as a minimum sample size
is exceeded that makes bias in its estimation trivially
small. A second important issue is ease of interpreta-
tion. Indices in a proportion fit metric or standardized
metric it is una cted by the scaling of the mea-
sured variables will be easier to interpret than indices
withont these qualities. Using these criteria to cull the
ewed earlier, the fit indices commonly
» literature that are worthy of consider-
i \dardized metric),
), I, and TFI/
roodness-of-fit in-
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sets of fit indices (Hu & Bentler, 1998; Marsh et al,,
2005) also provide favorable evaluations of these fit
indices, as well as others with which there is far less
practical experience.

Proposed Cutoff Values

Most researchers focus on the first question posed at the
beginning of this chapter: Does the hypothesized model
provide an adequate fit to the data? Higher values on
goodness-of-fit indices and lower values on badness-of-
fit indices indicate better overall fit of the model to the
data. But, what is an “adequate” fit? Researchers ide-
ally desire a comparison standard that specifies a single
criterion value that defines adequate fit.

Bentler and Bonett (1980) originally suggested a
standard of .90 for the NFT and TLI (NNFI), fit indices
in the proportion metric (also including the CFI/RNI
reviewed earlier). Hu and Bentler (1995) proposed a cri-
terion of <.05 for what they termed “good fit” and from
.05 to .10 for “acceptable fit” for the SRMR. Browne
and Cudeck (1993) suggested for the RMSEA that a
value of .05 represented what they termed a “close fit-
ting model” and .08 represented an “adequate” fitting
model. These recommendations were based on the re-
searchers’ practical experience with the fit indices in
the evaluation of many CFA models. Hu and Bentler
(1999) later took another approach, conducting a simu-
lation study that addressed the ability of fit indices to
distinguish between correctly specified and misspeci-
fied models. Based on this study, they proposed a crite-
rion of .95 for the TLI and CFI, a criterion of .06 for the
RMSEA, and a criterion of .08 for the SRMR. Thus, Hu
and Bentler proposed replacing the initial ad hoc prac-
tical guidelines with standards based on the results of
a simulation study using a small set of correctly speci-
fied and misspecified covariance structure models. The
rationale for their proposed standards, which focuses
on the acceptance versus rejection of hypothesized
models, has been questione >y Marsh, Hau, and Wen
(2004) because it implicitly reintroduces sample size as
a determinant of the outcome.

We believe that the proposed cutoff values can be
guidelines about the overall fit of the model to the data,
but we caution readers that the reification of specific
cutotf standards for the acceptance versus rejection of a
hypothesized model can be fraught with peril. The next
see 1 ‘ee important issues related to the
use T itindices.
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ISSUES WITH PRACTICAL FIT INDICES

Model Characteristics and Standards
for Fit

We earlier summarized the results of an extensive body
of simulation research attempting to identify practical
fit indices whose estimates are not affected by sample
size. Unfortunately, much less research has investi-
gated the effect of other model characteristics on fit.
The available results suggest that other model and data
characteristics can substantially affect the performance
of fit indices. Within CFA models, Chen, Curran, Bol-
len, Kirby, and Paxton (2008; see also Savalei, 2011)
showed that model specification and df can affect the
performance of the RMSEA. Marsh, Hau, Balla, and
Grayson (1998) have found that as the number of indi-
cators per factor increases, models showed decreased
fit to simulated data with properly specified models.
Kenny and McCoach (2003) found that all fit indices
examined, with the exception of the RMSEA, showed
decreased fit as more indicators were added to a single-
factor model. Marsh and colleagues note that “this
apparent decline in fit associated with larger [number
of indicators per factor] must reflect problems in the
standards used to evaluate model fit rather than mis-
specification in the approximating model” (p. 217).
Saris, Satorra, and van der Veld (2009) have found that
given a constant magnitude of misspecification and
sample size, the numerical value of other parameters
in a model can affect the value of fit indices, with, for
example, higher factor loadings leading to poorer fit
index values. Davey, Savla, and Luo (2005) found that
the values of fit indices for slightly misspecified CFA
models increased as the proportion of missing data in-
creased. Adding random error to a model may improve
its apparent fit! This is not a desirable property.

As mean structures are added to models, other is-
sues arise. The SRMR as commonly calculated only
addresses the discrepancies between the model’s im-
plied and observed covariances; the mean structure is
ignored. For practical fit indices based on the 2 test sta-
tistic, the fit function adds another term to capture the
discrepancy between the observed and model implied
means. A general discrepancy function extends Equa-
tion 13.2 to mean and covariance structures (Browne &
Arminger, 1995):
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where W and V are weight matrices, and X and [1(6)
are the vectors of observed means and model implied
means, respectively. The first term assesses fit in the
covariance structure; the second assesses fit in the
mean structure. Wu, West, and Taylor (2009) note the
complexity of assessing fit for growth models given that
misspecification in one structure can affect the other
structure. In addition, the metrics of fit in the two struc-
tures may be quite different: Taking a traditional stan-
dard for the GFI of .90 or .95 for a CFA model in a large
sample may be an appropriate proportion of variance
for which to account (cf. Tanaka & Huba, 1985), but do
we also expect our model to account for 90% or 95% of
the variance in the latent means? Experience with other
models such as analysis of variance with reliably mea-
sured outcomes would not lead us to expect such high
values. Based on Wu and West’s (2010) study of the
effects of different types of model misspecification and
different data characteristics (e.g., the ratio of the Level
1 to Level 2 variances) on the fit of growth curve mod-
els, Wu attempted to develop standards for fit indices.
She abandoned this effort because standards following
Hu and Bentler’s (1999) accept-—reject criterion varied
dramatically as a function of the type of misspecifica-
tion and data characteristics.

Taken together, these results suggest that appropriate
cutoff standards may be specific to particular models
and data sets. Current standards for interpreting accept-
able model fit are only rough guidelines; they become
increasingly less reasonable as they are extrapolated
to models and data further from the CFA models with
complete data studied by Hu and Bentler (1999).

Baseline and Saturated Models

Several smaller but easily overlooked issues relate to
baseline and saturated models. For comparative fit
indices, most commonly used SEM programs use the
baseline model proposed by Bentler and Bonett (1980),
which estimates a model in which each variable has a
variance, but in which there are no covariances between
variables (see Figure 13.2A). Because of the different
weight matrices used in estimating the baseline model,
comparative fit indices based on different estimation
methods (e.g., GLS, ML) will differ (Sugawara & Mac-
Callum, 1993). GLS
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13. Model! Fit and Model Selection in SEM

parsimony—given similar overall model fit, the model
with fewer parameters will be preferred over an alter-
native model with more parameters (e.g., Mulaik et al.,
1989; Preacher, 2006). As considered in a later section,
fit indices and model selection indices (see Table 13.2)
that penalize model complexity will often, but not al-
ways, be preferred.

Comparing Nested Models

As noted earlier, when the researcher wishes to com-
pare two nested models, the likelihood ratio (LR) test
discussed earlier can be used to determine whether the
imposition of the restrictions on the more restricted
model (yielding fewer parameters estimated) makes a
statistically significant difference in model fit. Unfortu-
nately, the same issues arise with the LR test for com-
parison of nested models that arose earlier for the over-
all o fit test statistic. Small N’s can yield nonsignificant
LR tests, masking important differences between the
models. Conversely, very large N’s can produce statisti-
cally significant ¥? values even when the discrepancies
between the two models are trivial.

Recognizing this issue, some researchers have ar-
gued that a change in practical fit indices that is less
than some cutoff criterion may provide the desired in-
formation about differences in the fit between nested
models. In the context of measurement invariance,
which involves testing a series of nested measurement
models (Widaman & Reise, 1997), Cheung and Rens-
vold (2002) suggested that changes in selected fit in-
dices, inclading the CFI or GFI* among the fit indices
reviewed earlier, appear to provide good performance
in the assessment of measurement invariance. They
proposed specified cutoff criteria for the change in fit
between nested measurement invariance models (e.g.,
.01 for ACFI and .001 for AGFI*).

Note that neither of these fit indices includes a pen-
alty for complexity, presumably because it is more dif-
ficult to compare corrected fit indices against an abso-
lute standard for change. In addition, many of the same
issues noted earlier with respect to the evaluation of fit
indices against a cutoff criterion also appear to apply
in this context (Fan & Sivo, 2009). Chen (2007) noted
that different fit indices tended to he differentiall$ cen-
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Model Selection Indices

‘We consider four model selection indices (and some of
their variants) whose properties have received analyti-
cal and empirical evaluation that have been formally
proposed for the comparison of either nested or non-
nested models (see Table 13.2 for a summary). The
general goal of these indices is to select the model with
highest generalizability to samples with the same N
drawn from the same population. According to Cudeck
and Henly (1991), this model should have the smallest
expected discrepancy between the fitted model covari-
ance matrix and the population covariance matrix.

Akaike Information Criterion

The Akaike information criterion (AIC) was proposed
by Akaike (1973) to measure the expected discrepancy
between the true model and the hypothesized model.
The first term of AIC (Table 13.2, Equation T13) is a
measure of lack of fit; the second term reflects model
complexity, penalizing more complex models. Of im-
portance, the AIC only considers the number of free pa-
rameters in determining model complexity. The model
with the smallest AIC is selected. Although commonly
used, the AIC favors too complex models at small N
due to the fact that it fails to take into account the effect
of N on model selection. To solve the problem, alterna-
tives to the AIC have been proposed that downweight
sample size and therefore may have better performance
in these contexts (e.g., bootstrapped information crite-
rion [EIC]; Ishiguro, Sakamoto, & Kitagawa, 1997).
For example, Bozdogan (1987) developed a consistent
Akaike information criterion (CAIC, Table 13.2, Equa-
tion T16). The CAIC performs better than AIC at small
N and with a large number of parameters. It does not
necessarily favor models with more parameters, unless
N is sufficiently large.

Bayesian Information Criterion

The Bayesian information criterion (BIC) aims to se-
lect the model that is most likely to have generated the
data in the “Bayesian sense” (Myung & Pitt, 2004; Raf-
tery, 1995). The BIC is in fact a large-sample approxi-
mation of the Bayesian model selection procedure that
we describe below. The first term in the BIC (see Table

ion T17) is the same lack of fit measure used

*. The second term is a measure of model
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TABLE 13.2. Model Selection Indices for Non-Nested Models

Equation Measure of model

No. Index Rationaie complexity Pros Cons

T15 AlC=f+2k Selects the model that had Number of parameters. Easy to calculate. Performs well at Tends to select too complex
least expected discrepancy large sample sizes. models. Bad in recovering true
from the true model. model at small sample N.

T16 CAIC = f +[1+In(N)]k Selects the model that had Number of parameters and ~ Easy to calculate. Performs better
least expected discrepancy sample size. than AIC at small sample size and
from the true model. large number of parameters.

T17 BIC=f+kIn(N) Selects the model thatis most ~ Number of parameters and ~ Easy to calcuiate. Performs well Tends to select a model witt
likely to have generated the sample size. under large sample size. few parameters. Bad in reco
data in the Bayesian sense. true mode! at small N.

T18 CV= —|nf(yva| [6.) Selects the model that has Complexity penalty is Easy to calculate. More Requires sample split. Esti
more generalizability to the implicit. consistent with the implication of are often unreliable,  2Ciany wn
sample from the population. generalizability. small sample size.

2k .

T19 ECVI= f+W Expected value of CV. Number of parameters and ~ Can be calculated using one Assumes mul

sample size. sample. More consistent with the
implication of generalizability.

T20 BMS = Info(y |8)m(8)d0  Selects the model with the Number of parameters, Includes more accurate measure on  Computationa
highest mean likelihood of the ~ sample size, and functional ~ model complexity. Leads to more specify and ci
data over the parameter space.  form of a model. accurate model selection. models.

Note. AIC, Akaike information criterion; BIC, Bayesian information criterion; CV, cross-validation index; BMS, Bayesian model selection; 7, minimized discrepancy functio
parameters of the model; N, sample size; In, natural logarithm; y,,, the validation sample; y,,,, the calibration sample; 6, the parameter values estimated by the cafibration
density of the parameters; ©, the parameter space.






In contrast to fit ir :es, N plays an important role
in choosing among competing models. More complex
models are often preferred for large Ns, in the sense
that they are more likely to replicate in a new sample,
even though a simpler model might provide a better ap-
proximation to the population. In contrast, for small Ns,
simpler models are typically preferred because there
are not enough data to support the estimation of param-
eters with sufficient precision in a more complex model
(MacCallum, 2003). Cudeck and Henly (1991) argued
that this effect of sample size should be deemed not as
undesirable but as fundamental to any statistical deci-
sion. It is important to choose the model that performs
best in practice given the specified sample size.

SENSITIVITY OF KEY MODEL PARAMETERS

Beyond the consideration of fit, researchers are con-
cerned about producing unbiased and precise estimates
of key parameters in their hypothesized models. In
some models, such as the Fishbein—Azjen model pre-
sented in Figure 13.1B, researchers may consider each
of the paths to be equally important. In other models,
such as the growth model presented in Figure 13.1C,
researchers may believe that some parameters (e.g., the
mean intercept and slope) are key parameters, whereas
other parameters, such as the values of autocovariances
between the Level 1 residuals, are only of importance
to the extent they may produce more accurate estimates
of the values of the key parameters or their standard
errors (Kwok, West, & Green, 2007).

Several approaches have been proposed for probing
the sensitivity of the estimates of the model parameters
to changes in the model. Saris and colleagues (2009)
proposed focusing on key model parameters. They sug-
gest identifying a value that would reflect a meaning-
ful change in that key parameter, and then conduct-
ing a series of simulation studies in which the values
of other model parameters are varied within plausible
ranges. This approach can be used to investigate each
key parameter separately in turn, but it has not yet been
extended to  rmit the simultaneous investigation of
multiple parameters as a function of changes in other
parts of the model. Millsap (in press) has extended
this approach to permit the examination of alternative
models that fall within a small specified range of the
target model on the RMSEA. An alternative approach
has been proposed by MacCallum, Lee, and Browne
(in press) that more easily allows for the examination

of the joint sen  vity of mult. . parameter estimates.
They propose allowing a small, nonconsequential in-
crease of F from its minimum f, followed by an exami-
nation of the range of values of the key parameters that
are permissible given this slight reduction in fit. They
find that all potential parameter estimates that satisfy
the criterion will fall within an ellipsoid, with one di-
mension for each key parameter. Analysts can choose
to consider dimensions corresponding to two or three of
the key parameters simultaneously to permit visualiza-
tion of the acceptable parameter space. In some cases,
the range of parameter estimates will be reasonable and
little difference in the conclusions of the model could
result. In other cases, the range of potentially accept-
able parameter estimates will be large, even permitting
analysts to conclude that the direction of the parameter
estimates is uncertain, providing the researcher with
little confidence in the conclusions based on fitting the
model.

DISTINGUISHING BETWEEN
EQUIVALENT MODELS

Even when a model fits the data well, other equivalent
models that fit the data equally well typically exist. Fig-
ure 13.3 presents three path models each having 1 df
that provide an equally good fit to a 3 X 3 covariance
structure. These models are data equivalent (see Wil-
liams, Chapter 15, this volume) but have distinctly dif-
ferent substantive interpretations since the directions of
the paths vary. Figure 13.3A presents a model depicting
the full mediation of an effect of X through M, which
in turn influences Y. Figure 13.3B presents a model of
the reverse causal effect, where Y affects M, which in
turn affects X. Finally, Figure 13.3C presents a model
in which M is a common cause of both X and Y. These
models cannot be distinguished with cross-sectional
data. Batchelder and Riefer (1999) proposed the use of
model validation to distinguish between models. In the
present example of a mediational model, developing
manipulations that separately target the X — M path
and the M — Y path could provide experimental data
that would help the researcher to distinguish between
the three models (Spencer, Zanna, & Fong, 2005). Al-
ternatively, a longitudinal panel study (Cole & Max-
well, 2003) in which X, M, and Y were measured at
Times 1, 2, and 3 could provide evidence that allows
the researcher to establish the temporal precedence
of the effects, thereby helping to rule out the..altex -
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FIGURE 13.3. Three data-equivalent path models with
cross-sectional data. (A) Mediational model: X causes M,
which in turn causes Y. (B) Mediational model: Y causes
M, which in turn causes X. (C) Common cause model: M
causes both X and Y.

tive models. Conceivably, model validation strategies
could even be extended to CFA models, for example,
by developing a manipulation expected to affect (1)
only the first factor (1),) but not the second factor (1)),
or (2) only the second factor but not the first factor, as
a means of helping to clarify the measurement struc-
ture (see Figure 13.1A). Although such strategies have
been used widely in other areas (e.g., multinomial tree
models), they have not seen much usage with structural
equation models.

PARSIMONY REVISITED

The focus on achieving accurate estimates of key pa-
rameters raises another issue, the value of parsimony.
Other things being equal, science clearly prefers (1)
models with fewer parameters and (2) models that

e °r he:
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(Preacher, 20 ny is clearly ev-
ident w 1 models involving exploratory components
are being compared. On the other hand, other things
are not always equal. Cole, Ciesla, and Steiger (2007)
have shown that key parameters in structural equation
models can be seriously misestimated if theoretically
justified residual correlations are not included in the
model, even though minimal effects on overall model
fit are observed. Marsh and Hau (1996) have shown that
the failure to estimate relatively small correlated resid-
uals in longitudinal confirmatory factor analysis mod-
els could have effects on estimates of the key stability
parameters, even though model fit is little affected. In
part for this reason, Bentler (1992) has argued that the
assessment of fit and parsimony may often best be kept
separate. This strategy lessens the possibility of delet-
ing model parameters that provide important correction
for artifacts that may plague the model, a practice that
leads to distortion of key model parameters.

SUMMARY AND CONCLUSION

The assessment of fit provides researchers with an
overall perspective on how well the theoretical model
is able to reproduce the observed data. The 7 test sta-
tistic provides a statistical test of whether the residuals
between the model-implied values and actual data are
greater than would be expected on the basis of sampling
error, assuming adequate sample size and multivariate
normality. However, given that the hypothesized model
is an approximation to the unknown true model, and
that the ¢ test statistic is affected by sample size, re-
searchers have sought to develop alternative practical
fit indices that provide measures of fit that are not re-
lated to sample size. A large number of these fit indices
have been proposed, and the properties of several of the
more widely used indices are presented in Tai  13.1.
Several of these (e.g., CFI/RNI, RMSEA, TLI, SRMR,
GFI*) have desirable properties, and their estimates
are not related to sample size. However, the quest for a
standard cutoff criterion for each of the fit indices has
proven to be elusive. Fit indices are affected by other
model properties, such as the number of indicators and
magnitudes of factor loadings. As fit indices are applied
beyond CFA models to more complex models—multiple
group models, multilevel models, growth models, and
so forth—this quest for a single, standard cutoff cri-
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One alternative strategy involves separate examina-
tion of the fit of each part of the model, for example, in
multilevel models and growth curve models. This strat-
egy can be extended even down to examination of the
reproduction of the individual means or covariances to
identify problem spots in the model. A second strategy
involves hypothesizing multiple competing models and
then using model selection indices to identify the opti-
mal model. A third strategy involves close examination
of key parameter estimates and their sensitivity to other
aspects of the model. A fourth strategy involves the use
of model validation procedures that can potentially help
researchers distinguish between data-equivalent models
or even models that produce similar values of practical
fit indices. Nearly 20 years ago Bollen and Long (1993)
wrote, “The test statistics and fit indices are very ben-
eficial, but they are no replacement for sound judgment
and substantive expertise” (p. 8). This advice remains
true today, but sound judgment is now aided by several
alternative strategies that provide supplemental infor-
mation on the adequacy of the hypothesized model in
accounting for the observed data.
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NOTES

1. A value of y*/df < 1 can occur due to sampling variation, par-
ticularly in small samples.

2. Another difference between the GFI and R? is that structural
equation models attempt to reproduce observed covariances,
so the GFI is based on p* residual covariances, whereas OLS
regression attempts to reproduce observed scores on a depen-
dent variable, so R? is based on N residual dependent variable
scores.

3. In the case of the GFI, the GFI* appears to have the desired
proportion of variance interpretation without the bias of un-
derestimating the true value at small sample sizes.

4. The prior density of the parameter is the probability distribu-
tion over the parameter space, prior to seeing the data. The
prior density represents the researcher’s prior belief or prior
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