
11•lt1pl1111 holler 
,/ ,,, ft/111 k1!1/11� 

\ 

Floro. O. »., Curran. P. J., I lussons, /\, M .. & Bdwords, M .... 
(2008). lncorporntins mcnsurcmcnt noncquivulcncc in u 
cross-study Intent growth curve unulysis. Struc111ral Equa·

tirm Modeling, /5, 676-704.
I lu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes 

in covariance structure analysis: Conventional criteria 
versus new alternatives. Structural Equation Modeling, 6, 

1-55.
mreskog, K. G., & Moustaki, 1. (2001). Factor analysis of or

dinal variables: A comparison of three approaches. Multi
variate Behavioral Research, 36, 347-387.

Likert, R. (1932). A technique for the measurement of atti
llades. Archives of Psychology, 140, l-55. 

Long, J. S. (1997). Regression models for categorical and

limited dependent variables. Thousand Oaks, CA: Sage. 
MutMn, 8. (1984). A general structural equation model with 

dichotomous, ordered categorical, and continuous latent 
variable indicators. Psychometrika, 49, 115-132. 

Olsson, U. (1979). Maximum likelihood estimation of the 
polychoric correlation coefficient. Psychometrika, 44, 

443-460. 
Pampel, F. C. (2000). Logistic regression: A primer. Thou

sand Oaks, CA: Sage. 
Stevens, S. S. (1946). On the theory of scales of measure

ments. Science, 103, 677-680. 
Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: 

Current approaches and future directions. Psychological
Methods, 12, 58-79. 

Wright, S. S .. (1921). Correlation and causation. Journal of

Agricultural Research, 20, 557-585.

Model Fit and Model Selection 
in Structural Equation Modeling 

Stephen G. West 

Aaron B. Taylor 

Wei Wu 

One of the strengths of structural equation model
ing (SEM) is the ability to test models that represent 
a complex set of theoretical hypotheses. The set of 
hypothesized relationships is specified and commonly 
represented graphically in the compact form of a path 
diagram. The model and its associated path diagram 
contain one or more of three components. It may con
tain a hypothesized measurement component that re
lates the observed (measured) variables to underlying 
constructs (Figure 13.lA). It may contain a structural 
(path) component that portrays the hypothesized causal 
relationships between the constructs (Figure 13.lB). It
may contain a hypothesized mean component that por
trays similarities and differences in the level of the con
structs, potentially as a function of other variables (Fig
ure 13.lC). Once a path model is specified, an important 
question arises: How well does the hypothesized model 
fit observed data on each of the variables? 

The path model diagram implies a set of algebraic 
equations whose parameters (e.g., factor loadings in Ay,
factor variances and covariances in 'I') are estimated, 
typically through maximum likelihood (ML) or gener
alized least squares (GLS) estimation procedures. For 
the confirmatory factor analysis (CFA) model in Figure 
13.lA,

l:= A IJ'N + 0 
.. ,)' y E (13.1) 

where l: is the population covariance matrix of the ob
served variables, Ay is the matrix of factor loadings, 'I' 
is the matrix of factor covariances, and 0, is the covari
ance matrix of residuals. The parameters estimated for 
the specified model, in turn, provide the machinery for 
calculating what the variances, covariances, and means 
of the variables would be, if in fact the model were true

(model-implied estimates). The key question for assess
ing the overall fit of the model is how well the estimates 
implied by the model match the variances, covariances, 
and means of the observed data. 

This chapter addresses two related but different 
questions. First, we may wish to answer the question of 
model fit: Does the hypothesized model provide an ad
equate fit to the data? Second, we may wish to answer 
the question of model selection: If multiple competing 
models have been proposed, which of these models 
provides the best account of the data? Or, alternatively, 
which competing model is most likely to replicate in 
another sample drawn from the same population? We 
focus on the model fit question in the initial part of the 
chapter, returning to brief consideration of the model 
selection question at the end of the chapter. We also 
briefly consider other key aspects of model evaluation 
beyond those of overall model fit. 

We begin by reviewing the properties of the chi 
square (X2) test statistic and several "practical" indices 
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FIGURE 13.1. (A) Two-factor confirmatory factor analy
sis model. (B) Path model with four measured variables 
(Fishbein-Azjen model). (C) Linear growth model with 
four time points. 
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of overa ll model fit, focusing on those that are currently 
being reported in journals by researchers. l.n the first 
part of our review we emphasize lack of sensitivity to 
sample size in estimation, the criterion that dominated 
the evaluation of fit indices in the last part of the 20th 
century. We then consider other desiderata for good fit 
indices, discovering that other moclel-related factors 
can make it difficult to establish a threshold for good fit. 
Most existing work has only studied the performance 
of fit indices in simple CFA (measurement) models; we 
initially follow this precedent but later consider the use 
of fit indices with other, more complex models, such 
as growth models and multilevel models. We consider 
evaluating the fit of different model components as well 
as overall global fit. We also consider other approaches 
to evaluating the adequacy of a model. Finally, we con
sider model selection indices useful for selecting the 
best of a set of competing models. 

ASSESSING OVERALL MODEL FIT: 
THE CHI-SQUARE TEST 
AND PRACTICAL FIT INDICES 

Most of the practical fit indices involve the chi-square 
(x2) test statistic for the hypothesized model, sometimes 
in conjunction with same test statistic for a baseline 
model (Yuan, 2005). A summary of some of the equa
tions, original sources, and key properties of several 
commonly used fit indices is presented in Table 13.1. 

For covariance structure models, we use the follow
ing notation. The number of observed variables being 
modeled is denoted p, and their covariance matrix, 
based on a sample size of N, is S. The corresponding 
population covariance matrix is L. The covariance ma
trix reproduced by the model using q estimated param
eters is 'E(0), where 0 represents a vector of free pa
rameters estimated by the model (factor loadings in A; 
factor variances and covariances in'¥; unique variances 
and covariances in 0). Each of the covariance matrices 
(S, L, 'E(0)), hasp* nonredundant elements, where p* = 
p(p + 1)/2. The model estimation procedure attempts 
to minimize a discrepancy function F, which achieves 
a minimum value f A general form of the discrepancy 
function is presented in Equation 13.2 (Browne, 1974): 

F = (s - &(S))'w-1 (s - &(0)) (13.2) 

where s is a vector containing the p * nonredundant ele
ments in the sample covariance matrix, &(0) is a vector 



contai ning the p• non redundant elements in the model 
implied cova ri ance matrix, and W is a weight matrix . 
Equation 13.3 presents the most commonly used dis
crepancy function for the ML estimation procedure 
(Joreskog, 1967): 

fr= tog I i:(9) I+ tr I si:(0r1 I- tog Is 1-p (13.3) 

where tr is the trace of the matrix. 

Chi-Square (Likelihood Ratio) Test 

For standard ML estimation (Equation 13.3), under the 
null hypothesis that the model-implied covariance ma
trix equals I:(0), the population covariance matrix I:, 
the test statistic T = (N - l)f follows a central X2 distri
bution with degrees of freedom (df) equal top* -q.f is 
the minimum of fr . q is the number of parameters to be 
estimated. Important assumptions underlying this test 
statistic are that (1) the observed variables have a mul
tivariate normal distribution, (2) N is sufficiently large, 
and (3) none of the tested parameters is at a boundary 
(e.g., variance = 0). We refer to this expression as the 
x2 test (although other such tests are possible; Hu & 
Bentler, 1995). If the observed x2 exceeds the critical 
value given the df and the nominal Type I error rate 
(typically a = .05), the null hypothesis that I:(0) = I: is 
rejected. This means that the null hypothesis of perfect 
fit in the population is false, the assumptions are wrong, 
or both. As we discuss below, this x2 test has limitations 
and is not always the final word in assessing fit. 

This x2 test can be considered a special case of the 
likelihood ratio (LR) test for nested models. A model is 
nested within another if its estimated parameters are a 
subset of the estimated parameters in the other model 
(see Bentler & Satorra, 2010). Typically, this occurs 
when a parameter is set equal to a fixed value (e.g., \j/21 
= 1) or two or more parameters are set equal (e.g., A11 = 
A.42 , setting the factor loadings of indicators 1 and 4 on 
their respective factors equal; see Figure 13.lA) . The 
null hypothesis is that the model estimating fewer pa
rameters (Fewer) fits no worse in the population than 
the model estimating more parameters (More). The LR 
test statistic is presented in Equation 13.4: 

/j,,X2 = X2Fewe, -X2More jj,,df = dfFewe,- df More (13.4) 

Given that previous assumptions (1), (2), and (3) are 
met and that the two tested models are not too discrep
ant from the true model in the population (Steiger, Sha-

piro, & Browne, 1985) , fj,,x2, the difference between the 
two tested models' x2 values, follows a x2 distribution 
under the null hypothesis, with df equal to Mf (Bentler 
& Bonett, 1980). The x2 test of overall model fit tests 
the null hypothesis that the tested model fits no worse 
than a saturated model, which estimates p* parameters 
and fits the data perfectly. The saturated model has a 
x2 value of O with df = 0. A saturated model exists for 
all covariance structure models; however, some more 
complex models do not have a known saturated model 
or the standard saturated model is incorrect. 

Joreskog (1969), who introduced the x2 test of fit in 
the context of covariance structure models, also noted 
its limitations (see also Bentler & Bonett, 1980; James, 
Mulaik, & Brett, 1982; Tucker & Lewis, 1973). A major 
problem with the x2 test is that as N increases, its power 
to detect even trivial differences between I:(0) and S 
approaches 1.0. A model that accounts for the major 
sources of covariance in the data, even if it ignores what 
Joreskog termed "minor factors," can still be of practi
cal value-"all models are wrong, some are useful" 
(Box, 1979, p. 202) . Models may be considered to be 
approximations of reality a priori, so the null hypoth
esis of exact fit is not expected to be retained (Cudeck 
& Henly, 1991; Joreskog & Sorbom, 1981; MacCallum, 
Widaman, Preacher, & Hong, 2001; Steiger & Lind, 
1980). In short, the null hypothesis of exact overall fit 
tested by the x2 test is often not of general interest. 

Other problems with the x2 test have also been raised. 
Because researchers hope to retain the null hypothesis 
(thus supporting the theoretically hypothesized model), 
the use of the x2 test statistic encourages the use of 
small samples (Bentler & Bonett, 1980; Meehl, 1967). 
Small samples, in turn, potentially obscure poor fit and 
yield less precise estimates of the free (estimated) pa
rameters in a model. The test statistic T is not likely 
to follow a x2 distribution when the observed variables 
are not multivariate normal and or when N is small 
(Bentler, 1990; Joreskog & Sorbom, 1981). Even when 
its assumptions are met, the x2 test tends to reject true 
models at higher than the nominal rate in small samples 
(Boomsma, 1982); conversely, the x2 test often has low 
power to detect meaningful levels of model misspecifi
cation in small samples (Gallini & Mandeville, 1984). 
Researchers have developed practical fit indices in an 
attempt to overcome some of these problems. Special 
emphasis has historically been placed on the criterion 
that the value of fit indices for correctly specified or 
slightly misspecified models should not be affected by 
sample size (e.g., Marsh, Balla, & McDonald, 1988). 



TABLE 13.1. Fit Indices for Covariance Structure Models 
Equation Goodness- or Theoretical Cutoff Penalty for model 
No. Fit index Reference badness-of-fit index range criterion Sensitive to N complexity? 

T1 x2 = (N-1)f Joreskog (1969) Badness <". 0 p < .05 Yes No 

T2 x2 I df (8) Joreskog (1969) Badness <".0 < 5d Yes Yes 

T3 GFl=1- e'We 
s'Ws 

(10) Joreskog & Sorbom (1981) Goodness 0-1• > .95d Yes No 

T4 
p* 

(6) Joreskog & Sorbom (1981) Goodness 0-1• NfAd·• Yes Yes AGFl=1--(1-GFI) 
df 

15 GFI*= 
p 

p+2( x
2

-dt) 
(0) Maiti & Mukherjee (1990) ; Goodness 0-1" > .95 No No 

N-1 
Steiger (1989) 

T6 AGFI* = 1- p* (1-GFI*) (0) Maiti & Mukherjee (1990); Goodness 0-1" NIA" No Yes 
df Steiger (1989) 

T7 RMR = [p*-1 (e'le)]112 (4) Joreskog & Sorbom (1981) Badness >0 N/A•.t Yes No 

T8 SRMR = [p *-1 (e'W,e)]112 (13) Bentler (1995) Badness >0 < .08 Yes No 

T9 RMSEA=fi-= 
max(x2 

- df, 0) 
(42) Steiger & Lind (1980) Badness >0 < .06 Yes to smallN Yes 

df df(N-1) 



110 TLf = X~ I ~fa - Xi I dfk 
Xo I df0 -1 

(22) Tucker & Lewis (1973) Goodness 0-1 a, b > .95 No Yes 

111 NFI = fo - fk = X~ - Xi 
fa x~ 

(7) Bentler & Bonett (1980) Goodness 0-1 > .95d Yes No 

2 2 

112 IFI= x~ -xk (3) Bollen (1989); Marsh et al. Goodness > Ob > .95 Yes to small N Yes 
Xo -dfk (1988) 

113 RNI- (x~ -dfo)-(xi -d~) (3) Bentler (1990); McDonald & Goodness > Ob >.95 No Yes 
- (x~ -dfo) Marsh (1990) 

114 CFI = max(x~ -dfo,O);max(xi -dfk, O) (42) 
max(x0 -dfo,O) . 

Bentler (1990) Goodness 0-1 > .95 No Yes 

Note. r-. chi-square test statistic; GFI = goodness-of-fit index; AGFI, adjusted goodness-of-fit index. GFI*, revised GFI; AGFI*, revised AGFI; RMR, root mean square residual; SRMR, standard
ized root mean square residual; RMSEA, root mean square error of approximation; TU, Tucker-Lewis index; NFI, normed fit index; IFI, incremental fit index; RNI, relative noncentrality index; CFI, 
comparative fit index; f, minimized discrepancy function; o, baseline model; k, tested or hypothesized model; df, degrees of freedom; N, sample size; p*, the number of nonduplicated elements in 
the covariance matrix; e, a vector of residuals from a covariance matrix; s, a vector of the p* nonredundant elements in the observed covariance matrix; I, an identify matrix; W, a weight matrix; 
w •. a diagonal weight matrix used to standardize the elements in a sample covariance matrix; 1·w noncentrality parameter, normed so that it is not negative. The numbers in parentheses in the "Fit 
ildices· column represent the number out of 55 articles on structural equation models in substantive American Psychological Association journals in 2004 that reported each of the practical fit 
ildices described here (see Taylor, 2008). No other practical fit indices were reported. 
·Can be negative. Negative value indicates an extremely misspecified model. 
I.When exceeds 1, the fit index indicates extremely well-fitting model. 
cAlso called non-normed fit index (NNFI). 
dfit index is affected by sample size. 
~ o cutoff criteria have been proposed for this index. 
'Not standardized, so will be affected by size of elements in covariance matrix. 
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Practical Fit Indices 

fhe decade of the 1980s was the heyday of the develop
nent of new fit indices, and-with apologies to song
.vriter Paul Simon-there must be 50 ways to index 
your model's fit (see Marsh, Hau, & Grayson, 2005, for 
I list of 40) . In this section we focus on several practi
;al fit indices commonly reported in published articles. 
fable 13.1 reports the fit indices identified based on a 
;omputer and manual search of American Psychologi
;a l Association journals (Taylor, 2008; see also Jack
mn, Gillapsy, & Pure-Stephenson, 2009). Good (and 
Jad) reasons exist for the use of these particular indi
;es, such as the precedent of use by other researchers, 
:heir routine computation by SEM software, and posi
:ive evaluations in reviews (e.g., Hu & Bentler, 1998). 

Following McDonald and Ho (2002), we distinguish 
Jetween absolute and comparative fit indices. Absolute 
:i t indices are functions of the test statistic Tor of the 
·esiduals (Yuan, 2005). In contrast, comparative fit in
j ices assess the improvement in fit of the hypothesized 
nodel relative to a baseline model. The most restrict
!d model that is "theoretically defensible" (Bentler & 
Bonett, 1980) has become the standard baseline model 
!stimated by most SEM software packages (e.g., EQS, 
LISREL, Mplus). This independence model estimates 
~ variance for each measured variable but permits no 
;ova riances between measured variables (see Figure 
l 3.2A). This standard baseline model is not always ap
Jropriate for more complex SEM models (McDonald & 
\1arsh, 1990; Widaman & Thompson, 2003; see Figure 
13.28). Other baseline models may be justified in some 
·esearch contexts, even for CFA models (e.g., Sobel 
i Bohrnstedt, 1985) . Another distinction is between 

5oodness- and badness-of-fit indices. Goodness-of-fit 
ndices increase (often to a maximum value of 1) with 
mproving fit. Badness-of-fit indices decline (often to 
)) with improving fit. All comparative fit indices are 
~oodness-of-fit indices; absolute fit indices can be ei
her good ness- or badness-of-fit indices. 

Of the fit indices presented in Table 13.l, the root 
r1ean square error of approximation, the standardized 
·oot mean square residual, the goodness-of-fit index, 
he x2!c~f' ratio, the adjusted goodness-of-fit index, and 
he root mean square residual are absolute indices; the 
;omparat ive fit index, the Tucker- Lewis index, the 
1ormed fit index, the relat ive noncentra lity index, and 
he increment al fi1· index arc compurutive fit indices. We 
;onsidcr the ubsolute indices first. followed by the com-
111r11tivc indices. with cnch u1·011n nn.1sc11t ml in rnuuh lv 

(A) 

(8) 
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FIGURE 13.2. (A) Baseline model for a confirmatory factor 
analysis model with four indicators. (B) Baseline (intercept 
only) model for linear growth model with four time points. 

their order of introduction in the literature. Not all of 
these fit indices are currently recommended; all con
tinue to appear with some frequency in published SEM 
applications. We note commonly used cutoff values 
proposed for those indices that are not affected by N. 

x2/df Ratio 

The x2tdf ratio was never formally introduced as a fit 
index but appears to have evolved as an easily comput
ed, ad hoc measure of fit . Joreskog (1969), in his con
sideration of limitations of the x2 test of overall fit, sug
gested that the x2 value be used more descriptively in the 
evaluation of model fit , with the df acting as a standard 
of comparison. The rationale for the x2tdf ratio1 is that 
the expected value of the x2 for a correct model equal s 
the c(f Wheaton, Muthen, Alwin, and Summers (1977) 
explicit ly introduced the x2/r(f'rntio with little comment 
except to indiculc 1hn1 their experience suggesled lhut 
II vnluc.J of' 5 or less lndicntcd uood flt : thi s nrnoosed 
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reference value is heavily influenced by N (Marsh et al., 
1988). Given a fixed N, smaller values of the x2/df ratio 
indicate better fit; it is a badness-of-fit index. The X2ldf 
ratio has a minimum of 0, which occurs when a model 
with positive df has a X2 value of 0. Saturated models, 
which by definition fit perfectly, have O df; therefore, 
they have an undefined x2!df There is no theoretical 
maximum for the x2/df ratio. 

Unlike x2, which can only remain constant or im
prove as parameters are added to a model, the x2!df 
ratio can potentially get worse. The X2ldf ratio penal
izes model complexity. If added parameters fail to re
duce a model's X2 appreciably, the X2ldf ratio will get 
worse because adding parameters reduces the model's 
df The x2/df ratio suffers from the same problem as the 
x2 test-its value is dependent on sample size for mis
specified models (Marsh et al., 1988). 

Goodness-of-Fit 
and Adjusted Goodness-of-Fit Indices 

Joreskog and Sorbom (1981) introduced the goodness
of-fit (GFI) and adjusted goodness-of-fit (AGFI) in
dices. They described these indices as proportions of 
variance accounted for, but their formulas did not make 
this interpretation transparent. Bentler (1983, Equation 
3.5) later reexpressed the GFI formula, clarifying this 
interpretation (see Table 13.1, Equation T3). Equation 
T3 uses a weight matrix W that is computed from the 

A I 
elements of :E(0r for ML and S-1 for GLS. Thus, GFI 
is calculated using the weighted sum of squared re
siduals from a covariance matrix and weighted sums 
of squared variances and covariances. It is similar to 
the familiar R2 measure used in ordinary least squares 
(OLS) regression, which can be expressed as 

R 2 = 1- SSre,ictua1 
SS total 

(13.5) 

The major difference2 between Equation T3 and Equa
tion 13.5 is the GFI's use of the weight matrix W. This 
matrix, which appears in the fit function, relates the 
GFI directly to the estimation procedure, which is typi
cally a desirable property for a fit measure (Menard, 
2000). , 

foreskog and Sorbom (1981) presented the AGFI as 
an adj ustment to the GFI based on a model's df (Table 
13.1, Equation T4 ). The goal of the adjustment was to 
penali ze model overfit.ting, in which adcl itionul param
eters ure est.imutecl with small resulting improvement in 
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fit. Equation 13.6 reexpresses Equation T4 to make the 
relationship between the GFI and AGFI clearer: 

(1-GFI) df 

(1-AGFI) p* 
(13.6) 

Equation 13.6 shows that the AGFI will be smaller than 
the GFI for all realistic models in which at least one 
parameter is estimated (df < p*). The AGFI will ap
proach the GFI as fewer parameters are estimated ( as 
df approaches p*) . 

Both the GFI and the AGFI are goodness-of-fit 
indices, increasing with improving fit. They are pro
portions that conceptually have a range of O to 1, but 
can potentially be negative (Joreskog & Sorbom 1981; 
Maiti & Mukherjee, 1990). The GFI will be negative if 
e'We > s'Ws (see Equation T3 in Table 13.1), meaning 
that the weighted squared residuals are actually larger 
than the weighted squared covariances in S ! This result 
is theoretically possible, but only in extremely badly 
misspecified models that would never be entertained by 
researchers. In contrast, the AGFI can become negative 
whenever GFI < (p* - df)/p* = q/p*. In other words, 
the AGFI will be negative whenever the proportion of 
variance accounted for by a model, as measured by the 
GFI, is smaller than the proportion of the p* observed 
covariances used to estimate parameters. 

Mulaik and colleagues (1989) noted that the relation
ship between the AGFI and the GFI is analogous to the 
relationship between R2 and adjusted R2 (Wherry, 1931) 
in OLS regression. They critiqued the AGFI because, 
as noted earlier, it can fall below O (as can adjusted R2). 

Given that the AGFI is in a proportion metric, negative 
values are mathematically uninterpretable, although 
such values could only occur with an extremely mis
specified model. Mulaik and colleagues also questioned 
the penalty used by the AGFI to choose more parsimo
nious models: The GFI is not very sensitive to changes 
in a model's df when the model has a large df to begin 
with, particularly as the GFI approaches 1. 

Maiti and Mukherjee (1990, Equation 19) and Steiger 
(1989, Equation 51) suggested a revised index known as 
GFI* (a.k.a., gamma hat) that improves on the proper
ties of the GFI (Table 13.1, Equation TS). Steiger dem
onstrated that although the GFI and GFI* asymptoti
cally estimate the same quantity, the GFI is biased and 
the GFI* is unbiased in smaller samples. An unbiased 
estimate of the AGFI, the AGFI*, can also be calcu
lated by substituting the GFI* for the GFI in Equation 
T4, yielding Equation T6 in Table 13. 1. In contrast to 
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:.Fl and AGFI, which are affected by sample size, 
}Fl* and AGFI* are expected to have the desirable 
erty of not being affected by N. They are promis-
loba l fit indices (see Hu & Bentler, 1998; Taylor, 

I) , but to date have been little used in practice. 

t Mean Square Residual and Standardized Root 
n Square Residual 

skog and Sorbom (1981) also introduced the root 
n square residual (RMR), which is the square root 
:ic average of the squared residuals (Table 13.1, 
ution T7). Recall that residuals are differences 
1een observed covariances and model-implied co-
11nces (s - &(0)) rather than differences between 
:rvcd scores and predicted scores (Y - Y). Equation 
n Table 13.l clarifies the relationship between the 
R and the GFI. Rather than using a weight matrix 
:he R MR uses the identity matrix I. RMR depends 
ln unweighted rather the weighted function of the 
foa ls. 
'he RMR's use of unweighted residuals can be a 
uc. particularly for observed measures with little 
1s11remcnt error (e.g., some cognitive or biological 
1sures) . Browne, MacCallum, Kim, Andersen, and 
sur (2002) demonstrated that the weighting of re-
1u ls in the ML and GLS fit functions (see Equation 
l) cnn severely overstate a model's badness of fit 
:n the measured variables have small unique vari
L:s. The RMR does not weight the residuals in its 
:ulation , so it is unaffected by this problem; all other 
nd iccs discussed in this chapter (except for the stan
:lizcd root mean square residual, discussed immedi
y below) are affected . The GFI and the AGFI use the 
1c weighting as the ML or GLS fit functions; other 
ndices incorporate the fit function through their use 
;2, which is equal to (N - l)f in their equations. 
~he RMR is a badness-of-fit index; it approaches O 
he fi t of a model improves. Unfortunately, its scal
can impede interpretation as it diverges from 0. 

: RM R wi I l tend to be larger for covariance matri
w it h larger elements than for matrices with smaller 

11cnt.s, precluding compari sons across data sets. 
11lcr (1995) introduced the standardi zed root mean 
arc residual (SRMR) to address this compari son 
hlem. The SRMR converts the residuals into a stan
dized metric. Each standardi zed residual that goes 
; the calculation of the SR MR is the raw res idu11l 
II proponion of the clement or S being es1i111utl·d. 
'" " ~" "f th i~ ~1u ndurdi1<.L1d 111 L1 l l'i c . SRMR vu luo!l l.'.llli 
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be meaningfully compared across models fit to differ
ent data sets. The calculation of the SRMR is similar to 
the calculation of the RMR (Table 13.1, Equation TS), 
except that it uses a diagonal weight matrix W

8 
to st,rn

dardize the elements in S, whereas the RMR uses an 
identity matrix, leaving the elements unstandardi zed . 
Each diagonal element of W8 is the reciprocal of th 
square root of the product of the variances on which the 
corresponding element of S is based. For example, fo1 
s 12 and CJ 12 , the corresponding diagonal element of w. 
has a value of ~s11s22 • 

The SRMR's weight matrix W8 is diagonal, whercos 
the weight matrix W in the fit function in Equation 13. 
is, in general, not diagonal. Although the SRMR diffcr·s 
from the RMR in that it is standardized, it is like thl! 
RMR in that its weighting of the residuals ignores t hl• 
possible covariance of the elements in Sor 'E, taken into 
account by the ML or GLS fit function. This outco11 w 
implies that it is also like the RMR in being immu11t• 
to the problem discussed earlier of overstating misllt 
when several manifest variables in a model have small 
unique variances (see Browne et al. , 2002) . 

Like the RMR, the SRMR is a badness-of-fi t index. 
It has a minimum of O for a perfectly fitting model. 111 
practice, the SRMR will be less than 1, typically fu1 
less. An SRMR of 1 would indicate that the residu ulM 
were, on average, as large as the elements of S hei n 
estimated, an extremely poorly fitting model that no r•• 
searcher would seriously consider. 

Root Mean Square Error of Approximation 

The root mean square errorof approximation (R MSl!A, 
Steiger, 1989, 1990; Steiger & Lind , 1980) is based 011 
the insight that although (N - I ).f asymptotica I ly Ii 11 
lows the familiar (central) x2 di stribution under thc 111111 
hypothesis, it asymptotically fo llows a no11 c1'11l l'III 

distribution under the alternate hypothesis. Thi.: IHIII 

centrality parameter (A) of this distribution depends 1111 

how badly the model fits, so it can be used to eons I 1111 I 
a fit index. Since the expected va lue of a nonei.:nl 1'11 1 x1 
distribution is df+ A, Steiger (1989) poin ted 0111 th11l lh1' 
noncentra lity parameter could be estimuled 11 s 

~ = (x2 - d./) /(N - I) 03,11 

Tn keep thi s estimat ed nonci.:ntrulit y p11r11111l'.i l' I' 1111111 
luki ng o n 1111 u11rc11 lis1k 111:gu ti vc v11 l11 l', S1d11111 Nllfl 

'8(\.'U lhut A lw yiv1:11 Ii IOWl'.I' hou nd or(), 
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i N = max(x2 - df , 0) I (N -1) (13.8) 

where the N subscript indicates that i N has been 
normed to keep it non-negative. 

S,teiger and Lind (1980) suggested two adjustments 
to AN to improve the RMSEA's interpretation. First, 
they added a penalty function to disc~mrage research
ers from overfitting models, dividing AN by its df Sec
ond, they took the square root of this result, so that the 
RMSEA is in the same metric as the weighted residuals 
(see Equation T9 in Table 13.1). Steiger (1989; Steiger 
& Lind, 1980; see also Browne, 1974) showed that the 
population noncentrality parameter being estimated by 
~ could be considered as a weighted sum of squared 
residuals (see Equation 13.2) 

i =e'We (13.9) 

The residuals are then weighted in the same manner as 
in the ML or GLS estimation procedure because the 
weight matrix W is the same. 

The RMSEA is a badness-of-fit index, declining 
with improving fit. The RMSEA is bounded at a lower 
value of 0. It has no theoretical maximum. Browne and 
Cudeck (1993) suggested that a model with an RMSEA 
of .10 is unworthy of serious consideration. 

A confidence interval (Cl) for the RMSEA is pro
vided by most computer programs. f\n iterative proce
dure is used to find limits of a CI for AN, and then these 
limits are substituted into the left formula of Equation 
T9 in Table 13.1. Steiger and Lind (1980) advocated 
using a 90% CI. Browne and Cudeck (1993) extended 
the use of this CI to a test of close fit. Noting that in 
l.hei r experience, RMS EA values of .05 or less indicated 
"close fit," they constructed a test of the null hypothesis 
that the true value of the RMSEA ~ .05, now imple
mented in many SEM software packages. This null hy
pothesis that the model closely fits the data is retained 
i r the lower limit of the RMSEA's confidence interval 
fall s at or below .05. Alternatively, an RMSEA whose 
upper limit exceeded .08 or .10 could be deemed unac
ceptable. RMSEA underestimates fit at small sample 
sizes (N < 200 ; see Curran, Bollen, Chen, Paxton, & 
Kirby, 2003). 

" 
Tucker- Lewis Index 
'l\.1cker und Lewis (1973) noted I.hut the fit fun ction F 
( llquulion 13.2) is u sum of squures thul when di vided 
h v 1/1' v1tlltl .s II munn ij f111111·1~ M . f'/111• "" " ln r11 l1w v fn (\f"l)r 
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analysis they proposed the Tucker-Lewis index (TLI), 
which compares Mk for the hypothesized model to M0 
for a baseline, independence model. (In this and subse
quent equations for comparative fit indices, quantities 
subscripted with O come from the baseline model and 
quantities subscripted with k come from the hypoth
esized model.) 

Bentler and Bonett (1980) generalized the TLI to 
the covariance structure analysis context and labeled 
it the non-normed fit index (NNFI) , although the TLI 
designation remains more common. They formulated 
the TLI in terms of x2/df ratios (see Table 13.1, Equa
tion TIO) . Their formulation makes clear that the TLI 
is conceptually in a proportion metric. In terms of x2/ 

df ratios, it gives the distance between the baseline and 
target models as a proportion of the distance between 
the baseline model and a true model. The 1 in the de
nominator is the expected value of the x2ldf ratio for a 
true model. 

Although the TLI is conceptually in a proportion 
metric, it can potentially fall below O or above 1. TLI 
can occasionally exceed 1 if X~ I dft, < 1. By contrast, 
TLI can be negative if the denominator is negative 
and the numerator is positive. Both conditions under 
which the TLI becomes mathematically negative, 
X~ I dft, < X~ I dfo < I and 1 < X~ I df < x; I dft,, require 
the baseline model to fit the data very well, a condition 
that is unlikely to occur in practice. 

The TLI penalizes models that estimate many pa
rameters. McDonald and Marsh (1990) showed that 
it could be rewritten in terms of James, Mulaik and 
Brett's (1982; see also Mulaik et al., 1989) parsimony 
ratio (PR): PR= dfJdf0. Thus, PR is the proportion of 
the number of parameters fixed in the hypothesized 
model relative to the proportion of the number of pa
rameters fixed in the baseline independence model. 
McDonald and Marsh's reexpression of the TLI is given 
in Equation 13.10: 

TLI = 1- (x; -df k) I (X~ -dfo) -1 - i_k I i_o (13.10) 
di,_ I dfo PR 

Given equal model fit , models with larger PRs yield 
larger TLI values. Bollen (1986) , in an early critique, 
argued that the TLI would be affected by sample size; 
however, Monte Carlo studies (e.g., Marsh et al. , 1988) 
have consistently found that the TU is not affected by 
\llun nl f' e.i i•,,3 ( QP f' n k n R A1tlf' t'i~hn I ORR\ 
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ed Fit Index 

!rand Bonett (1980) also introduced the normed 
ex (NFf), which compares the fit of a target model 
fi t of a baseline model. Rather than use x2/df ra

~ 1he TLI does, it uses either fit function values 
ia lues (Table 13.1, Equation Tll) . The expression 
the NFI indicates the improvement in fit realized 

,ving from the baseline model to a hypothesized 
, as a proportion of the baseline model's fit. The 
pression for the NFI (Equation Tll in Table 13.1) 
so be used even when the fit function is not re
:o lhe x2 distribution. The NFI cannot fall below 
bove l. The NFI cannot fall below O because the 
ne model must be nested within the hypothesized 
. so the hypothesized model cannot have a worse 
r) x2. It cannot exceed 1 because the minimum 
of lhe hypothesized model's x2 value is 0, which 
11he max imum NFI equal to X~ I X~= 1. The NFI 
1ol include a penalty function to penalize overfit
od is uffected by N, with small sample sizes pro-

1111derestimates of the true NFI (Marsh et al., 

nental Fit Index 

1 ( 1989; see also Marsh et al. , 1988) introduced 
:rcmental fit index (IFI) in an attempt to improve 
N Fl. The NFI does not approach 1 for correct 

s in small samples (Bentler, 1990). The key prob-
I hal the expected value of a model's x2 for cor-

1odels does not equal zero as the NFI assumes, 
11e.id equals the model's df The IFI subtracts the 
1esized model's df in the denominator, as this is 
peeled value of a model's x2 if the model is cor
'uble 13. I , Equation Tl 2) . The IFI is theoretically 
·oportion metric, but it can potentially exceed 1. 
do so under precisely the same circumstances as 
,I: when the hypothesized model's x2 is less than 
i\l so li ke the TLI, the IFI can be negative, but 
;' X~ < d./~, again suggesting a remarkably good 
1he baseline model. Like the NFI, the IFI's nu
,r cannot be negative : The baseline model must 
led in lhe hypothesized model, so the baseline 
s x2 cannot be smaller than that of the hypoth-
1nodel. 
1ough proposed as an improvement to the NFI, 

i111roduced new problems. First, McDona ld and 
( 1990) showed I hal I he I r 1 wi II lend to overcsti 
s usy mptolie va lue in smnll s11 111plcs; 1hi s over-
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estimation will be more severe as the misspecification 
of the hypothesized model increases, as indexed by its 
noncentrality parameter 'A. The IFI's positive bias in 
small samples is probably a greater concern than the 
NFI's negative bias, as positive bias leads to conclu
sions that a model fits better than it actually does. Nega
tive bias can have the virtue of encouraging conserva
tive conclusions about model fit (Marsh, Balla, & Hau, 
1996). 

Second, the inclusion of the model's df, which should 
act as a penalty function for overly complex models like 
that of the TLI, actually works in the wrong direction 
(Marsh, 1995; Marsh et al., 1996). If a superfluous pa
rameter is added to a model, the model's df will be re
duced by 1, but its x2 will not decrease, meaning that 
the IFI's denominator will decrease while its numerator 
will remain unchanged, resulting in a larger IFI value. 
Marsh and colleagues (1996) refer to this as a "penalty 
for parsimony," noting that it runs counter to the more 
desirable behavior of the TLI, which penalizes for un
necessary complexity. 

Comparative Fit Index 
and Relative Noncentrality Index 

Bentler (1990) and McDonald and Marsh (1990) inde
pendently introduced two virtually identical fit indices. 
McDonald and Marsh introduced the relative noncen
trality index (RNI) , which uses the noncentrality pa
rameter as an index of lack of fit just as the RMSEA 
does. The noncentrality parameter is estimated using 
Equation 13.7, just as it is for the RMSEA. The RNI then 
takes a form similar to that of the other comparative fit 
indices, giving the reduction in noncentrality realized 
by moving from the baseline to the hypothesized model , 
as a proportion of the baseline model's noncentrality 
(Table 13.1, Equation Tl3). The RNI converges asymp
totically to the same value as do the NFI and the IFI, 
but has the desirable property of being unaffected by 
sample size. The RNI can exceed 1 under the same un-
1 ikely circumstances that the TLI and the IFI do : when 
the hypothesized model's X2 is smaller than its df 

In defining the CFI, Bentler used the same log ic as 
Steiger and Lind (1980) with the RMSEA and fi xed the 
estimated noncentrali ty parameter to have a minimum 
of 0. Doing th is replaces ~ fro m Equation 13.7 wilh ~N 

from Equalion 13.8 and yields lhcCFl's fo rmula (Tuble 
11 1, Eq ual ion T 14). I 11 111odcls fo r which 1he x2 is I urger 
lhnn lhc dj; which lik ~· ly li u,; ludcs the gn:ul 111 1\jorily ol' 
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models tested in psychological research, the CFI and 
RNI take on identical values. The RNI and CFI will 
differ only when a model's x2 is smaller than its df, 
characteristic of extremely well fitting models. Under 
such circumstances, the RNI exceeds 1, whereas the 
CFI is bounded at the maximum theoretical value of 1. 
Goffin (1993) pointed out that the RNI and the CFI es
timate the same population quantity, but this difference 
means that they have different strengths. The RNI is a 
less biased estimator than the CFI because it does not 
truncate its distribution at 1. The CFI is a more efficient 
estimator (smaller standard error) because its truncated 
distribution discards values that the population index 
cannot possibly take on. Goffin suggested that these 
qualities make the RNI preferable for comparing com
peting models, and the CFI preferable for reporting the 
fit of a single model. Both the CFI and RNI are straight
forward to interpret and are not affected by N. 

Summary 

Our review thus far has considered the characteristics 
of commonly used practical fit indices and their perfor
mance in simple CFA models in which each factor has 
a small number of measured indicators. Researchers 
have strongly preferred fit indices whose mean values 
in simulation studies are independent of N (e.g., Marsh 
et al. , 1988). This preference parallels psychology's 
increasing use of effect sizes that are independent of 
N rather than p-values, which are strongly related to 
N (Wilkinson and Task Force on Statistical Inference, 
1999). Other desirable unique properties of a specific 
fi t index (e.g. , the confidence interval of the RMSEA; 
the proportion of variance interpretation of GFP) may 
argue for its use so long as a minimum sample size 
is exceeded that makes bias in its estimation trivially 
small. A second important issue is ease of interpreta
tion. Indices in a proportion fit metric or standardized 
metric that is unaffected by the scaling of the mea
sured variables will be easier to interpret than indices 
without these qualities. Using these criteria to cull the 
fit indices reviewed earlier, the fit indices commonly 
reported in the literature that are worthy of consider
ation are the SRMR (given its standardized metric), 
RMSEA (for sample sizes over 200), TLI, and tFI/ 
RNI. The TLI and CFI /RNT are goodness-of-fit in
dices in a proportion fi t metric, whereas the RMSEA 
und SR MR arc badncss-ol'-fit indices that arc not in a 
pro port ion metric. 0 1 her cv11 lu 111 ions or more extensive 
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sets of fit indices (Hu & Bentler, 1998; Marsh et al. , 
2005) also provide favorable evaluations of these fit 
indices, as well as others with which there is far less 
practical experience. 

Proposed Cutoff Values 

Most researchers focus on the first question posed at the 
beginning of this chapter: Does the hypothesized model 
provide an adequate fit to the data? Higher values on 
goodness-of-fit indices and lower values on badness-of
fit indices indicate better overall fit of the model to the 
data. But, what is an "adequate" fit? Researchers ide
ally desire a comparison standard that specifies a single 
criterion value that defines adequate fit. 

Bentler and Bonett (1980) originally suggested a 
standard of .90 for the NFI and TU (NNFI), fit indices 
in the proportion metric (also including the CFI/RNI 
reviewed earlier). Hu and Bentler (1995) proposed a cri
terion of <.05 for what they termed "good fit" and from 
.05 to .10 for "acceptable fit" for the SRMR. Browne 
and Cudeck (1993) suggested for the RMSEA that a 
value of .05 represented what they termed a "close fit
ting model" and .08 represented an "adequate" fitting 
model. These recommendations were based on the re
searchers' practical experience with the fit indices in 
the evaluation of many CFA models. Hu and Bentler 
(1999) later took another approach, conducting a simu
lation study that addressed the ability of fit indices to 
distinguish between correctly specified and misspeci
fied models. Based on this study, they proposed a crite
rion of .95 for the TLI and CFI, a criterion of .06 for the 
RMSEA, and a criterion of .08 for the SRMR. Thus, Hu 
and Bentler proposed replacing the initial ad hoc prac
tical guidelines with standards based on the results of 
a simulation study using a small set of correctly speci
fied and misspecified covariance structure models. The 
rationale for their proposed standards, which focuses 
on the acceptance versus rejection of hypothesized 
models, has been questioned by Marsh, Hau, and Wen 
(2004) because it implicitly reintroduces sample size as 
a determinant of the outcome. 

We believe that the proposed cutoff values can be 
guidelines about the overall fit of the model to the data, 
but we caution readers that the reification of specific 
cutoff standards for the acceptance versus rejection of a 
hypothesized model can be fraught with peril. The next 
section examines three important issues related to the 
use of cutoff values fo r fi t indices. 
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plications. Under these conditions, the GLS weight and 
ML weight matrices computed from the elements s-1 

and :teer', respectively, will typically vary appreciably. 
Of note, LISREL uses GLS estimation for its baseline 
model, whereas most other SEM packages use the same 
procedure (typically ML in practice) as is used to esti
mate the hypothesized model. Values of comparative fit 
indices estimated using different estimation procedures 
will differ, perhaps substantially (Tanaka, 1993). 

A second issue identified by Widaman and Thomp
son (2003) is that the baseline model must be nested 
within the hypothesized model. When mean structures 
are included, or certain restrictions are placed on the 
model, modified baseline models must be used in the 
calculation of comparative fit indices, or the value of 
the fit indices will be incorrect, sometimes appreciably 
so. Wu and colleagues (2009) discuss this and specify 
an acceptable baseline model (see Figure 13.2B) in the 
context of growth curve models. 

Finally, some models do not have a proper saturated 
(0 df) model in which the number of estimated param
eters matches the number of observed means and co
variances in the model. Growth curve models in which 
each individual is measured at a different set of time 
points (so-called "random time models") and models 
with certain patterns of missing data do not have a satu
rated model (Wu et al. , 2009). In addition, the standard 
saturated model used for linear structural equation 
models is not appropriate for models with interactions 
or quadratic effects of latent variables. The standard x2 

test statistic and all practical fit indices based on the x2 

reported by computer programs will be incorrect. Klein 
and Schermelleh-Engel (2010) provide a method of es
timating x2 based on an appropriate saturated model for 
these cases. 

Each of these issues illustrates the need for careful 
attention to the baseline and saturated models in the 
:alculation of comparative fit indices. 

:ncouragement of Poor Practices 

teliance on fi xed compari son standards for fit indices 
an also encourage poor pract ice by resea rchers. First, 
esearchers, despite hypothes izing a model based on 
rior theory and resea rch, may add und delete paths and 
1ctor loadings based on mod ificulion indices unlil lhe 
rescri bcd lhrcshold st11ndard fo r 11dequ11 h; Ill is met. 
rudilionul posl hoc 111odcl n10d ifk11 1i n11 .~u ,•11 , ,,.1. .-I .. 

1990; MacCalh 
Necowitz, 1992 
40, this volume 
promising) . IL is 
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post hoc rnodif i, 
only to find thut 
gain in fit over II 
perhaps a worse 
is used) . Modi fl 
the epistemologl 
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on the basis of 11 
acknowledgmcn1 
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statistics and hyp1 
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items thal covers i 
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1969). As Marsh an 
importance typicutl: 
one model aga inst u 
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ISSUES WITH PRACTICAL FIT INDICES 
Model Characteristics and Standards 
for Fit 

We earlier summarized the results of an extensive body 
of simulation research attempting to identify practical 
fit indices whose estimates are not affected by sample 
size. Unfortunately, much less research has investi
gated the effect of other model characteristics on fit. 
The available results suggest that other model and data 
characteristics can substantially affect the performance 
of fit indices. Within CFA models, Chen, Curran, Bol
len, Kirby, and Paxton (2008; see also Savalei, 2011) 
showed that model specification and df can affect the 
performance of the RMSEA. Marsh, Hau, Balla, and 
Grayson (1998) have found that as the number of indi
cators per factor increases, models showed decreased 
fit to simulated data with properly specified models. 
Kenny and McCoach (2003) found that all fit indices 
examined, with the exception of the RMSEA, showed 
decreased fit as more indicators were added to a single
factor model. Marsh and colleagues note that "this 
apparent decline in fit associated with larger [number 
of indicators per factor] must reflect problems in the 
standards used to evaluate model fit rather than mis
specification in the approximating model" (p. 217). 
Saris, Satorra, and van der Veld (2009) have found that 
given a constant magnitude of misspecification and 
sample size, the numerical value of other parameters 
in a model can affect the value of fit indices, with, for 
example, higher factor loadings leading to poorer fit 
index values. Davey, Savla, and Luo (2005) found that 
the values of fit indices for slightly misspecified CFA 
models increased as the proportion of missing data in
creased. Adding random error to a model may improve 
its apparent fit! This is not a desirable property. 

As mean structures are added to models, other is
sues arise. The SRMR as commonly calculated only 
addresses the discrepancies between the model's im
plied and observed covariances; the mean structure is 
ignored. For practical fit indices based on the x2 test sta
tistic, the fit function adds another term to capture the 
discrepancy between the observed and model implied 
means. A general discrepancy function extends Equa
tion 13.2 to mean and covariance structures (Browne & 
Arminger, 1995): 

F = [s - a(0)]W-1[s - a(S)] , .. ~ .... , 
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where W and V are weight matrices, and X and µ(0) 
are the vectors of observed means and model implied 
means, respectively. The first term assesses fit in the 
covariance structure; the second assesses fit in the 
mean structure. Wu, West, and Taylor (2009) note the 
complexity of assessing fit for growth models given that 
misspecification in one structure can affect the other 
structure. In addition, the metrics of fit in the two struc
tures may be quite different: Taking a traditional stan
dard for the GFI of .90 or .95 for a CFA model in a large 
sample may be an appropriate proportion of variance 
for which to account (cf. Tanaka & Huba, 1985), but do 
we also expect our model to account for 90% or 95% of 
the variance in the latent means? Experience with other 
models such as analysis of variance with reliably mea
sured outcomes would not lead us to expect such high 
values. Based on Wu and West's (2010) study of the 
effects of different types of model misspecification and 
different data characteristics ( e.g., the ratio of the Level 
1 to Level 2 variances) on the fit of growth curve mod
els, Wu attempted to develop standards for fit indices. 
She abandoned this effort because standards following 
Hu and Bentler's (1999) accept-reject criterion varied 
dramatically as a function of the type of misspecifica
tion and data characteristics. 

Taken together, these results suggest that appropriate 
cutoff standards may be specific to particular models 
and data sets. Current standards for interpreting accept
able model fit are only rough guidelines; they become 
increasingly less reasonable as they are extrapolated 
to models and data further from the CFA models with 
complete data studied by Hu and Bentler (1999) . 

Baseline and Saturated Models 

Several smaller but easily overlooked issues relate to 
baseline and saturated models. For comparative fit 
indices, most commonly used SEM programs use the 
baseline model proposed by Bentler and Bonett (1980), 
which estimates a model in which each variable has a 
variance, but in which there are no covariances between 
variables (see Figure 13.2A). Because of the different 
weight matrices used in estimating the baseline model , 
comparative fit indices based on different estimation 
methods (e.g., GLS, ML) will differ (Sugawara & Mac
Callum, 1993). GLS and ML do produce the same re
sults in large samples if data have the typically assumed 
mult.ivariate normal distribution uncl the hypothesi,,.ed 
· - - 1 - 1 ! I ' ' _ ,, , • • • 
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plications. Under these conditions, the GLS weight and 
ML weight matrices computed from the elements s-1 

and :E(er1
, respectively, will typically vary appreciably. 

Of note, LISREL uses GLS estimation for its baseline 
model, whereas most other SEM packages use the same 
procedure (typically ML in practice) as is used to esti
mate the hypothesized model. Values of comparative fit 
indices estimated using different estimation procedures 
will differ, perhaps substantially (Tanaka, 1993). 

A second issue identified by Widaman and Thomp
son (2003) is that the baseline model must be nested 
within the hypothesized model. When mean structures 
are included, or certain restrictions are placed on the 
model, modified baseline models must be used in the 
calculation of comparative fit indices, or the value of 
the fit indices will be incorrect, sometimes appreciably 
so. Wu and colleagues (2009) discuss this and specify 
an acceptable baseline model (see Figure 13.2B) in the 
context of growth curve models. 

Finally, some models do not have a proper saturated 
(0 df) model in which the number of estimated param
eters matches the number of observed means and co
variances in the model. Growth curve models in which 
each individual is measured at a different set of time 
points (so-called "random time models") and models 
with certain patterns of missing data do not have a satu
rated model (Wu et al., 2009). In addition, the standard 
saturated model used for linear structural equation 
models is not appropriate for models with interactions 
or quadratic effects of latent variables. The standard x2 

test statistic and all practical fit indices based on the x2 

reported by computer programs will be incorrect. Klein 
and Schermelleh-Engel (2010) provide a method of es
timating x2 based on an appropriate saturated model for 
these cases. 

Each of these issues illustrates the need for careful 
attention to the baseline and saturated models in the 
calculation of comparative fit indices. 

Encouragement of Poor Practices 

Reliance on fixed comparison standards for fit indices 
can also encourage poor practice by researchers. First, 
researchers, despite hypothesizing a model based on 
prior theory and research, may add and de~te paths and 
fac1or load ings based on modification indices until the 
prescribed Lhreshold standard for adequate fit is met. 
1'rncli1ionu l posl hoc model modificalion , particularly 
whc11 undcr111ken on 1111 ulheorelical basis, is unlikely Lo 

· - - · · .. ;-" " in1oroved 111odcl (Kaplan , 
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1990; MacCallum, 1986; Maccallum, Roznowski, & 
Necowitz, 1992; but see Marcoulides & Ing, Chapter 
40, this volume, for newer approaches that are more 
promising). It is a sobering exercise to modify one's hy
pothesized model and then to test the hypothesized and 
post hoc modified model in a new replication sample, 
only to find that modified model does not lead to any 
gain in fit over the originally hypothesized model (and 
perhaps a worse fit, if a fit index with a penalty function 
is used). Modification of hypothesized models changes 
the epistemological status of the tested model from 
confirmatory to exploratory. The LR (X2) test no longer 
has a clear meaning once the model has been modified 
on the basis of the data. The change requires explicit 
acknowledgment of the model's new exploratory status; 
it also requires far more tentative reporting of model fit 
statistics and hypothesis tests in the absence of replica
tion of the model in a new sample (see Diaconis, 1985). 
Reporting of fit indices with a parsimony penalty such 
as the TLI or RMSEA can reduce, but does not elimi
nate, this problem of capitalization on chance relation
ships in the data. 

Second, fixed standards can lead to poor representa
tion of constructs. From the standpoint of modern test 
theory, we would like to have a measure with multiple 
items that covers the full content of the construct and 
provides a relatively precise estimate of each person's 
score across the full range of the construct (e.g., Em
bretson & Reise, 2000) . Yet most CFA models utilize 
only a small number of indicators per construct. As 
Marsh and colleagues (1998) and Kenny and Mccoach 
(2003) found, fit indices tend to decrease as the num
ber of indicators per construct increases, even when the 
model is properly specified. Fit indices for hypothesized 
models will also tend to decrease as the coverage of the 
hypothesized construct improves because the items wi 11 
become more dissimilar (cf. Tucker, Koopman, & Linn, 
1969). As Marsh and colleagues note, "Because of Lh 
importance typically placed ... on evaluating the fil of 
one model against a fixed standard . . . , this bias would 
naturally extinguish the possibly desirable strategy of 
using larger numbers of indicators. This may ex plai n In 
part why so many published CFA studies are based on 
[indicators per factor] = 2 or 3" (p. 217) . 

In sum, attempting to meet cutoff standards for ad
equate fit encourages post hoc model modificat ion und 
the use of a relatively small number of indicators of 
each latent construct, practices which are often nonop
I i ma l from a sc ientific viewpoint. 
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OTHER STRATEGIES FOR EVALUATING FIT 
Fit of Model Components 

The fit indices considered so far provide information 
about overall model fit. In models with several compo
nents, researchers may place differential importance on 
the fit of each of the different components. In combin
ing measures of the fit of each component to produce 
a measure of overall fit, no guarantee exists that the 
researcher's theoretically desired weights will match 
those produced by the computer software. Model com
ponents with extremely good or extremely poor fit, even 
if they are of little theoretical interest, may swamp the 
contribution of other model components in the calcula
tion of global fit indices. 

In their consideration of CFA models and structural 
path models between latent variables, Anderson and 
Gerbing (1988) originally proposed a two-step ap
proach. The first step involved satisfactory specifica
tion of the measurement model by estimating a CFA 
model (saturating the '¥ matrix of the covariances of 
latent factors). However, the challenge remained of as
sessing the fit of the structural model-the weight of 
the measurement structure in determining the fit of the 
overall model could potentially make it difficult to de
tect misspecification in the path model. In the context 
of multilevel SEM, Ryu and West (2009; see also Yuan 
& Bentler, 2007) proposed procedures for separately 
examining the Level 2 (between groups) and Level 1 
(participants within groups) components of fit. Ryu 
and West showed that in the fit function, the between
groups component has far less weight (reflecting the 
number of groups) than the within-subjects component 
(reflecting the number of cases), giving the latter com
ponent disproportionate importance in determining 
overall model fit. They showed that improved results 
could be obtained using procedures that provided sepa
rate fit statistics for the Level 1 and Level 2 models. Wu 
and colleagues (2009) found that misfit in latent growth 
curve models can result from failure to reproduce the 
marginal means, the conditional means, the within
persons covariance structure, or the between-persons 
covariance structure. Wu and West (2010) presented 
methods for appropriately saturating different compo
nents of the model to provide more appropriate exami
nation of the fit of the other components in the model. 
Such slrateg ies can be useful in isolating the source(s) 
of model misfit , which is particularly imporlunl when 
some components of the 111ndcl (e.g., 11111rg i1111I mcnns; 
bctwec11-ocrso11s covuriuncc slruclurc) lll'C of Oll l'lk ll · 
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Jar theoretical interest and other portions (e.g., within
persons covariance structure) are of far less theoretical 
interest. 

Examination of Individual 
Standardized Residuals 

McDonald (1999, 2010) and McDonald and Ho (2002) 
have advocated an even more fine-grained analysis of 
fit-the separate examination of the each standardized 
residual in the covariance structure and, if applicable, 
the mean structure in the model. Models in which al I 
residuals are not large are deemed to fit the data ad
equately. Models in which there are one or more large 
residuals indicate problems with model fit. By examin
ing the individual standardized discrepancies between 
the observed and model-implied covariance or mean , 
"it becomes possible to judge whether a marginal or 
low index of fit is due to a correctable misspecification 
of the model, or to a scatter of discrepancies, which 
suggests that the model is possibly the best available 
approximation to reality" (McDonald & Ho, 2002, 
p. 73). 

In sum, indices that assess the fit of theoretically im
portant model components and examine individual re
siduals in the covariance and mean structures can pro
vide a richer, more fine-grained understanding of the 
strengths and limitations of the hypothesized model in 
accounting for the data set that complements the use of 
global fit indices. 

WHAT IF THERE ARE ALTERNATIVE MODELS? 

So far we have focused solely on cases in which ther 
is assumed to be only one theoretically hypothesized 
model. However, often one of two other cases will 
occur. First, there may be alternative a priori theorel i
cal models whose fit the researcher wishes to compare 
with that of the target model. This case can be particu
larly informative about the strengths and weaknesses 
of competing theoretical models in accounting for the 
data. Second, there may be other exploratory models 
proposed during the model fitting process thal lhe 1'c 
searcher wishes to compare with the originally hypolh 
esized model. Fit indices and model selection indk·cs 
can be used to make 1hcsc compari sons, agn in wilh tht• 
cavea t 1hal Lhe second cosc requires uppropri111 c 11~· 
knowledgment of il s cx plm11 1ory s111111 s. Many di scus 
sions of model co1111JlU' lsu11 L' 111ph11sl~.c I hu cl'l lcl'io11 111' 
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parsimony-given similar overall model fit, the model 
with fewer parameters will be preferred over an alter
native model with more parameters (e.g., Mulaik et al., 
1989; Preacher, 2006). As considered in a later section, 
fit indices and model selection indices (see Table 13.2) 
that penalize model complexity will often, but not al
ways, be preferred. 

Comparing Nested Models 

As noted earlier, when the researcher wishes to com
pare two nested models, the likelihood ratio (LR) test 
discussed earlier can be used to determine whether the 
imposition of the restrictions on the more restricted 
model (yielding fewer parameters estimated) makes a 
statistically significant difference in model fit. Unfortu
nately, the same issues arise with the LR test for com
parison of nested models that arose earlier for the over
all x2 fit test statistic. Small N's can yield nonsignificant 
LR tests, masking important differences between the 
models. Conversely, very large N's can produce statisti
cally significant x2 values even when the discrepancies 
between the two models are trivial. 

Recognizing this issue, some researchers have ar
gued that a change in practical fit indices that is less 
than some cutoff criterion may provide the desired in
formation about differences in the fit between nested 
models. In the context of measurement invariance, 
which involves testing a series of nested measurement 
models (Widaman & Reise, 1997), Cheung and Rens
vold (2002) suggested that changes in selected fit in
dices, including the CFI or GFI* among the fit indices 
reviewed earlier, appear to provide good performance 
in the assessment of measurement invariance. They 
proposed specified cutoff criteria for the change in fit 
between nested measurement invariance models (e.g., 
.01 for ~CFI and .001 for ~GFI*). 

Note that neither of these fit indices includes a pen
alty for complexity, presumably because it is more dif
ficult to compare corrected fit indices against an abso
lute standard for change. In addition, many of the same 
issues noted earlier with respect to the evaluation of fit 
indices against a cutoff criterion also appear to apply 
in thi s context (Fan & Sivo, 2009) . Chen (2007) noted 
that different fit indices tended to be differentiall, sen
sitive to diffo rent types and amounts of invariance. 

The LR test and changes in fit indices provide meth
ods fo r comparing nested models. Model selection in
dices, wh ich arc t.hc focus of lhc nex t. seciion, ullow 
f'tunnn t•l '1 f\n Af hf\t1h 1'\1• '2 t'fl:tl o n rl 1-\l'\f\ .. f •u u Jt1 \ t l ,,n,vl t-, I IJ 
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Model Selection Indices 

We consider four model selection indices (and some of 
their variants) whose properties have received analyti
cal and empirical evaluation that have been formally 
proposed for the comparison of either nested or non
nested models (see Table 13.2 for a summary) . The 
general goal of these indices is to select the model with 
highest generalizability to samples with the same N 
drawn from the same population. According to Cudeck 
and Henly (1991) , this model should have the smallest 
expected discrepancy between the fitted model covari
ance matrix and the population covariance matrix. 

Akaike Information Criterion 

The Akaike information criterion (AIC) was proposed 
by Akaike (1973) to measure the expected discrepancy 
between the true model and the hypothesized model. 
The first term of AIC (Table 13.2, Equation Tl3) is a 
measure of lack of fit; the second term reflects model 
complexity, penalizing more complex models. Of im
portance, the AIC only considers the number of free pa
rameters in determining model complexity. The model 
with the smallest AIC is selected. Although commonly 
used, the AIC favors too complex models at small N 
due to the fact that it fail s to take into account the effect 
of Non model selection. To solve the problem, alterna
tives to the AIC have been proposed that downweight 
sample size and therefore may have better performance 
in these contexts (e.g., bootstrapped information crite
rion [EiC] ; Ishiguro, Sakamoto, & Kitagawa, 1997). 
For example, Bozdogan (1987) developed a consistent 
Akaike information criterion (CAIC, Table 13.2, Equa
tion Tl6) . The CAIC performs better than AIC at small 
N and with a large number of parameters. It does not 
necessarily favor models with more parameters, unless 
N is sufficiently large. 

Bayesian Information Criterion 

The Bayesian information criterion (BIC) aims to se
lect the model that is most likely to have generated the 
data in the "Bayesian sense" (Myung & Pitt, 2004; Raf
tery, 1995). The BIC is in fact a large-sample approxi
mation of the Bayesian model selection procedure that 
we describe below. The first term in the BIC (see Table 
13.2, Equation T 17) is the same lack of fit measure used 
by the AIC. The second term is a measure of model 
r'•hn'u '\ l u v i f'\/ u,h iri h ;~ th ~ '"' '•n rln ,.. • ,,.. i,• foh ,o,, .,._ , ,, ..... h ,c,,,• r., f ,,~ •• "'_ 
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TABLE 13.2. Model Selection Indices for Non-Nested Models 
Equation Measure of model 
No. Index Rationale complexity Pros Cons 

T15 AIC=f +2k Selects the model that had Number of parameters. Easy to calculate. Performs well at Tends to select too complex 
least expected discrepancy large sample sizes. models. Bad in recovering true 
from the true model. model at small sample N. 

T16 CAIC = f + [1 + ln(N)]k Selects the model that had Number of parameters and Easy to calculate. Performs better 
least expected discrepancy sample size. than AIC at small sample size and 
from the true model. large number of parameters. 

T17 BIG= f + kln(N) Selects the model that is most Number of parameters and Easy to calculate. Performs well Tends to select a model with too 
likely to have generated the sample size. under large sample size. few parameters. Bad in recovering 
data in the Bayesian sense. true model at small N. 

T18 CV= -Inf (Yva, I ii,,, ) Selects the model that has Complexity penalty is Easy to calculate. More Requires sample split. Estimates 
more generalizability to the implicit. consistent with the implication of are often unreliable, especially for 
sample from the population. generalizability. small sample size. 

T19 ECVI = f + 2k Expected value of CV. Number of parameters and Can be calculated using one Assumes multivariate normality. 
N sample size. sample. More consistent with the 

implication of generalizability. 

T20 BMS = In fs f(y I ii)n(0)d0 Selects the model with the Number of parameters, Includes more accurate measure on Computational burden. Hard to 
highest mean likelihood of the sample size, and functional model complexity. Leads to more specify and calculate for most SEii 
data over the parameter space. form of a model. accurate model selection. models. 

Note. AIC, Akaike information criterion; BIG, Bayesian information criterion; CV, cross-validation index; BMS, Bayesian model selection; f, minimized discrepancy function; k, the numbei of fie 
parameters of the model; N, sample size; In, natural logarithm; y,,1, the validation sample; Yea,, the calibration sample; a"" the parameter values estimated by the calibration sample; n (9), the pfio 
density of the parameters; El, the parameter space. 



p111·11111clcrs and lhe natural logarithm of N. Unlike 
1hc /\ IC. Lhc estimalion of additional parameters will 
huvc u decreasing impact (penalty) in model selection 
II N s11mple size increases. The model with the smallest 
IIIC is selected. Alternatives to the BJC that may have 
hcll'cr performance in some cases have been proposed 
(e.g .• Sclove, 1987). 

Cross-Validation Index 

Browne and Cudeck (1993) proposed the cross
vulidation index (CV) as a means of estimating the 
generalizability of the estimate of model fit in a new 
sumple from the same population. The CV involves two 
sequential steps: (1) first fitting a model to a calibra
I ion sample (Yea!) and (2) fitting the same model to a 
vulidation sample (Yvai) with the parameter values fixed 
111 those estimated in the first step. The resulting fit in 
the validation sample estimates the generalizability of 
the model to a new sample (see Table 13.2, Equation 
Tl8). Cudeck and Henly (1991) also noted that the CV 
is a measure of overall discrepancy between the fitted 
model and population covariance matrices. 

In practice, the calibration and validation samples 
are often obtained by randomly splitting the observed 
data into two subsamples of equal size, which becomes 
impractical when the available sample is small. Browne 
and Cudeck (1989, 1993) proposed the expected cross
validation index (ECVI; see Table 13.2, Equation Tl9) 
based on a single sample under the assumption of mul
tivariate normality. Conceptually, one can interpret the 
ECVI as the average discrepancy in the fitted covari
ance matrices between two samples of equal sample 
size across all possible combinations of two samples 
from the same population. Because it considers all pos
sible combinations, it is expected to give more stable 
estimates than the CV. However, the ECVI can provide 
misleading information about model selection when 
the multivariate normality assumption is severely vio
lated. 

Bayesian Model Selection 

Bayesian model selection (BMS), an approach devel
oped in the Bayesian statistical framework, is theoreti
cally useful but difficult to implement in many contexts 
(Pitt, Kim, & Myung, 2003; Wu, Myung, & Batchelder, 
2010). BMS attempts to select the model with the high
est mean likelihood of producing the data. To achieve 
this goal, BMS takes the logarithm of the mean like-

' 

lihood, averaged across the full range of parameter 
values and weighted by the prior density (Table 13.2, 
Equation T20). BMS assumes that there exists (1) a 
true known probability distribution (prior density4) 
from which the data were sampled and (2) a known 
parameter space that represents the potential values 
that each of the parameters may take on. BMS repre
sents the Bayesian posterior probability of the model 
being correct given the data. BMS is potentially of par
ticular value for comparing models that have different 
functional forms, but which have the same number of 
freely estimated parameters. In the context of SEM, an 
example in which this would occur is the comparison 
of a latent interaction model, Tl = Y1S1 + Y2S2 +Y3S1S2, 
with a latent quadratic model, Tl = y1!;,1 + y21;,2 +y31;,~. To 
date, BMS has not been implemented in SEM, except 
in contexts involving the analysis of correlation rather 
than covariance structures (see Preacher, 2006, for an 
example). 

Comparison of the Model Selection Indices 

Table 13.2 compares six model fit indices for non-nested 
models. The AIC, CAIC, and BIC all measure model 
complexity using a number of parameters. The CAIC 
and BIC also include a weight for sample size, whereas 
the AIC does not, so that the CAIC and BIC tend to 
select simpler models than does the AIC at smaller N. 
BMS considers functional form in addition to the num
ber of free parameters and sample size. Therefore, BMS 
is expected to perform more accurately in model selec
tion than the AIC, CAIC, and BIC when the compet
ing models have different functional forms. Given the 
pervasiveness of linear functional forms in SEM, this 
feature would only rarely be an advantage in practice. 
The chief disadvantage of BMS is the need to specify a 
known probability distribution and parameter space for 
the model, which is very difficult in practice. These can 
be specified for some well-defined problems, but even 
then the computational burden can be enormous. The 
CV implicitly builds model complexity into its calcu
lation procedure. The definition of the CV also seems 
more consistent with the implication of generalizabil
ity. However, it often leads to an unreliable estimate of 
generalizability in small samples. ECVI provides more 
stable estimates than the CV but assumes multivariate 
normality. Wicherts and Dolan (2004) noted that the 
ECVI has a linear relationship with the AIC. Thus, it 
leads to the same rank-ordering of competing models 
as the AIC. 
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In contrast to fit indices, N plays an important role 
in choosing among competing models. More complex 
models are often preferred for large Ns , in the sense 
that they are more likely to replicate in a new sample, 
even though a simpler model might provide a better ap
proximation to the population. In contrast, for small Ns, 
simpler models are typically preferred because there 
are not enough data to support the estimation of param
eters with sufficient precision in a more complex model 
(MacCallum, 2003). Cudeck and Henly (1991) argued 
that this effect of sample size should be deemed not as 
undesirable but as fundamental to any statistical deci
sion. It is important to choose the model that performs 
best in practice given the specified sample size. 

SENSITIVITY OF KEY MODEL PARAMETERS 

Beyond the consideration of fit, researchers are con
cerned about producing unbiased and precise estimates 
of key parameters in their hypothesized models. In 
some models, such as the Fishbein-Azjen model pre
sented in Figure 13.lB, researchers may consider each 
of the paths to be equally important. In other models, 
such as the growth model presented in Figure 13.lC, 
researchers may believe that some parameters (e.g., the 
mean intercept and slope) are key parameters, whereas 
other parameters, such as the values of autocovariances 
between the Level 1 residuals, are only of importance 
to the extent they may produce more accurate estimates 
of the values of the key parameters or their standard 
errors (Kwok, West, & Green, 2007). 

Several approaches have been proposed for probing 
the sensitivity of the estimates of the model parameters 
to changes in the model. Saris and colleagues (2009) 
proposed focusing on key model parameters. They sug
gest identifying a value that would reflect a meaning
ful change in that key parameter, and then conduct
ing a series of simulation studies in which the values 
of other model parameters are varied within plausible 
ranges. This approach can be used to investigate each 
key parameter separately in turn, but it has not yet been 
extended to Rermit the simultaneous investigation of 
multiple parameters as a function of changes in other 
parts of the model. Millsap (in press) has extended 
this approach to permit the examination of alternative 
models that fall within a small specified range of the 
target model on the RMSEA. An alternative approach 
has been proposed by MacCallum, Lee, and Browne 
(in press) that more easily allows for the examination 
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of the joint sensitivity of multiple parameter estimates. 
They propose allowing a small, nonconsequential in
crease of F from its minimum!, followed by an exami
nation of the range of values of the key parameters that 
are permissible given this slight reduction in fit. They 
find that all potential parameter estimates that satisfy 
the criterion will fall within an ellipsoid, with one di
mension for each key parameter. Analysts can choose 
to consider dimensions corresponding to two or three of 
the key parameters simultaneously to permit visualiza
tion of the acceptable parameter space. In some cases, 
the range of parameter estimates will be reasonable and 
little difference in the conclusions of the model could 
result. In other cases, the range of potentially accept
able parameter estimates will be large, even permitting 
analysts to conclude that the direction of the parameter 
estimates is uncertain, providing the researcher with 
little confidence in the conclusions based on fitting the 
model. 

DISTINGUISHING BETWEEN 
EQUIVALENT MODELS 

Even when a model fits the data well, other equivalent 
models that fit the data equally well typically exist. Fig
ure 13.3 presents three path models each having 1 df 
that provide an equally good fit to a 3 x 3 covariance 
structure. These models are data equivalent (see Wil
liams, Chapter 15, this volume) but have distinctly dif
ferent substantive interpretations since the directions of 
the paths vary. Figure 13.3A presents a model depicting 
the full mediation of an effect of X through M, which 
in turn influences Y Figure 13.3B presents a model of 
the reverse causal effect, where Y affects M, which in 
turn affects X. Finally, Figure 13.3C presents a model 
in which M is a common cause of both X and Y These 
models cannot be distinguished with cross-sectional 
data. Batchelder and Riefer (1999) proposed the use of 
model validation to distinguish between models. In the 
present example of a mediational model, developing 
manipulations that separately target the X ~ M path 
and the M ~ Y path could provide experimental data 
that would help the researcher to distinguish between 
the three models (Spencer, Zanna, & Fong, 2005). Al
ternatively, a longitudinal panel study (Cole & Max
well, 2003) in which X, M, and Y were measured at 
Times 1, 2, and 3 could provide evidence that allows 
the researcher to establish the temporal precedence 
of the effects, thereby helping to rule out the alterna-.. 



(A) ~ ~ 
I x I ·I M · y 

(B) ~ ~ 
I y I ·I M · x 

(C) 

X M 

FIGURE 13.3. Three data-equivalent path models with 
cross-sectional data. (A) Mediational model: X causes M, 
which in turn causes Y. (B) Mediational model: Y causes 
M, which in turn causes X. (C) Common cause model: M 
causes both X and Y. 

tive models. Conceivably, model validation strategies 
could even be extended to CFA models, for example, 
by developing a manipulation expected to affect (1) 
only the first factor (T] 1) but not the second factor (T]2), 

or (2) only the second factor but not the first factor, as 
a means of helping to clarify the measurement struc
ture (see Figure 13.lA). Although such strategies have 
been used widely in other areas (e.g., multinomial tree 
models), they have not seen much usage with structural 
equation models. 

PARSIMONY REVISITED 

The focus on achieving accurate estimates of key pa
rameters raises another issue, the value of parsimony. 
Other things being equal, science clearly prefers (1) 
models with fewer parameters and (2) models that 

make more precise esti mates, so that they place more 
restrictions on the range of data structures they will fit 
(Preacher, 2006). The value of parsimony is clearly ev
ident when models involving exploratory components 
are being compared. On the other hand, other things 
are not always equal. Cole, Ciesla, and Steiger (2007) 
have shown that key parameters in structural equation 
models can be seriously misestimated if theoretically 
justified residual correlations are not included in the 
model, even though minimal effects on overall model 
fit are observed. Marsh and Hau (1996) have shown that 
the failure to estimate relatively small correlated resid
uals in longitudinal confirmatory factor analysis mod
els could have effects on estimates of the key stability 
parameters, even though model fit is little affected. In 
part for this reason, Bentler (1992) has argued that the 
assessment of fit and parsimony may often best be kept 
separate. This strategy lessens the possibility of delet
ing model parameters that provide important correction 
for artifacts that may plague the model, a practice that 
leads to distortion of key model parameters. 

SUMMARY AND CONCLUSION 

The assessment of fit provides researchers with an 
overall perspective on how well the theoretical model 
is able to reproduce the observed data. The x2 test sta
tistic provides a statistical test of whether the residuals 
between the model-implied values and actual data are 
greater than would be expected on the basis of sampling 
error, assuming adequate sample size and multivariate 
normality. However, given that the hypothesized model 
is an approximation to the unknown true model, and 
that the x2 test statistic is affected by sample size, re
searchers have sought to develop alternative practical 
fit indices that provide measures of fit that are not re
lated to sample size. A large number of these fit indices 
have been proposed, and the properties of several of the 
more widely used indices are presented in Table 13.1. 
Several of these (e.g., CFI/RNI, RMSEA, TLI, SRMR, 
GFI*) have desirable properties, and their estimates 
are not related to sample size. However, the quest for a 
standard cutoff criterion for each of the fit indices has 
proven to be elusive. Fit indices are affected by other 
model properties, such as the number of indicators and 
magnitudes of factor loadings. As fit indices are applied 
beyond CFA models to more complex models-multiple 
group models, multilevel models, growth models, and 
so forth-this quest for a single, standard cutoff cri-



terion becomes increasingly chimerical and alternative 
strategies are needed. 

One alternative strategy involves separate examina
tion of the fit of each part of the model, for example, in 
multilevel models and growth curve models. This strat
egy can be extended even down to examination of the 
reproduction of the individual means or covariances to 
identify problem spots in the model. A second strategy 
involves hypothesizing multiple competing models and 
then using model selection indices to identify the opti
mal model. A third strategy involves close examination 
of key parameter estimates and their sensitivity to other 
aspects of the model. A fourth strategy involves the use 
of model validation procedures that can potentially help 
researchers distinguish between data-equivalent models 
or even models that produce similar values of practical 
fit indices. Nearly 20 years ago Bollen and Long (1993) 
wrote, "The test statistics and fit indices are very ben
eficial, but they are no replacement for sound judgment 
and substantive expertise" (p. 8). This advice remains 
true today, but sound judgment is now aided by several 
alternative strategies that provide supplemental infor
mation on the adequacy of the hypothesized model in 
accounting for the observed data. 
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NOTES 

I. A value of x2!df < I can occur due to sampling variation, par
ticularly in small samples. 

2. Another difference between the GFI and R2 is that structural 
equation models attempt to reproduce observed covariances, 
so the GFI is based on p' residual covariances, whereas OLS 
regression attempts to reproduce observed scores on a depen
dent variable, so R2 is based on N residual dependent variable 
scores. 

3. In the case of the GFI, the GFI* appears to have the desired 
proportion of variance interpretation without the bias of un
derestimating the true value at small sample sizes. 

4. The prior density of the parameter is the probability distribu
tion over the parameter space, prior to seeing the data. The 
prior density represents the researcher's prior belief or prior 

ussumptions ubout thu probubiliti t:s or dilforcnt purn1m:tcr 
values. 
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