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Abstract
In this paper, an extension of the minimum cost flow problem is considered in which
multiple incommensurate weights are associated with each arc. In the minimum cost
flow problem, flow is sent over the arcs of a graph from source nodes to sink nodes.
The goal is to select a subgraph with minimum associated costs for routing the flow.
The problem is tractable when a single weight is given on each arc. However, in many
real-world applications, several weights are needed to describe the features of arcs,
including transit cost, arrival time, delay, profit, security, reliability, deterioration, and
safety. In this case, finding an optimal solution becomes difficult. We propose a heuris-
tic algorithm for this purpose. First, we compute the relative efficiency of the arcs by
using data envelopment analysis techniques. We then determine a subgraph with effi-
cient arcs using a linear programming model, where the objective function is based
on the relative efficiency of the arcs. The flow obtained satisfies the arc capacity con-
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straints and the integrality property. Our proposed algorithm has polynomial runtime
and is evaluated in rigorous experiments.

Keywords Network optimization · Data envelopment analysis · Efficiency · Linear
programming · Combinatorial optimization

1 Introduction

Many problems from real-world domains such as computer networks, water deliv-
ery systems, electric power systems, telephone lines, highways, and communication
networks can be formulated based on network flow models or include these models
as important subproblems (Ahuja et al. 1995). In these problems, we often wish to
ship flow (vehicles, messages, electricity, or water) from source nodes to sink nodes
through the arcs of a network at minimum cost. Network flow problems, e.g., the
shortest path, assignment, transportation, maximum flow, and the minimum cost flow
problem, all possess useful theoretical properties. By exploiting the structure of net-
work flow models, specialized algorithms with acceptable runtime requirements even
on large-scale problem instances have been extended to solve such models, which are
at least 100–300 times faster than conventional linear programming algorithms that
ignore the network structure (Ahuja et al. 1993; Bazaraa et al 2011).

For a standard network flow problem, usually a single weight per arc is considered
in the problem formulation in which case the problem can be solved by polynomial-
time algorithms. In many real applications, multiple weights that may conflict with
each other are needed on the arcs of a network. These weights can usually be divided
in two sets: one set is to be minimized and the other to be maximized. Measuring
the aggregated performance of such a problem is complex and also difficult (Deb
2001). As example, real-time services in communication networks have requirements
on packet losses, delays, and delay jitters compared with traditional network services.
For this kind of networks, decision makers are interested in finding paths with several
different goals as the measurable indicators of path selection. One way to deal with
this problem is to solve it with multi-criteria approaches (Ehrgott 2005; Marler and
Arora 2004; Hamacher et al. 2007). A solution to a multi-criteria problem is said to
be Pareto optimal if it is not dominated by any other solution. Typically, there is not
just one single Pareto optimal solution for such problems and decision-makers are
faced with a set of solutions. This is often considered as a nuisance, resulting in the
necessity to use some preferences to differentiate between solutions. Another way to
deal with this problem is that the most important weight is considered as coefficient
of the objective function and the other weights are addressed by side constraints.
However, this approach can destroy the network structure of the network flowproblem.
Therefore, a solution approach should be developed for dealing with the difficulty
while retaining the network structure and that also returns only one solution.

We therefore utilize data envelopment analysis (DEA) techniques in order to deter-
mine the relative efficiency of the arcs in the network. In the following, the arcs can
be proposed as a decision making unit by exchanging their weights to be minimized
and maximized with inputs and outputs, respectively. Indeed, DEA can be viewed as
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a multiple-criteria evaluation methodology where arcs are alternatives and the DEA
inputs and outputs are two sets of performance criteria. As mentioned by Cooper et al.
(2006), “One reason is that DEA has opened up possibilities for use in cases which
have been resistant to other approaches because of the complex (often unknown) nature
of the relations between the multiple inputs and multiple outputs involved in many of
these activities.”1 We then present a linear program satisfying the integrality property
in order to determine the subgraph, where the objective function is based on the rel-
ative efficiency of arcs. We show that the proposed method obtains a subgraph in the
presence of multiple weights on arcs in a polynomial time.

The rest of this paper is organized as follows: in Sect. 2, the related literature is
reviewed. Our proposed approach is explained in Sect. 3. Numerical results are used
to demonstrate its applicability in Sect. 4. Finally, in Sect. 5, we finish with some
concluding remarks.

2 Related work

This section can roughly be divided into two parts. First, there are related works on
network flow problems with side constraints, and second there are works related on
DEA.

Many problems from real-world domains can be viewed as a problemofminimizing
the transportation cost of shipping materials from source nodes to sink nodes through
a network. These kinds of problems are referred as network flow problems. Common
application areas are communication networks, electric networks, transportation net-
works, facilities location, resource management, financial planning, and others (Ahuja
et al. 1995; Li et al. 2013; Deo 1974). The minimum cost flow problem, which is mod-
eled as a special type of linear programming problem, is one of the most fundamental
network flow problems. Many other network flow problems can be formulated as a
minimum cost flow problem (Ahuja et al. 1995; Bazaraa et al 2011). This problem
has the property of integrality of its basic solutions, meaning that every basic solution
is integer-valued (Ahuja et al. 1993; Du and Pardalos 1993; Bazaraa et al 2011) and
fast polynomial-time algorithms have been proposed for solving it (Orlin 1993, 1997;
Sokkalingam et al. 2000). Comprehensive surveys of solution procedures for this spe-
cial case are given by Ahuja et al. (1993), Sokkalingam et al. (2000), Kovács (2015)
and Hu et al. (2020).

However, in most real-life applications multiple weights on the arcs of a network
need to be incorporated. Some of these weights represent costs and some others prof-
its (Vogiatzis and Pardalos 2013). This generalized problem version with multiple
weights per arc allows for considering the specific communication needs of service
users, the dynamic characteristics of networks, and other requirements (Yang andZhao
2014; Raayatpanah et al. 2014; Raayatpanah 2017a, b).

There are several similar important classical problems related to this problem such
as the constrained shortest path problem, the constrained transportation problem, the
constrained assignment problem, and the constrained maximum flow problem – all of

1 This sentence is a direct quote from Cooper et al. (2006).
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which have important applications in practice such as in logistics, telecommunications
and computer networks.

We can deal with network problems in this case by adding one or more con-
straints to consider these weights. This kind of constraints are called side constraints.
A constrained shortest path problem is a special case of side-constrained network
problems, which is NP-complete (Dürr et al. 2015; Guo 2016; Sedeño-Noda and
Alonso-Rodríguez 2015). We may sometimes attempt to solve side-constrained net-
work problems using pure network problems in which side constraints are replaced
with a number of flow balance equations and a few additional arcs and nodes (Glover
et al. 1974; Klingman 1977). The majority of research focusses on three approaches
for handling network problems with such side constraints. The first method is a spe-
cialized version of the simplex algorithmwhich exploits the structure of the underlying
network problems (Chen and Saigal 1977;Glover andKlingman 1981, 1985;McBride
1985; McBride and Mamer 1997; Mamer and McBride 2000; McBride and Mamer
2001). This approach has found several applications (Spälti and Liebling 1991; Fang
and Qi 2003; Mo et al. 2005; Lu et al. 2006; Venkateshan et al. 2008). The second
method is a straightforward dual method, in which the primal infeasibility of the side
constraint is reduced successively. Finally, such problems can be solved by Lagrangian
relaxation of the side constraints (Belling-Seib et al. 1988; Bryson 1991; Mathies and
Mevert 1998). Holzhauser et al. (2016) addressed an extension of the minimum cost
flow problem by a budget constraint and presented several special cases of the prob-
lem that admitted polynomial-time exact algorithms or approximation algorithms.
Chen and Lu (2007) developed another strategy for solving the assignment problem
by considering multiple inputs and outputs and modeled this problem as a classical
integer linear program to determine the assignments with the maximum efficiency.
Amirteimoori (2011) proposed an extension to a transportation problem by consid-
ering multiple inputs and outputs for each arc. By defining the relative efficiency for
each possible transportation plan, he could determine a transportation plan with the
maximum efficiency.

However, the network structure of problems can be destroyed by adding side con-
straints to them. By exploiting the structure of the network, our approach proposes
a minimum cost network flow problem in the presence of multiple weights on arcs
in which the objective function is based on the relative efficiency of the arcs. Data
envelopment analysis is employed to evaluate the relative efficiency of the arcs in
the presence of multiple weights. Since the proposed approach leads to a minimum
cost network flow problem, we can find subgraphs in polynomial time that satisfy the
integrality property as well.

DEA is a non-parametric method that utilizes linear programming (LP) techniques
to gauge the relative efficiency of decision making units (DMU) whose performance
is difficult to measure because of multiple inputs and outputs (Cook et al. 2014).

Non-parametric frontier analysiswas initially introduced byFarrell (1957). Charnes
et al. (1978) introduced the CCR (Charnes, Cooper, and Rhodes) model to measure the
CCR-efficiency scores of a given DMU assuming constant returns to scale. The cross-
evaluationmethod, proposed bySexton et al. (1986),was developed as an effectiveway
to rank DMUs and to identify best performing DMUs using cross-efficiency scores.
The results are used to fill out a matrix in which the diagonal members represent
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the CCR-efficiency scores of DMUs and the remaining cells give the cross-efficiency
scores. Thismatrixmaybe changedbecauseof the non-uniqueness of optimal input and
output weights. Doyle and Green (1994) presented aggressive and benevolent models,
which minimize or maximize, respectively, the efficiency of the composite DMU
constructed from the other DMUs compared to a specific DMU. An improvement
in data envelopment analysis, the cross-efficiency aggregation method based on the
Shannon entropy, was proposed by Song and Liu (2018). Today, there exists a wide
variety of applications of data envelopment analysis (Tran andVillano 2018; Longaray
et al. 2018; Chaudhry and Khan 2016).

3 Subgraph selection withmultiple weights on arcs

3.1 Problem definition

Let G = (N , A) be a directed network defined by a set N of n nodes, and a set A
of m directed arcs. For each node i ∈ N , we define the two arc adjacency lists
δ+
i = {(i, j) ∈ A| j ∈ N } and δ−

i = {( j, i) ∈ A| j ∈ N } that denote the set
of arcs leaving and entering i , respectively, and two node adjacency lists N+(i) =
{ j ∈ N |(i, j) ∈ A} and N−(i) = { j ∈ N |( j, i) ∈ A} as the neighborhood sets of
node i . Moreover, an integer number b(i) is associated with each node i that represents
its supply (b(i) > 0) or demand (b(i) < 0). If b(i) = 0, then node i is called a
transshipment (or intermediate) node.

A flow vector x on G is a function from the arc set A to R, i.e., x : A �→ R, that
satisfies the mass balance constraints:

∑

(i, j)∈δ+
i

xi j −
∑

( j,i)∈δ−
i

x ji = b(i), ∀i ∈ N . (1)

Each arc (i, j) is associatedwith two parameters li j and ui j which denote theminimum
and maximum amounts of a flow that can be sent over the arc, respectively. The flow x
is called feasible if it obeys the following capacity constraints:

li j ≤ xi j ≤ ui j , ∀(i, j) ∈ A. (2)

Two arcs (i1, j1) and (i2, j2) of G are said to form a neighborhood if i1 = i2 or
j1 = j2. As mentioned before, some real-life applications in network flow problem
incorporate multiple weights on the arcs of a network such that some of these weights
can be interpreted as costs and someothers as profits.As example, each arc of a network
in transportation planning problem can associated with multiple weights like a travel
time, length, deterioration of goods, which we can interpret as costs. Weights like
safety, reliability, and revenue can be interpreted as profits. Another possible example
is related to wireless sensor networks (WSNs), which are used in a wide variety of
systems with vastly varying requirements and characteristics. WSNs are designed for
specific applications. Each application should specify its explicit requirements need
to guarantee quality of service (QoS) requirements. Each arc of network in WSN can
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associated with interference, latency, jitter and energy consumption of data transfer
and receiving, which again can be interpreted as costs. The information gain ratio,
the quality, and the value of information, on the other hand, are weights which can be
interpreted as profits.

We represent this in our model by associating each arc (i, j) ∈ A with two non-
negative vectors Ci j = (c1i j , c

2
i j , . . . , c

k
i j ) and Pi j = (p1i j , p

2
i j , . . . , p

s
i j ), where cti j ,

t = 1, 2, . . . , k, and pri j , r = 1, 2, . . . , s, denoting the costs and profits per unit
flow on arc (i, j), respectively. Thus, each arc has k + s incommensurate attributes
(weights) that may conflict with each other. When the arc attributes (weights) are
incommensurate, then the problem becomesmore difficult, or at least more interesting,
and measuring the aggregated performance of such a problem is complex and also
difficult. Accordingly, a solution procedure has to be developed for dealing with the
above difficulties (Deb 2001).

For determining the relative efficiency of an arc per unit flow, we use DEA tech-
niques in which the relative efficiency of an arc is the weighted sum of profits in
comparison with the weighted the sum of costs. The efficiency of a scheme increases
if it improves profits at a less than proportionate raise in costs.

3.2 Description of themethod of subgraph selection using DEA techniques

This section first proposes DEA models to evaluate arc efficiency and then a linear
model is proposed to select a subgraph based on this computed efficiency. For this
purpose, each arc in the underlying network is assumed to be a DMU. In other words,
we have m DMUs with k inputs and s outputs, the cost and profit vectors of arcs. By
considering the head and tail of arc (i, j), two relative efficiencies can be computed
relative to the sets of all arcs leaving node i and arcs entering node j .

The relative efficiency of arc (i, j) in comparison to the arcs leaving node i is
defined as the maximum of the ratio of total weighted outputs to the total weighted
inputs, i.e.,

θ̄i j = max
ur ,vt

{∑s
r=1 ur p

r
i j∑k

t=1 vt cti j

}
. (3)

The ratio θ̄i j cannot be greater than one for any arc (i, l), l ∈ N+(i), i.e.,

∑s
r=1 ur p

r
il∑k

t=1 vt ctil
≤ 1. (4)

where ur and vt are the non-negative weight factors. We then have the following linear
fractional to compute the relative efficiency score corresponding to arc (i, j).

θ̄i j =max

{∑s
r=1 ur p

r
i j∑k

t=1 vt cti j

}
(5)
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s.t.

∑s
r=1 ur p

r
il∑k

t=1 vt ctil
≤ 1, l ∈ N+(i), (6)

vt ≥ ε, t = 1, 2, . . . , k, (7)

ur ≥ ε, r = 1, 2, . . . , s. (8)

where ε > 0 is a non-Archimedean construct (Yang et al. 2013). Arc (i, j) is called
CCR-efficient in comparison to arcs leaving node i if and only if the optimal value
of Model 5–8 obtains a score of 1, otherwise arc (i, j) is CCR-inefficient. Model 5–8
is a linear fractional programming problem, which can be transformed into a linear
programming model by the Charnes–Cooper transformation (Charnes and Cooper
1962) to obtain the optimal solution easily. The relative efficiency score θ̄il can be
calculated for all l ∈ N+(i) by changing j in the above model.

It should be noted that each arc inModel 5–8 is evaluated by its best weight factors.
The value of θ̄i j reflects the self-evaluation mode in which each of the arcs can achieve
the best possible relative efficiency by assigning themost favorableweights to its inputs
and outputs. In other words, we have no restrictions on howmuchweight can be placed
on any individual input or output relative to the others.

Instead of the self-evaluation mode, we can use a peer-evaluation mode in which
each of the arcs achieves its efficiency using the weights of the other arcs. Hence, the
cross-efficiency value of arc (i, j) is defined, which reflects the peer evaluation of
arc (i, j) to all the arcs (i, l) with l ∈ N+(i), as

θ
i j
il =

∑s
r=1 ūr p

r
il∑k

t=1 v̄t ctil
, (9)

where ūr and v̄t represent the optimal weights for inputs and outputs of the linear
programmingmodel representation ofModel 5–8, respectively.We calculate the cross-
efficiency value |δ+

i | times, each time for one different arc belonging to δ+
i . Then,

a |δ+
i | × |δ+

i | matrix is computed, in which the diagonal members indicate the CCR-
efficiency scores of the DMUs and the remaining cells present the cross-efficiency
scores.

The cross-efficiency score of an arc is then denoted by the average of cross-
efficiency scores computed in each column of the matrix. The cross-efficiency value
of arc (i, j) depends on the optimal output and input weights ūr and v̄t . If the optimal
weights exhibit non-uniqueness, we can obtain several of the cross-efficiency values
for each arc and that decreases the benefit of the cross-efficiency evaluation. Doyle and
Green (1994) introduced aggressive and benevolent cross-efficiency models, which
optimize the input and output weights and keep the CCR-efficiency unchanged. The
following aggressive model obtains the optimal value of the input and output weights
for arc (i, j).

min

⎧
⎪⎪⎨

⎪⎪⎩

∑s
r=1 ur (

∑
l∈N+(i),

l �= j
pril)

∑k
t=1 vt (

∑p
l∈N+(i),

l �= j

ctil)

⎫
⎪⎪⎬

⎪⎪⎭
(10)
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s.t.

∑s
r=1 ur p

r
i j∑k

t=1 vt cti j
= θ̄i j , (11)

∑s
r=1 ur p

r
il∑k

t=1 vt ctil
≤ 0, l ∈ N+(i), l �= j, (12)

vt ≥ ε, i = 1, 2, . . . , k, (13)

ur ≥ ε, r = 1, 2, . . . , s. (14)

The objective function of Model 10–14 minimizes the cross-efficiencies of the other
arcs. By using the Charnes and Cooper transformation (Charnes and Cooper 1962),
Model 10–14 can again be equivalently transformed into a linear program. Let u∗

r and
v∗
t denote the optimal solution of the linear model corresponding to Model 10–14. In
this case, the cross-efficiency score of arc (i, l) ∈ δ+

i is obtained by

¯̄θ i jil =
∑s

r=1 u
∗
r p

r
il∑k

t=1 v∗
t c

t
il

. (15)

Therefore, the cross-efficiency matrix is generated by the elements in which the
remaining cells present the cross-efficiency scores and the diagonal members present
the CCR-efficiency scores of the DMUs, i.e., ¯̄θ i jil . Consequently, the cross-evaluation
of each arc is considered as the average of the cross-efficiency scores in the corre-
sponding column of the matrix, which is denoted by θ̄∗

i j . In a similar manner, based
on the target node j of arc (i, j), we can calculate the CCR-efficiency score of (i, j)
in comparison to the arcs leaving node i as follows:

θ̃i j = max

{∑s
r=1 ur p

r
i j∑k

t=1 vt cti j

}
(16)

s.t.

∑s
r=1 ur p

r
l j∑k

t=1 vt ctl j
≤ 1, l ∈ N−( j), (17)

vt ≥ ε, t = 1, 2, . . . , k, (18)

ur ≥ ε, r = 1, 2, . . . , s. (19)

For all l ∈ N−( j), θ̃l j can be obtained by changing i in Model 16–19. Similarly, we
can compute the cross-efficiency score of arc (i, j), denoted by θ̃∗

i j , in comparison to
the arcs entering node j .

We have calculated two kinds of relative efficiencies for each arc corresponding
to CCR-efficiency and cross-efficiency scores. Now, a composite efficiency index is
constructed in order to incorporate the two kinds of the relative efficiencies based on a
DEA model without inputs. The following model computes the composite efficiency
index θ1i j for arc (i, j) corresponding to efficiency scores θ̃i j and θ̄i j .

θ1i j = max λ1θ̃i j + λ2θ̄i j (20)
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s.t. λ1θ̃iq + λ2θ̄iq ≤ 1, ∀q ∈ N+(i), (21)

λ1θ̃pj + λ2θ̄pj ≤ 1, ∀p ∈ N−( j), (22)

λ1 ≥ 0, λ2 ≥ 0. (23)

Similarly, we can also obtain the composite efficiency index θ2i j for each arc (i, j) ∈
A corresponding to θ̃∗

i j and θ̄∗
i j . Hence, we have the two populations of composite

efficiencies, θ1 and θ2. Thus, it is necessary to determine whether or not the two
populations are drawn from an identical distribution.

TheMann–Whitney U test is a non-parametric test to compare differences between
two independent groups without making the assumption that values are normally dis-
tributed (Mann and Whitney 1947; Lehmann 2006; Hollander et al. 2014). The test
has two important assumptions. First, the two samples under consideration are inde-
pendent of each other. Second, the observations are continuous or ordinal (arranged in
ranks). Since the populations θ1 and θ2 satisfy the assumptions, the Mann–Whitney
U test can be used to test the null hypothesis, i.e., that the two populations θ1 and
θ2 have identical distribution functions. The alternative hypothesis is that the two
distribution functions differ.

There are two cases to consider. The first case is the situation where there is no
significant evidence of a difference between the distributions. In this case, since cross
efficiency indices provide a unique ordering of the efficiencies and to reduce compu-
tational time, θ2i j is defined as the efficiency of arc (i, j). If θ1i j is also consider as the
efficiency of arc (i, j), we get the similar results. Each arc (i, j) is associated with
parameter θ2i j which reflects its relative efficiency. If θ

2
i j is equal to one, this means that

this arc is an efficient arc in comparison to the arcs leaving node i and those entering
node j . Hence, the objective is the minimization of

∑
(i, j)∈A(1 − θ2i j )xi j .

As we mentioned before, the flow x is feasible if it guarantees flow mass balance
at each node and obeys the capacity constraints of each arc. We then determine an
efficient subgraph G ′ by solving the following minimum cost flow problem, where
the objective function is based on the relative efficiency of the arcs.

θ∗ = min
∑

(i, j)∈A

(1 − θ2i j )xi j (24)

s.t.
∑

(i, j)∈δ+
i

xi j −
∑

( j,i)∈δ−
i

x ji = b(i), ∀i ∈ N , (25)

li j ≤ xi j ≤ ui j , ∀(i, j) ∈ A. (26)

Let x∗ be the optimal solution of Model 24–26. We can select an efficient sub-
graph G ′ = (N ′, A′) of the network G = (N , A), where A′ = {(i, j) ∈ A|x∗

i j > li j }
and N ′ = {i |(i, j) or ( j, i) ∈ A′}. Note that Model 24–26 can be solved by using sev-
eral algorithms, such as cycle-canceling, successive shortest path, primal-dual, out-of
kilter, and network simplex algorithms (Ahuja et al. 1993).

Assuming all parameters b(i), li, j , and ui j are integer, then every extreme point of
the convex hull of the feasible region ofModel 24–26 is integer-valued, too. Therefore,
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Algorithm 1 Finding a subgraph with multiple weights on arcs using DEA

Require: G = (N , A), b(i) ∀i ∈ N ; li j , ui j , Ci j = (c1i j , c
2
i j , . . . , c

k
i j ), Pi j = (p1i j , p

2
i j , . . . , p

s
i j ) ∀(i, j) ∈ A.

Ensure: Returns the selected subgraph with efficient arcs for a feasible flow.
1: for each (i, j) ∈ A do
2: Calculate θ̄i j by solving Model 5-8.
3: Calculate θ̄∗

i j using the cross-evaluation method described in Section 3.2 for θ̄i j .

4: Calculate θ̃i j by solving Model 16-19.

5: Calculate θ̃∗
i j using the cross-evaluation method described in Section 3.2 for θ̃i j .

6: end for
7: for each (i, j) ∈ A do
8: Obtain θ1i j by solving Model 20-23 for θ̃i j and θ̄i j .

9: Obtain θ2i j by solving Model 20-23 for θ̃∗
i j and θ̄∗

i j .
10: end for
11: if there is no significant difference between the distribution of θ1 and θ2 then
12: Solve Model 24-26 with θ2i j as the efficiency of arc (i, j) and obtain the subgraph G′ = (N ′, A′).
13: else
14: Solve Model 24-26 with θ1i j as the efficiency of arc (i, j) and obtain the subgraph G′

1 = (N ′, A′).
15: Solve Model 24-26 while considering θ2i j as the efficiency of arc (i, j) and obtain the

subgraph G′
2 = (N ′, A′).

16: end if

themodel has the integrality property. Thismeans that if the problem requires an integer
optimal solution, then it can be solved by simply determining an optimal extreme point
solution to the linear model by ignoring the integrality restrictions.

In the second case, there is a significant difference between the two population
distributions of the composite efficiencies. In this case, Model 24–26 is solved with θ1i j

and θ2i j as the arc efficiencies and two efficient subgraphs are determined for bothCCR-
efficiency and cross-efficiency. This method is specified as Algorithm 1.

3.3 Problem complexity

In this section, we analyze the complexity of the proposed algorithm. Given a
graph G = (N , A) in which each arc (i, j) ∈ A is associated with two non-
negative vectors Ci j = (c1i j , c

2
i j , . . . , c

k
i j ) and Pi j = (p1i j , p

2
i j , . . . , p

s
i j ), where cti j ,

t = 1, 2, . . . , k, and pri j , r = 1, 2, . . . , s, denote the cost and profit per unit flow on
arc (i, j), respectively, i.e. for each arc (i, j), these are k + s attributes (weights).
When we have multiple weights on the arcs of a network, finding an optimal subgraph
over which a feasible flow can be sent then can become difficult. One way to solve
the problem is that we consider it as a constrained network flow problem, which is
NP-hard in general (Holzhauser et al. 2016). In our approach to solve the problem,
we first evaluate the efficiency of the arcs in the presence of multiple weights on them
usingDEA techniques.We then determine an efficient subgraphG ′ = (N ′, A′) using a
linear programmingmodel including themass balance and capacity constraints, where
the objective function is based on the relative efficiency of the arcs.

Below we show that the proposed algorithm takes time bounded by a polynomial to
solve the problem, but it should be noted that the selected subgraphmay not necessarily
optimal. First, two relative efficiencies are computed by considering the start i and
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end j of arc (i, j) by comparing the arc with all other arcs leaving i or entering j .
Then to obtain the CCR-efficiency score of arc (i, j), a DEA model without inputs is
computed. The cross-relative efficiency score of arc (i, j) is calculated the same way.
Therefore, we need to solve 6(

∑
i∈N |N+(i)| + |N−(i)|) = 12m linear models.

Thus, the running time of the calculation of the relative efficiency for each arc is
bounded byO(m(k + s)4 log((k + s)L)), where (k+ s) is the number of weights and
L is a bound on the magnitude of coefficients of the CCR and aggressive models.
For calculating a subgraph, the linear programming Model 24–26 is applied in which
the weights of the arcs are their relative efficiencies. This model can be solved in a
polynomial time O(m log(nm+n2 log n)) (Orlin 1993). Thus, the proposed algorithm
solves the problem in O(m3(k + s)4 log(nm + n2 log n)log((k + s)L)).

4 Results

We now present computational experiments that evaluate the performance of the pro-
posed method in comparison to other approaches. We present results for different
networks, including small networks to explain the algorithm and on random networks
to show the efficiency of the proposed algorithm. Algorithm 1 was implemented using
the General Algebraic Modeling System (GAMS) Distribution 22.5 using CPLEX as
an underlying solver on system with an Intel Core i5 processor at 2.2 GHz with 4 GB
of RAM. GAMS is a high-level modeling system for mathematical programming and
optimization, which consists of a language compiler and is specifically designed for
modeling linear, nonlinear, and mixed integer optimization problems.2

4.1 Examples of themethod

In this subsection, the considered method is applied to two networks with ten nodes
each. Each arc (i, j) is associated with cost vector Ci j = (c1i j , c

2
i j ) and profit vector

Pi j = (p1i j ). In other word, each arc is associated with three nonnegative weights,
which could, for instance, represent the cost (or length), the delay (or travel time),
and the profit of arcs. We use c1, c2, and p1 to denote the vectors c1 = (c1i j )(i, j)∈A,

c2 = (c2i j )(i, j)∈A, and p1 = (p1i j )(i, j)∈A. As first example, the network described in
Table 1 is considered in which the capacity of each arc is equal to one unit and node
values are as follows:

b(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, if i = 1
2, if i = 4,
−3, if i = 7,
−1, if i = 10,
0, otherwise.

The cross-efficiency scores andCCR-efficiencywere calculated for each arc according
to steps 1–6 in Algorithm 1. Then, the composite efficiencies θ1i j and θ2i j corresponding

2 See GAMS—A User’s Guide, Frechen, Germany: GAMS Development Corporation, 2021.
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to each arc (i, j) ∈ Awere obtained according to steps 7–10, which are revealed in the
eighth and eleventh columns of Table 1. We ran the non-parametric Mann–Whitney
U test on columns θ1i j and θ2i j . We found that the null hypothesis was rejected, i.e.,
the observed distributions differ. Then, two subgraphs could be obtained based on the
CCR-efficiency and cross-efficiency scores. The objective function value ofModel 24–
26 was θ∗ = 0.237 when θ1 considered as arc efficiency. In addition, the total weight
of arcs in a resulting subgraph with respect to vectors c1, c2, and p1 were 61, 22,
and 43, respectively. In the same way, by solving Model 24–26 and proposing θ2 as
weight of the arcs, the optimal objective value was θ∗ = 0.241 and the total weight
of a resulting subgraph with respect to vectors c1, c2, and p1 were 41, 31, and 34,
respectively.

In a second example, Table 2 presents the proposed network. The capacity of each
arc is equal to one unit and the node values are as follows:

b(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if i = 1,
3, if i = 5,
−1, if i = 7,
−3, if i = 9,
0, otherwise.

For each arc (i, j), we computed the CCR-efficiency score compared to arcs leaving
node i and entering node j and the composite efficiency indices. We present them in
the sixth, seventh, and eighth columns of Table 2, respectively. In a similar way, the
ninth, tenth, and eleventh columns represent the cross-efficiency score of each arc.

The Mann–Whitney U test was applied to the columns with respect to θ1i j and θ2i j .

This time, the null hypothesis could not be rejected, i.e., the distributions of θ1i j and θ2i j

may be the same. In this case, for each arc (i, j)we considered the cross efficiency θ2i j
as the arc efficiency because it could provide a unique ordering of the arcs. The
subgraph found by Model 24–26 is presented in Fig. 1a. In this case, the total weight
of arcs in a found subgraph to vectors c1, c2, and p1 were 50, 27, and 27, respectively.
When we consider θ1i j as the efficiency of arc (i, j), these total weights of a found
subgraph are 50, 27, and 33, respectively. The resulting subgraph in this case is shown
in Fig. 1b. As we can be seen, similar results are obtained.

4.2 Performance evaluation

In this section, we conduct simulations based on random network topologies, in which
each arc (i, j) is associated with cost vector Ci j = (c1i j , c

2
i j ) and profit vector Pi j =

(p1i j ). We refer to their element c1i j as the cost (or length), to c
2
i j as the delay (or travel

time), and to p1i j as the profit of arc (i, j). We assess the average total cost, delay, and
profit of the random subgraph connections by using, first, our proposed approach and,
second, minimum cost subgraphs and budget-constrained subgraphs.

By utilizing the method proposed by Waxman (1988), random network topologies
were produced. The network nodes are randomly located in a one-by-one square.
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Table 1 Description of the proposed method: Example 1

Tail Head c1i j c2i j p1i j θ i j θ̃i j θ1i j θ
∗
i j θ̃∗

i j θ2i j

1 3 6 2.25 1 0.389 0.305 0.389 0.99 0.99 1.00

1 5 7 1.75 3 1.000 0.686 1.000 1.00 0.19 1.00

1 8 4 3.25 1 0.583 0.286 0.583 0.58 0.25 1.00

1 9 7 1.75 3 1.000 0.882 1.000 1.00 1.00 1.00

3 2 9 0.75 5 1.000 1.000 1.000 0.99 0.96 0.28

3 5 1 4.75 1 0.800 0.400 0.800 0.18 0.32 0.59

3 7 4 3.25 5 1.000 1.000 1.000 1.00 0.99 0.68

3 8 2 4.25 2 0.800 1.000 1.000 0.36 0.43 0.86

3 9 5 2.75 5 1.000 1.000 1.000 0.28 0.37 0.16

3 10 5 2.75 2 0.400 1.000 1.000 1.00 1.00 1.00

4 2 3 3.75 1 0.417 0.600 0.600 0.80 0.31 0.76

4 3 5 2.75 4 1.000 1.000 1.000 1.00 0.36 1.00

4 5 10 0.25 4 1.000 1.000 1.000 1.00 1.00 0.84

4 8 8 1.25 4 1.000 1.000 1.000 1.00 0.96 0.40

4 9 10 0.25 1 0.250 1.000 1.000 0.99 1.00 0.38

5 3 4 3.25 3 0.667 0.937 0.937 0.50 0.42 0.74

5 6 5 2.75 5 1.000 1.000 1.000 0.95 1.00 0.95

5 7 3 3.75 4 1.000 0.800 1.000 1.00 1.00 0.78

5 9 7 1.75 3 0.942 0.882 0.942 1.00 0.85 0.40

6 5 2 4.25 5 1.000 1.000 1.000 1.00 0.83 1.00

6 7 7 1.75 5 1.000 1.000 1.000 0.20 1.00 1.00

6 9 3 3.75 4 0.800 0.800 0.800 1.00 0.99 0.89

8 7 2 4.25 5 1.000 1.000 1.000 1.00 1.00 0.90

8 9 2 4.25 5 1.000 1.000 1.000 0.98 1.00 0.41

8 10 10 0.25 4 1.000 1.000 1.000 0.65 0.16 1.00

9 2 3 3.75 1 0.333 0.600 0.600 1.00 1.00 0.99

9 5 7 1.75 3 0.771 0.686 0.771 0.85 1.00 0.42

9 6 5 2.75 5 1.000 1.000 1.000 1.00 0.56 1.00

9 7 6 2.25 1 0.200 0.200 0.200 1.00 1.00 1.00

9 8 6 2.25 5 1.000 1.000 1.000 0.98 1.00 1.00

The probability of creating an arc between two nodes is β exp(
−di j
αL ), where di j is

the distance between nodes i and j , and L is the maximum distance between any
two nodes. The parameters α and β can be selected from the range [0, 1) to obtain
topologies similar to real networks. Small values of α cause long connections and
higher values of β cause nodes with a high average degree. We set α and β such that
we obtain networks with an average node degree of four.

The parameter c1i j of arc (i, j) was set to the distance between its endpoints plus

one. The parameters c2i j and p1i j were set to random numbers drawn from the uniform
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Table 2 Description of the proposed method: Example 2

Tail Head c1i j c2i j p1i j θ i j θ̃i j θ1i j θ
∗
i j θ̃∗

i j θ2i j

1 3 3 3.75 2 0.462 1.000 1.000 1.00 0.65 0.99

1 4 2 4.25 4 1.000 1.000 1.000 0.48 1.00 0.68

1 6 10 0.25 4 1.000 1.000 1.000 0.87 0.97 1.00

1 10 5 2.75 5 1.000 1.000 1.000 0.23 0.81 0.28

3 2 2 4.25 2 1.000 0.500 1.000 1.00 0.99 0.25

3 4 4 3.25 2 0.800 0.615 0.800 0.40 0.96 1.00

3 7 4 3.25 1 0.400 0.333 0.400 1.00 1.00 0.37

3 8 3 3.75 2 0.889 0.800 0.889 0.69 0.85 1.00

3 10 10 0.25 4 1.000 1.000 1.000 1.00 1.00 1.00

4 2 2 4.25 4 1.000 1.000 1.000 0.66 1.00 0.22

4 3 3 3.75 1 0.250 0.500 0.500 1.00 0.98 1.00

4 6 1 4.75 1 0.500 1.000 1.000 0.30 0.28 0.95

4 7 5 2.75 3 0.886 1.000 1.000 1.00 0.63 0.67

4 9 2 4.25 1 0.250 0.666 0.666 1.00 0.30 0.22

4 10 4 3.25 4 1.000 0.842 1.000 1.00 1.00 0.90

5 2 4 3.25 4 0.870 1.000 1.000 0.39 1.00 0.39

5 3 2 4.25 1 0.238 0.750 0.750 0.53 1.00 0.76

5 4 2 4.25 2 0.476 0.500 0.500 0.90 0.25 1.00

5 6 6 2.25 4 0.800 1.000 1.000 1.00 1.00 0.74

5 8 6 2.25 5 1.000 1.000 1.000 0.22 1.00 0.96

5 10 1 4.75 4 1.000 1.000 1.000 1.00 0.56 0.67

6 3 8 1.25 5 1.000 1.000 1.000 1.00 0.26 0.81

6 4 10 0.25 1 0.999 1.000 1.000 0.51 1.00 0.76

6 7 6 2.25 1 0.250 0.407 0.407 1.00 1.00 0.23

6 8 7 1.75 1 0.222 0.257 0.257 1.00 0.97 0.98

6 9 4 3.25 3 1.000 1.000 1.000 0.46 0.99 0.22

8 2 6 2.25 1 0.263 0.250 0.263 0.33 0.48 0.23

8 3 7 1.75 4 1.000 0.909 1.000 0.23 0.76 0.95

8 7 6 2.25 1 0.263 0.407 0.407 1.00 1.00 0.77

8 10 2 4.25 3 1.000 0.706 1.000 1.00 1.00 0.89

10 2 7 1.75 4 1.000 1.000 1.000 0.73 1.00 1.00

10 3 6 2.25 3 0.789 0.789 0.789 0.24 1.00 0.77

10 7 2 4.25 3 1.000 1.000 1.000 0.84 0.99 0.99

10 9 10 0.25 1 1.000 1.000 1.000 1.00 1.00 0.87

123



Journal of Combinatorial Optimization

(a) When θ2 is considered as the efficiency
of arcs

(b) When θ1 is considered as the efficiency
of arcs

Fig. 1 Resulting subgraphs for Example 2

Table 3 Comparison between the proposed method and Model 27–29

Network size (nodes) Proposed method Model 27–29

c1 c2 p1 c1 c2 p1

20 95.489 122.978 124.135 72.340 167.174 78.693

30 263.000 250.376 368.200 210.400 513.509 326.905

40 341.305 513.240 614.348 256.620 742.978 394.223

50 775.359 781.714 1007.966 635.540 1440.946 826.202

distribution with range [0, 1] times the cost plus one. The occurrence of unrealistic
zero values was avoided by adding one to c1i j , c

2
i j , and p1i j .

The differences between the quality of the minimum cost subgraphs, which may be
formulated in the following way, and subgraphs obtained from our considered method
are compared in the first experiment step.

min
∑

(i, j)∈A

ci j xi j (27)

s.t.
∑

(i, j)∈δ+
i

xi j −
∑

( j,i)∈δ−
i

x ji = b(i), ∀i ∈ N , (28)

li j ≤ xi j ≤ ui j , ∀(i, j) ∈ A. (29)

Model 27–29 seeks the cheapest possibleway of sending a feasible flowby considering
a single weight of the arcs of a network without taking into consideration the other
weights of the arcs. The results are presented in Table 3. The first column of the table
shows the size of networks and the other values in the table are the average of 10 runs.

The total weight average of arcs in the subgraphs determined from the proposed
method of this paper corresponding to vector weights c1, c2, and p1 are shown in the
second, third, and fourth columns of the table, respectively. Similarly, the total weight
average of arcs in subgraphs obtained by Model 27–29, are given in the fifth, sixth
and seventh columns of Table 3, respectively.
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Fig. 2 Comparison between the proposed method and Model 27–29 regarding to vector weight c1

As can be seen, the total weights of the subgraphs resulting from the considered
method corresponding to c1 are approximately 40% worse compared to subgraphs
resulting fromModel 27–29. Figure 2 illustrates this issue. This is because Model 27–
29 obtains optimal subgraphs regarding to only weight c1 and does not seek to improve
resulting subgraphs compared to other weights.

However, as we can see in the Table 3, for all network topologies the average gaps
regarding to parameters c2 and p1 are 67% and 37%, respectively, indicating that the
obtained subgraphs of our approach have better performance in terms of c2 and p1.
In fact, Model 27–29 performs poorly with regard to weights c2 and p1. Although the
consideredmethodof this study leads to expensive subgraphs, it obtains subgraphswith
lower delay (c2) and higher profit (p1). These results indicate that subgraphs obtained
from our method have higher quality compared to those obtained with Model 27–29.

In some applications, one of the important reasons for rejecting some subgraphs is
due to a bound on the total weight of selected subgraphs. Hence, we considered an
extension of Model 27–29 in the second step of computational experiments by adding
side constraints to Model 27–29 to deal with these weights. This problem is presented
as the budget-constrained minimum cost flow problem (Holzhauser et al. 2016). The
budget-constrained problem (BCP) of Model 27–29 can be formulated as a mixed
integer linear program as follows:

min
∑

(i, j)∈A

c1i j xi j (30)

s.t .
∑

(i, j)∈δ+
i

xi j −
∑

( j,i)∈δ−
i

x ji = b(i), ∀i ∈ N , (31)
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∑

(i, j)∈A

c2i j yi j ≤ D, (32)

∑

(i, j)∈A

p1i j yi j ≥ P, (33)

0 ≤ xi j ≤ ui j yi j , ∀(i, j) ∈ A, (34)

yi j ∈ {0, 1}, ∀(i, j) ∈ A, (35)

where the total weight of a selected subgraph is constrained by the budgets D and P .
In this step, we first implemented our proposed method and computed the total

weight of the selected subgraphs regarding to vector weights c1, c2 and p1, which
are denoted by C1

DEA, C
2
DEA, and P1

DEA, respectively. The results are listed in the
second, third and fourth columns of Table 4. Then, to evaluate the performance of our
methods, we compared these subgraphs with subgraphs resulting from Model 30–35
in the following two strategies.

In the first strategy, the upper bound D was set to the constant value C2
DEA and the

value of P was varied from P1
DEA − 10 to P1

DEA + 10 in Model 30–35. The results
are outlined in the fifth column of Table 4. As we can see, the lower bound P has a
direct influence on the quality of subgraphs. A subgraph could not be available when
the P value is higher than a specified threshold.

In the second strategy, the value of the lower bound P was set to the constant
value P1

DEA and the value of D was changed from C2
DEA − 10 to C2

DEA + 10 in
Model 30–35. These results are presented in the last column of Table 4. In Model 30–
35, we can find subgraphs with lower objective value when the upper bound D
increases. It is obvious that the considered method has better performance compared
to Model 30–35 developed in (Holzhauser et al. 2016) with up to 30% decrease in
objective function value.

TheCPU times (in seconds)which are necessary for generating a subgraph resulting
from Model 30–35 and the considered method of this study are shown in Fig. 3. The
runtimes requiredbyourmethod are approximately 25% lower than those ofModel 30–
35 and the gap between the two methods increases with the size of the networks.

We also assess the proposedmethod on other randomly generated networks.Wefirst
explain how to generate the random test instances of the problem. We then compare
exact solutions obtained for the budget-constrained problem (BCP) by setting a budget
for the other weights with our solutions.

The networks were randomly generated using three different methods, similar
to (Bollobás 2011): The first random networks were generated using to the method-
ology proposed by Erdös and Rényi (2006) in which it is assumed that there is a link
from node i to node j with probability pi j . The second network we consider is the
small-world network of Watts (2003) and the third network is the scale-free network
described by Barabási and Albert (1999).

For each arc (i, j), uniform random numbers were generated on an interval,
say [a, b], in order to represent ui j c1i j ,c2i j , and p1i j .

We first implemented our proposed method and computed the total weights C1
DEA,

C2
DEA, and P1

DEA of the selected subgraph with regard to vector weights c
1, c2 and p1,

123



Journal of Combinatorial Optimization

Table 4 Comparison between the proposed method and Model 30–35

Network size (nodes) Proposed method Average cost Model 30–35

C1
DEA C2

DEA P1
DEA Fixed D Fixed P

20 65 40.26 45.52 76.23 69.52

30 97.56 66.32 75.26 104.60 102.45

40 108.45 93.95 91.13 124.30 115.24

50 149.26 111.04 94.94 175.21 164.56

respectively. Then, in the first strategy, we investigate the impact of the change bud-
get P on BCP when the budget D was set to the constant value C2

DEA. In the second
strategy, we evaluate the effect of the change budget D on the BCP when the budget D
was set to the constant value P1

DEA.
We calculated the total weights of subgraphs resulting from Model 30–35 and

the considered method of this study with respect to vector weights c1, c2 and p1 and
denoted them byC1

total ,C
2
total and P1

total in the columns of the result tables. Moreover,
since we have a set of available solutions with respect to multiple vector weights c1,
c2, and p1, we need an effective framework for comparing exact solutions obtained
by setting a budget with our proposed approach based on the evaluation of multiple
conflicting weights.

The Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is a
practical approach frommultiple criteria decision making for ranking and selection of
a number of possible alternatives through measuring Euclidean distances (Tzeng and
Huang 2011). Her, the chosen alternative should have the shortest distance from the
positive ideal solution (PIS), i.e., the solution that maximizes the benefit criteria and
minimizes the cost criteria; and also be the farthest distance away from the negative
ideal solution (NIS), i.e., the solution that maximizes the cost criteria and minimizes
the benefit criteria. In our numerical results, Shannon’s Entropy methodology was
used to determine the importance of attributes (Chen 2021). Hence in the result tables,
we added have columns regrading to relative closeness (RC) and ranking obtained
from TOPSIS approach.

Tables 5 and 6 show the results obtained from random topologies generated by
the Barabási and Albert (1999) method. As observed in Table 5, although Model 30–
35 has better performance regarding to C1

total , our approach has better performance
compared to Model 30–35 rather in the other total weights and especially CPU Time.
Hence, our solution could obtain rank 1 in the TOPSIS approach.

Tables 6 shows that the ranking of our solution is 7, but as we see in this table the
solution with a rank 1 has the same RC with accuracy to 3 decimal places with our
solution while the computation time of our approach is less compared toModel 30–35.

Tables 7 and 8 show the results obtained from random topologies generated by
the Watts (2003) and Erdös and Rényi (2006) methods, respectively. The results also
confirm the adequacy of the proposed approach.

In summary, our proposed method can find subgraphs in polynomial time which
satisfy the integrality property.
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Fig. 3 Comparison between the CPU times (in seconds) of the proposed method and Model 30–35

5 Conclusions

Network flow problems, in general, are defined over weighted directed graphs. These
problems are easily tractablewhenone singleweight is consideredon the arcs of a given
network. However, in many real-life applications, multiple weights are imposed on
the arcs. Then, solving the problem becomes more difficult. In this paper, we proposed
an efficient method for solving a resource allocation problem by considering several
weights on the arcs of a network. Our approach calculates the relative efficiency of
each arc in the presence of multiple weights imposed on it using DEA techniques. We
examined twomodels of efficiency: the CCR-efficiencymodel and the cross efficiency
model. The information obtained from these two models helps to identify an efficient
subgraph through a linear programming model. The advantages of this method are
that (1) a subgraph will be obtained in a polynomial time, (2)that it has the integrality
property, and (3) that the graphs are highly efficient in terms of the weights of their
edges. Several numerical experiments confirmed the efficiency and applicability of
our approach.

Possible application areas that we consider for our method are wireless sensor
networks (WSNs) and wireless body area networks (WBANs), which can be used
for a wide variety of systems with vastly varying requirements and characteristics.
WSNs consist of small, power-constrained sensor nodes that are deployed to sense
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physical or environmental conditions and communicate data to a base station. WSNs,
unlike many other networks, are designed for specific applications which require to
satisfy different types of constraints. Thus, energy efficiency and routing problems are
a critical problem in WSNs, which also need to guarantee quality of service (QoS)
requirements such as reducing interference, latency, reducing the number of installed
nodes and increasing coverage, connectivity, network lifetime, and the profit that the
information brings to the user, i.e., the value of information (VoI) (Singh et al. 2019).

WBANs are special case of WSN to monitor patients remotely, along with the
development of several other applications at low cost. Due to life-criticality of the
detection of emergencies such as heart attacks and sudden falls, WBANs have to
support the mobility of patients and guarantee QoS requirements, e.g., hard real-
time data delivery delay limits, reliability, confidentiality, access control, throughput,
end-to-end delay, packet transmission rates, dynamic reconfiguration, efficient traffic
management, security and energy efficiency (Niu et al. 2019; Khan et al. 2018).

With our proposed approach, we can solve exactly such problems. We obtain the
relative efficiency of links regarding to QoS parameters and solve the routing problem
by using the relative efficiency of links. Our future work will therefore focus on
practically applying our methods in the above scenarios.
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