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ABSTRACT 

Forecasting temporal events from high-dimensional sparse observational data presents 

significant challenges due to noise, confounding factors, and data sparsity. Traditional 

sequence models often struggle in extracting underlying causal relationships, leading 

to biased forecasts. Causal Representation Learning (CRL) aims to uncover latent 

causal factors from observational data, thereby enabling more robust forecasting in 

complex temporal settings. This paper explores recent advancements in CRL for 

temporal event prediction, proposes an architecture integrating recurrent encoders with 

causal graph discovery, and evaluates performance on synthetic and real-world sparse 

datasets. Results show CRL-enhanced models significantly outperform standard LSTM 

baselines in both accuracy and counterfactual reasoning tasks. 
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1. Introduction 

Temporal event forecasting is a critical task across domains like healthcare, finance, and 

cybersecurity, where decisions rely on accurate predictions based on sparse, high-dimensional 

observational data. Traditional approaches using RNNs or attention-based models are designed 

to capture statistical dependencies, but they often fail to generalize well under intervention or 

missing data due to latent confounders. 

Causal Representation Learning (CRL) introduces a paradigm shift: rather than 

modeling the raw data distributions directly, it learns latent representations that preserve the 

causal structure of the data-generating process. This allows downstream predictors to reason 

more robustly under covariate shifts, interventions, or incomplete information. The goal of this 

paper is to synthesize literature on CRL in time-series, introduce an interpretable CRL model 

for sparse temporal sequences, and empirically validate its utility in forecasting tasks. 

 

2. Problem Formulation 

Given a sparse, high-dimensional temporal dataset D={X t, A t, Y t}Tt=1 Where Xt  

denotes input features, At potential interventions/actions, and Yt the outcomes/events, the task 

is to predict Yt+k for future timestamps t + k. with k>0. Traditional models treat this as sequence 

prediction, but CRL reframes this as discovering latent variables Zt such that: 

 

 

The challenge is to learn meaningful latent variables from limited and noisy 

observations that preserve the causal relationships necessary for temporal generalization. 

 

3. Literature Review 

We review foundational and recent work prior  
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• Schölkopf et al. (2021) introduced causal representation learning frameworks and their 

theoretical justifications. 

• Yao et al. (2020) proposed Temporal Causal Discovery methods using conditional 

independence tests over sequences. 

• Zhang et al. (2021) developed DAG-GNNs for learning temporal causal graphs in latent 

space. 

• Bica et al. (2021) applied counterfactual recurrent networks in treatment effect 

estimation from EHR data. 

• Krishnan et al. (2017) introduced Structured Inference Networks to jointly infer latent 

variables in time-series forecasting. 

• Shalit et al. (2017) proposed TARNet, a neural framework for estimating causal effects 

from observational data. 

• Amortized Inference models like VAE-based time series (Lim et al., 2021) support 

sparse event modeling. 

• Louizos et al. (2017) introduced the Causal Effect VAE, estimating treatment effects 

with latent variable disentanglement. 

• Goudet et al. (2018) implemented Graph-based methods for learning causal structures 

from data. 

• Hyttinen et al. (2013) laid early foundations for score-based causal discovery in sparse 

data settings. 

 

4. Architecture of the Proposed CRL Model 

Our model integrates the following modules: 

1. Encoder: An RNN-based encoder transforms sparse inputs XtX_tXt into continuous 

latent states hth_tht. 

2. Causal Graph Learner: A learnable graph module enforces structural constraints 

among latent variables. 

3. Latent Variable Generator: Outputs ZtZ_tZt capturing independent causal 

mechanisms. 
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4. Predictor: A decoder RNN forecasts Yt+kY_{t+k}Yt+k based on ZtZ_tZt, optionally 

conditioned on interventions. 

Table 1: Core Model Components 

Component Role 

RNN Encoder Maps sequences into hidden representations 

DAG-GNN Module Learns temporal causal structure 

Causal Latent Decoder Generates interventions-aware forecasts 

Loss Function Combines likelihood + structural penalty 

 

5. Dataset and Experimental Setup 

We evaluated the model on: 

• Synthetic Dataset: Generated from known SEMs (Structural Equation Models) with 

induced sparsity. 

• MIMIC-III Subset: Sparse EHR records of ICU patients. 

• Retail Transactions: Temporal purchase records with high missingness. 

Preprocessing involved imputation via nearest-neighbor and temporal smoothing. Models were 

trained using Adam optimizer, batch size 64, for 50 epochs. 
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Figure 1: Event Forecast Accuracy (AUC) Comparison 

 

Model MIMIC-III AUC Synthetic AUC Retail AUC 

LSTM 0.78 0.82 0.75 

TARNet 0.80 0.83 0.78 

CRL (ours) 0.87 0.91 0.84 

 

6. Results and Analysis 

Our CRL model outperformed standard LSTM and causal baselines across all datasets. 

The inclusion of the learned causal graph allowed the model to better generalize to unseen 

interventions and handle data sparsity. 

In ablation studies, removing the causal regularizer reduced performance by ~8%. 

Visualizing the inferred causal graph (via thresholded attention weights) revealed interpretable 

dependencies aligned with ground-truth structure. 

Table 2: Ablation Study (MIMIC-III Dataset) 

Configuration AUC Score 

Full CRL Model 0.87 

w/o Causal Graph 0.79 

w/o Latent Variables 0.76 

LSTM Baseline 0.78 

 

7. Discussion 

Causal representation learning enables disentangled forecasting, essential for domains 

with interventions or policy changes. It supports counterfactual reasoning, i.e., "What if 

treatment A had not been given at time t?" — a key capability for healthcare and economics. 
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While CRL shows promise, challenges remain in ensuring identifiability, scalability, and 

cross-domain generalization. Our findings suggest that causal structure regularization is most 

effective when paired with recurrent architectures and latent disentanglement. 

 

8. Conclusion and Future Work 

This paper highlights the benefits of applying causal representation learning to sparse 

temporal forecasting tasks. By discovering latent causal structure, CRL models deliver more 

robust and interpretable predictions. Future work includes integrating temporal attention 

mechanisms, exploring multi-modal data sources, and adapting CRL models for real-time 

event streams in production. 
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