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Abstract
Most of the current hypergraph learning method-
ologies and benchmarking datasets in the hyper-
graph realm are obtained by lifting procedures
from their graph analogs, leading to overshadow-
ing specific characteristics of hypergraphs. This
paper attempts to confront some pending ques-
tions in that regard: Q1 Can the concept of ho-
mophily play a crucial role in Hypergraph Neural
Networks (HNNs)? Q2 Is there room for im-
proving current HNN architectures by carefully
addressing specific characteristics of higher-order
networks? Q3 Do existing datasets provide a
meaningful benchmark for HNNs? To address
them, we first introduce a novel conceptualization
of homophily in higher-order networks based on a
Message Passing (MP) scheme, unifying both the
analytical examination and modeling of higher-
order networks. Further, we investigate some natu-
ral –yet mostly unexplored– strategies for process-
ing higher-order structures within HNNs (such as
keeping hyperedge-dependent node representa-
tions, or performing node/hyperedge stochastic
samplings), leading us to the most general MP for-
mulation up to date –MultiSet–, as well as to an
original architecture design –MultiSetMixer. Fi-
nally, we conduct an extensive set of experiments
that contextualize our proposals and successfully
provide insights about our inquiries.

1. Introduction
Hypergraph learning techniques have multiplied in re-
cent years, demonstrating their effectiveness in processing
higher-order interactions in numerous fields, spanning from
recommender systems (Yu et al., 2021; La Gatta et al., 2022),
to bioinformatics (Zhang et al., 2018; Yadati et al., 2020) and
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computer vision (Li et al., 2022; Xu et al., 2022). However,
so far, the development of Hypergraph Neural Networks
(HNNs) has been largely influenced by the well-established
Graph Neural Network (GNN) field. In fact, most of the
current methodologies and benchmarking datasets in the
hypergraph realm are obtained by lifting procedures from
their graph counterparts.

The advancement of hypergraph research has been signifi-
cantly propelled by drawing inspiration from graph-based
models (Chien et al., 2022; Feng et al., 2019; Yadati et al.,
2019), but it has simultaneously led to overshadowing hy-
pergraph network foundations. We argue that it is now the
time to address fundamental questions in order to pave the
way for further innovative ideas in the field. In that regard,
this study explores some of these open questions to under-
stand better current HNN architectures and benchmarking
datasets along three axes. Q1 Can the concept of homophily
play a crucial role in HNNs, similar to its significance in
graph-based research? Q2 Given that current HNNs are
predominantly extensions of GNN architectures adapted to
the hypergraph domain, are these extended methodologies
suitable, or should we explore new strategies tailored specif-
ically for handling hypergraph-based data? Q3 Are existing
hypergraph benchmarking datasets truly meaningful and
representative to draw robust conclusions?

To begin with, we explore how the concept of homophily
can be characterized in complex, higher-order networks.
Notably, there are many ways of characterizing homophily
in hypergraphs –such as the distribution of node features,
the analogous distribution of the labels, or the group connec-
tivity similarity (as already discussed in (Veldt et al., 2023)).
In particular, this work places the node class distribution at
the core of the analysis, and introduces a novel definition of
homophily that relies on a Message Passing (MP) scheme.
Interestingly, this enables us to analyze both hypergraph
datasets and architecture designs from the same perspec-
tive. In fact, this unified MP framework has the potential to
inspire the development of meaningful contributions for pro-
cessing higher-order relationships, as well as to successfully
describe model performances (see Section 3 and 5.2).

Next, we shift our focus towards the design of hypergraph-
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Hypergraph Neural Networks through the Lens of Message Passing

(a)

(b)

Figure 1: Node Homophily Distribution Scores for CORA-CA (a) and 20Newsgroups (b) using Equation 2 at t = 0, 1, and
10. Horizontal lines depict class mean homophily, with numbers above indicating the quantity of points visualized per class.

specific methodologies that HNNs could benefit from, no
longer relying on lifting strategies. To this end, after exam-
ining state-of-the-art HNN architectures, we first describe
the most versatile MP framework up to date, called MultiSet.
Our novel formulation, which enables hyperedge-dependent
node representations and residual connections, inherently
generalizes most existing HNN frameworks and models,
including AllSet (Chien et al., 2022), UniGCNII (Huang &
Yang, 2021) and EDHNN (Wang et al., 2023). Subsequently,
we introduce a particular implementation of a MultiSet layer
–MultiSetMixer– that combines multiple hyperedge-based
node hidden states with novel connectivity-based mini-
batching strategies. These sampling procedures not only
facilitate processing large hyperedges, but also give rise of
an interesting behaviour –which we term connectivity-based
distribution shift– thoroughly discussed in the paper.

Last but not least, we provide an extensive set of experi-
ments that, driven by the general questions stated above,
aim to gain a better understanding on fundamental aspects
of hypergraph representation learning. In fact, the obtained
results not only help us contextualize the proposals intro-
duced in this work, but indeed offer valuable insights that
might help improve future hypergraph approaches.

Summary of contributions:

• We introduce a novel definition of homophily for hyper-
graphs, capable of effectively describing HNN model
performances (Q1 and Q3, Sections 3 and 5.2).

• We present the novel MultiSet framework, which gen-
eralizes previous models and incorporates hyperedge-
dependent node representations (Q2, Section 4.2).

• We propose an original MultiSet layer implementation
–termed MultiSetMixer– that incorporates novel mini-
batching sampling strategies (Q2, Section 4.3).

• We perform a large set of experiments assessing bench-
marking both datasets and HNN architectures, as well
as connecting the proposed MP homophily with the
models’ performance (Q1, Q2, Q3, Sections 3 and 5).

2. Related Works
Homophily in hypergraphs. Homophily measures are
typically defined only for pairwise relationships. In the con-
text of Graph Neural Networks (GNNs), many of the current
models implicitly use the homophily assumption, which is
shown to be crucial for achieving a robust performance with
relational data (Zhou et al., 2020; Chien et al., 2020; Hal-
crow et al., 2020). Nevertheless, despite the pivotal role
that homophily plays in graph representation learning, its
hypergraph counterpart mainly remains unexplored. In fact,
to the best of our knowledge, Veldt et al. (2023) is the only
work that faces the challenge of defining homophily for
higher-order networks. This work introduces a framework
in which homophily is quantified through group interactions,
measuring the distribution of classes among hyperedges (see
Appendix M for a detailed description). However, their def-
inition of homophily is restricted to uniform hypergraphs
–where all hyperedges have exactly the same size–, which
hinders its practical application to a great extent.

Hypergraph Neural Networks. The work of Chien et al.
(2022) introduced AllSet, a general framework that de-
scribes HNNs through the composition of two learnable
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permutation invariant functions, defining a two-step mes-
sage passing based mechanism –from nodes to hyperedges,
then back from hyperedges to nodes. In particular, AllSet is
shown to generalize most commonly used HNNs, including
all clique expansion based (CE) methods, HNN (Feng et al.,
2019), HNHN (Dong et al., 2020), HCHA (Bai et al., 2021),
HyperSAGE (Arya et al., 2020) and HyperGCN (Yadati
et al., 2019). Chien et al. (2022) also proposes two novel
AllSet-like learnable layers: the first one –AllDeepSet– ex-
ploits Deep Set (Zaheer et al., 2017), and the second one
–AllSetTransformer– Set Transformer (Lee et al., 2019),
both of them achieving state-of-the-art results in the most
common hypergraph benchmarking datasets. Concurrent
to AllSet, Huang & Yang (2021) also aimed at designing
a common framework for graph and hypergraph NNs, and
its more advanced UniGCNII method leverages initial resid-
ual connections and identity mappings in the hyperedge-to-
node propagation to address over-smoothing issues; notably,
UniGCNII does not fall under the AllSet framework due
to these residual connections. Likewise, the more recent
EDHNN model (Wang et al., 2023) also goes beyond this
framework by incorporating hyperedge-dependent messages
from hyperedges to nodes, a step closer to the hyperedge-
dependent node representations that we propose in this work.
An extended review can be found in Appendix B.

Notation. A hypergraph is an ordered pair of sets G =
(V, E), where V is the set of nodes and E is the set of
hyperedges. Each hyperedge e ∈ E is a subset of V , i.e.,
e ⊆ V . A hypergraph is a generalization of the concept of
a graph where (hyper)edges can connect more than two
nodes. A vertex v and a hyperedge e are said to be incident
if v ∈ e. For each node v, we denote its class by yv , and we
denote by Ev = {e ∈ E : v ∈ e} the subset of hyperedges
in which it is contained. We represents by dv = |Ev|
the node degree. The set of classes is represented by
C = {ci}|C|i=1.

3. Homophily Metrics in Hypergraphs
In this section, we present a new definition of homophily
that employs a two-step message passing scheme applica-
ble to general, non-uniform hypergraphs, in contrast to the
definition by Veldt et al. (2023). In essence, our defini-
tion focuses on capturing hyperedge interconnections by
the exchange of information following the message passing
scheme. Following that, we illustrate its applicability in ex-
amining higher-order networks through qualitative analysis.
Finally, we demonstrate the applicability of the proposed
concept by deriving a ∆ homophily measure. In Section
5.2, we show its capability to describe HNNs’ performance.
These play a pivotal role in our attempt to answer the funda-
mental question Q1 raised in the Introduction.

Message passing homophily. Given a a hyperedge e ∈ E ,
we define the 0-level hyperedge homophily h0e(c) as the
fraction of nodes within e that belong to class c, i.e.

h0e(c) =
1

|e|
∑
v∈e

1yv=c. (1)

This score describes how homophilic the initial connectivity
is with respect to class c. Computing the score for each class
ci ∈ C generates a categorical distribution for each e ∈ E ,
i.e. h0e = [h0e(c0), . . . , h

0
e(c|C|)]. Using this information

as a starting point, we calculate higher-level homophily
measurements for both nodes and hyperedges through the
two-step message passing approach. Formally, we define
the t-level homophily score as

ht−1
v = AGGE

(
{ht−1

e (yv)}e∈Ev

)
, (2)

hte(c) = AGGV
(
{ht−1

v }v∈e,yv=c

)
, (3)

where AGGE and AGGV are functions aggregating edge and
node homophily scores, respectively (we consider the mean
operator in our implementation). We note that our ho-
mophily measure enables the definition of a score for each
node and hyperedge for any neighborhood resolution.

Qualitative analysis. One straightforward way to make
use of the message passing homophily measure is to visu-
alize how the node homophily score dynamically changes,
as described in Eq. 2. Figure 1 depicts this process for non-
isolated nodes on CORA-CA and 20NewsGroup datasets
(Appendix M shows the plots of the rest of considered
datasets, which in turn are described in Section 5). Looking
at CORA-CA (Figure 1 (a)), we note that there are a signifi-
cant number of nodes with high 0-level homophily at each
class (except number 6), and this homophily distribution is
kept mostly unchanged as we move to the 1-hop neighbor-
hood (t = 1). Interestingly, the same trend holds even when
shifting to the 10-level node homophily –only classes 1 and
6 show a relevant drop in highly homophilic nodes. This
suggests the presence of isolated homophilic subnetworks
within the hypergraph. In contrast, 20Newsgroups dataset
(Figure 1 (b)) displays relatively low node homophily scores
from the 0-level (specifically for class 2, with a mean value
around 0.3). Moving to t = 1, there is a significant decrease
in the homophily scores for every class. Finally, at time
step t = 10, we can observe that all the classes converge
to approximately the same homophily values within each
class. This convergence and low homophily scores suggest
that the network is highly interconnected.

∆ homophily. Rather than measuring homophily in indi-
vidual discrete timestamps, we next derive ∆ homophily
measure, which offers a dynamic perspective to explore
hypernetworks. This measure is based on the assumption
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that if the 1-hop neighborhood of a node u ∈ V is predom-
inantly homophilic, then the change in homophily score
between two consecutive timestamps will be small. Con-
versely, a substantial change in u’s homophily implies that
the node resides in a neighborhood characterized as het-
erophilic. Specifically, for each node, we quantify the ho-
mophily change after t-th step of message passing by com-
puting the difference between the node homophily at that
step from its value at previous one, t− 1. Subsequently, we
look at the proportion of nodes whose homophily difference
is below a certain threshold µ ∈ R+, i.e.

∆t
µ =

1

|V|
∑
v∈V

1|ht
v−ht−1

v |<µ. (4)

As we show in Section 5.2, this dynamic measure becomes
a helpful tool to analyze the performance of HNN models.

4. Methods
Current HNNs aim to generalize GNN concepts to the hy-
pergraph domain, and are specifically focused on redefining
graph-based propagation rules to accommodate higher-order
structures. In this regard, the work of Chien et al. (2022)
introduced a general notation framework, called AllSet, that
encompasses most of currently available HNN layers, in-
cluding CEGCN/CEGAT, HNN (Feng et al., 2019), HNHN
(Dong et al., 2020), HCHA (Bai et al., 2021), HyperGCN
(Yadati et al., 2019), as well as AllDeepSet and AllSetTrans-
former presented in the same work (Chien et al., 2022).
This section first revisits the original AllSet formulation,
and then introduces a new framework –MultiSet– which
extends AllSet by allowing multiple hyperedge-dependent
representations of nodes. Finally, we present some novel
methodologies to process hypergraphs within the MultiSet
framework, including MultiSetMixer. In contrast to previ-
ous formulations, our proposed framework and implemen-
tation are inspired by hypergraph needs and features, and
motivated by the fundamental question Q2.

4.1. AllSet Propagation Setting

Figure 2: AllSet layout.

For a given node v ∈ V
and hyperedge e ∈ E in
a hypergraph G = (V, E),
let x(t)

v ∈ Rf and z
(t)
e ∈

Rd denote their vector
representations at propa-
gation step t. We say that
a function f is a multiset
function if it is permuta-
tion invariant w.r.t. each
of its arguments in turn. Typically, x(0)

v and z
(0)
e are ini-

tialized based on the corresponding node and hyperedge
original features, if available. The vectors x(0)

v and z
(0)
e rep-

resent the initial node and hyperedge features, respectively.
In this context, the AllSet framework (Chien et al., 2022)
consists in the following two-step update rule:

z(t+1)
e = fV→E({x(t)

u }u:u∈e; z
(t)
e ), (5)

x(t+1)
v = fE→V({z(t+1)

e }e∈Ev ;x
(t)
v ), (6)

where fV→E and fE→V are two permutation invariant func-
tions with respect to their first input. Equations 5 and 6
describe the propagation from nodes to hyperedges and vice
versa, respectively. We extend the original AllSet formula-
tion to accommodate UniGCNII (Huang & Yang, 2021) by
modifying the node update rule (Eq. 6) as follows

x(t+1)
v = fE→V({z(t+1)

e }e∈Ev
; {x(k)

v }tk=0), (7)

i.e. allowing residual connections. Again, the only require-
ment is to be invariant w.r.t. the first input.

Proposition 4.1. UniGCNII (Huang & Yang, 2021) is a
special case of AllSet considering 5 and 7.

In the practical implementation of a model, fV→E and fE→V
are parametrized and learnt for each dataset and task; partic-
ular choices of these functions give rise to most of the HNN
architectures considered in this paper (see Appendix C).

4.2. MultiSet Framework

Figure 3: MultiSet layout.

In this Section, we intro-
duce our proposed Multi-
Set framework, which can
be seen as an extension
of AllSet where nodes
can have multiple co-
existing hyperedge–based
representations. For a
given hyperedge e ∈ E in
a hypergraph G = (V, E),
we denote by z

(t)
e ∈ Rd

its vector representation
at step t. For a node v ∈ V , MultiSet allows for as many
representations of the node as the number of hyperedges it
belongs to. We denote by x

(t)
v,e ∈ Rf the vector representa-

tion of node v in a hyperedge e ∈ Ev at propagation time t,
and by X(t)

v = {x(t)
v,e}e∈Ev

the set of all dv hidden states of
that node in the specified time-step. Accordingly, the hyper-
edge and node update rules of MultiSet are formulated to
accommodate hyperedge–dependent node representations:

z(t+1)
e = fV→E({X(t)

u }u:u∈e; z
(t)
e ), (8)

x(t+1)
v,e = fE→V({z(t+1)

e }e∈Ev
; {X(k)

v }tk=0), (9)

where fV→E and fE→V are two multiset functions with
respect to their first input. After T iterations of message
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passing, MultiSet also considers a last readout-based step
to obtain a unique final representation xT

v ∈ Rf ′
for each

node from the set of its hyperedge–based representations:

x(T )
v = fV→V({X(k)

v }Tk=0) (10)

where fV→V is also a multiset function.

As we show in the following propositions (proofs can be
found in Appendices E and F), both AllSet framework and
the more recent EDHNN architecture (Wang et al., 2023)
can be expressed in terms of the general MultiSet notation.

Proposition 4.2. AllSet 5-6, as well as its extension 5-7, are
special cases of MultiSet 8-9-10.

Proposition 4.3. EDHNN (Wang et al., 2023) is a special
case of MultiSet 8-9-10.

4.3. Training MultiSet Networks

This section describes the main characteristics of our Mul-
tiSet layer implementation, MultiSetMixer, and presents a
novel sampling procedure that our model incorporates.

Learning MultiSet layers. Following the mixer-style
block designs (Tolstikhin et al., 2021) and standard practice,
we propose the following MultiSet layer implementation:

z(t+1)
e = fV→E({x(t)

u,e}u:u∈e; z
(t)
e ) (11)

:=
1

|e|
∑
v∈e

x(t)
u,e + MLP

(
LN

(
1

|e|
∑
v∈e

x(t)
u,e

))
,

x(t+1)
v,e = fE→V(z

(t+1)
e ;x(t)

v,e) (12)

:= x(t)
v,e + MLP

(
LN(x(t)

v,e)
)
+ z(t+1)

e ,

x(T )
v = fV→V(X(T )

v ) :=
1

dv

∑
e∈Ev

x(t)
v,e (13)

where MLPs are composed of two fully-connected lay-
ers, and LN stands for layer normalization. This novel
architecture, which we call MultiSetMixer, is based on a
mixer-based pooling operation for (i) updating hyperedges
from its node’s representations, and (ii) generate and update
hyperedge-dependent representations of the nodes.

Proposition 4.4. The functions fV→E , fE→V and fV→V
defined in MultiSetMixer are permutation invariant. Fur-
thermore, these functions are universal approximators of
multiset functions when the size of the input multiset is finite.

Mini-batching. The motivation for introducing a new
strategy to iterate over hypergraph datasets is twofold. On
the one hand, current HNN pipelines suffer from scalability
issues to process large datasets and immense hyperedges.
On the other, pooling operations over relatively large sets
can also lead to over-squashing the signal. To help in these

directions, we propose samplingX mini-batches of a certain
size B at each iteration. At step 1, we sample B hyperedges
from E . The hyperedge sampling over E can be either uni-
form or weighted (e.g. by taking into account hyperedge
cardinalities). Then in step 2 L nodes are in turn sampled
from each sampled hyperedge e, padding the hyperedge
with L− |e| special padding tokens if |e| < L –consisting
of 0 vectors that can be easily discarded in some computa-
tions. Overall, the shape of the obtained mini-batch X is
B × L. Please refer to Appendix L for additional analysis.

5. Experimental Results
The questions that we introduced in the Introduction have
shaped our research, leading to a new definition of higher-
order homophily and unexplored architectural designs that
can potentially fit better the properties of hypergraph net-
works. In subsequent subsections, we set four questions that
follow up from these fundamental inquiries and can help
contextualize the technical contributions of this paper.

Datasets and models. We use the same datasets used
in Chien et al. (2022), which includes Cora, Citeseer,
Pubmed, ModelNet40, NTU2012, 20Newsgroups, Mush-
room, ZOO, CORA-CA, and DBLP-CA. More information
about datasets and corresponding statistics are in Appendix
H.2. We also utilize the benchmark implementation pro-
vided by Chien et al. (2022) to conduct the experiments
with several models, including AllDeepSets, AllSetTrans-
former, EDHNN, UniGCNII, CEGAT, CEGCN, HCHA,
HNN, HNHN, HyperGCN, HAN, and HAN mini-batching.
Additionally, we consider vanilla MLP applied to node fea-
tures and a transformer architecture, as well as introduce
MultiSetMixer and a new MLP baseline leveraging Connec-
tivity Batching (MLP CB). We refer to Section 4.3 for more
details about all these architectures. All models are opti-
mized using 15 splits with 2 model initializations, resulting
in a total of 30 runs; see Appendix H.1 for further details.

5.1. How does MultiSetMixer perform?

Our first experiment directly targets our fundamental Q2 by
assessing the performance of our proposed MultiSetMixer
pipeline together with the other models and baselines. Fig-
ure 4 shows the average rankings –across all models and
datasets– of the top-5 best-performing models for different
training splits, exhibiting that those splits can impact the
relative performance among models. However, due to space
limitations, we restrict our analysis to the 50% split results
shown in Table 1,1 and relegate to Appendix I.1 the corre-

1Unless otherwise specified, all tables in the main body of the
paper use a 50%/25%/25% split between training and testing.
The results are shown as Mean Accuracy Standard Deviation, with
the best result highlighted in bold and shaded in grey, and results
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Table 1: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 6.80

AllSetTransformer 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 3.25
UniGCNII 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 4.75
EDHNN 80.74 ± 1.00 73.22 ± 1.14 89.12 ± 0.47 85.17 ± 1.02 91.94 ± 0.23 99.94 ± 0.11 88.04 ± 1.65 97.70 ± 0.19 81.64 ± 0.49 89.49 ± 6.99 2.90
CEGAT 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 NA 44.62 ± 9.18 12.11
CEGCN 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 NA 49.23 ± 6.81 12.56
HCHA 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 7.85
HGNN 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 7.95
HNHN 77.68 ± 1.08 73.47 ± 1.36 87.88 ± 0.47 78.53 ± 1.15 86.73 ± 0.40 99.97 ± 0.04 88.28 ± 1.50 97.84 ± 0.15 81.53 ± 0.55 89.23 ± 7.85 5.55

HyperGCN 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 14.30
HAN 80.73 ± 1.37 73.69 ± 0.95 86.34 ± 0.61 84.19 ± 0.81 91.10 ± 0.20 91.33 ± 0.91 83.78 ± 1.75 93.85 ± 0.33 79.67 ± 0.55 80.26 ± 6.42 8.90

HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 10.60
MultiSetMixer 78.06 ± 1.24 71.85 ± 1.50 87.19 ± 0.53 82.74 ± 1.23 90.68 ± 0.19 99.58 ± 0.16 88.90 ± 1.30 98.38 ± 0.21 88.57 ± 1.96 88.08 ± 8.04 6.20

MLP CB 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 99.93 ± 0.08 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 10.30
MLP 73.27 ± 1.09 72.07 ± 1.65 87.13 ± 0.49 73.27 ± 1.09 84.77 ± 0.41 99.91 ± 0.08 79.70 ± 1.56 95.31 ± 0.28 80.93 ± 0.59 85.13 ± 6.90 11.50

Transformer 74.15 ± 1.17 71.82 ± 1.51 87.37 ± 0.49 73.61 ± 1.55 85.26 ± 0.38 99.95 ± 0.08 82.88 ± 1.93 96.29 ± 0.29 81.17 ± 0.54 88.72 ± 10.25 9.85

Figure 4: Average rankings and standard deviations at diffe-
rent training percentages, with overall average performance.

sponding tables for the other scenarios. Table 1 emphasizes
MultiSetMixer solid performance, obtaining the highest test
accuracy on NTU2012, ModelNet40, and 20Newsgroups
datasets. Notably, MultiSetMixer and MLP CB share similar
patterns (see Section 5.3), and both significantly outperform
all the other architectures on 20Newsgroup.

In fact, the comparable performance among the rest of HNN
models on this dataset suggests that existing architectures
can not account for the dataset connectivity. According
to what we observed in the qualitative homophily analysis
performed in Section 3, 20Newsgroup is densely intercon-
nected, making it highly heterophilic as the MP evolves; we
argue this presents a challenge for most of current HNNs
architectures. In contrast, CORA-CA exhibits a high degree
of homophily within its hyperedges and shows the most
significant performance gap between HNNs and the base-
lines. A similar trend is observed for DBLP-CA (see node
homophily plot in Appendix M). Please refer to Section 5.4
for more experiments on the impact of connectivity.

Finally, we highlight the overall good performance obtained
by the non-inductive baselines (MLP, MLP CB) in most
datasets: only in 3 out of 10 (Cora, CORA-CA, DBLP-

within one standard deviation are displayed in blue-shaded boxes.

CA) HNN architectures significantly outperform all of them.
This fact showcases that, so far, features are being more rep-
resentative than connectivity in most considered hypergraph
datasets –a relevant insight for Q3.

5.2. When are HNNs exploiting the connectivity?

Motivated by the previous observation of the general results,
in this section, we investigate when HNN models actually
take advantage of the inductive bias. To do so, we first
propose a way to capture the influence of the bias in the
downstream task performance –in an attempt to decouple
it from the impact of just the dataset features–, and then
investigate if the datasets’ homophily scores are able to
account for the resulting observations. We argue this study
provides a valuable contribution to questions Q2 and Q3.

In order to quantitatively assess the impact of inductive bias,
we compare the results of HNNs –i.e., model A–, with those
of another architecture that does not leverage the connec-
tivity –i.e. a non-inductive baseline, model B. Specifically,
we measure the difference between the accuracy of model
A (accA) and B (accB) (Table 13 in Appendix shows the
computed differences considering MLP and MLP CB as
baselines). The real-world datasets employed in this study
span diverse domains and, as depicted in Table 1, this im-
plies considerable variations in performance values across
datasets. In order to mitigate such variability, we introduce
the following normalized accuracy relative to accB :

Norm. Acc. = (accA − accB)/(100− accB). (14)

Next, we are interested in assessing if dataset’s homophily
can shed some light on the resulting normalized accuracy
measurements. To that end, we consider two different ho-
mophily measures: on the one hand, our proposed ∆ ho-
mophily between the two first steps of the MP (Eq 4 with
t = 1 and µ = 0.1). On the other hand, Clique Expansion
(CE) homophily, calculated over the clique expansion of the
hypergraph following the approach of Wang et al. (2023).

6



Hypergraph Neural Networks through the Lens of Message Passing

Figure 5: Joint visualization of rank dependencies, showing Norm. Acc. versus ∆ Homophily (Eq. 4 at step t = 1 and
µ = 0.1) and CE Homophily (Wang et al., 2023). Norm. Acc. (Eq. 14) is assessed for various instances of model A
(specified in column titles), with model B being MLP CB. Both axes represent rank values, with lower values indicating
better metrics. Arrows denote the rank shift in homophily between CE homophily and ∆ homophily for each dataset.

Figure 5 illustrates the rank dependency of normalized accu-
racy against these two homophily measures, with MLP CB
as the non-inductive baseline (as it’s the strongest baseline
according to Table 1). Additionally, we show the ideal cor-
relation –performance directly proportional to homophily–
with the dashed diagonal, as well as the rank shift in ho-
mophily between the two homophily measures through the
arrows. The difference between EDHNN, MultiSetMixer,
and AllSetTransformer lies in the way message passing prop-
agates information (see Section 4.2). Mushroom and Zoo
datasets were excluded due to Mushroom’s discriminatory
node features and Zoo’s small hypernetwork size.

The comparison between CE homophily and ∆ homophily
reveals a notable trend, with ∆ homophily consistently align-
ing closer, on average, to the middle dashed line –indicating
a higher positive correlation between performance and ∆ ho-
mophily level in comparison to CE homophily. Remarkably,
across all architectures, the highest normalized accuracy is
consistently distributed across ModelNet40, DBLP-CA, and
CORA-CA, with ∆ homophily ranking them as the top three
accordingly. A striking shift in rankings is observed for the
Pubmed dataset, transitioning from the most homophilic un-
der the CE homophily measure to the least homophilic under
∆ homophily. We associate this to the high percentage of
isolated nodes (80.52%, see Table 4): while CE homophily
scores are largely influenced by them, our proposed measure
ignores self-connections. Additionally, the 20Newsgroup
dataset occupies the last positions in both homophily ranks,
aligning with our quantitative analysis findings.

In summary, we show the applicability of ∆ homophily by
showing that it exhibits a positive correlation with respect
to the ability of exploiting the connectivity by HNN archi-
tectures, significantly stronger than the CE homophily that
is commonly used nowadays. Our findings underscore the
crucial role of accurately expressing homophily in hyper-

Figure 6: Class distribution shift induced by mini-batching:
‘Node’ represents the original node class distribution, ‘Step
1 and 2’ the resulting one after sampling both hyperedges
and nodes, and ‘Step 1’ when only sampling hyperedges.

graph networks, entangling with the complexity in capturing
higher-order dependencies.

5.3. What is the impact of the mini-batch sampling?

Next, we examine the role of our proposed mini-batching
sampling in explaining the general results shown in Table 1,
and investigate how it influences other models’ performance.
These experiments provide valuable insights on Q2.

Class distribution analysis. To evaluate and motivate
the potential of the proposed mini-batching sampling, we
investigate the reason behind both (i) the superior perfor-
mance of MultiSetMixer and MLP CB on 20NewsGroup,
NTU2012, ModelNet40, and (ii) their poor performance
on Pubmed. Framing mini-batching from the connectivity
perspective presents a challenge that conceals significant
potential for improvement (Teney et al., 2023). It is im-
portant to note that connectivity, by definition, describes
relationships among the nodes, implying that some parts
of the dataset might interconnect more densely, creating
some sort of hubs within the network. Thus, mini-batching
might introduce unexpected skew in training distribution. In
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Table 2: Mini-batching experiment. Test accuracy in % averaged over 15 splits.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllSetTransformer (batched) 74.34 ± 1.08 69.67 ± 1.46 87.75 ± 0.30 75.75 ± 1.46 86.06 ± 0.22 99.91 ± 0.05 87.55 ± 0.86 96.42 ± 0.17 81.37 ± 0.28 93.20 ± 5.38 2.70

EDHNN 77.88 ± 0.69 69.51 ± 0.87 86.82 ± 0.33 83.12 ± 0.89 90.45 ± 0.28 99.95 ± 0.04 87.64 ± 0.99 97.55 ± 0.17 81.23 ± 0.31 90.00 ± 4.43 2.40
MultiSetMixer 78.06 ± 1.24 71.85 ± 1.50 87.19 ± 0.53 82.74 ± 1.23 90.68 ± 0.19 99.58 ± 0.16 88.90 ± 1.30 98.38 ± 0.21 88.57 ± 1.96 88.08 ± 8.04 1.80
HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 3.10

particular, Figure 6, depicts the original class distribution
of the dataset, and compares it to the skewed distributions
resulting from employing the corresponding steps of mini-
batching (see Section 4.3). Note that, when sampling both
hyperedges and nodes (‘Step 1 and 2’), dominant classes
0 and 3 undergo undersampled, contributing to a more bal-
anced distribution in the case of 20Newsgroup. Conversely,
for Pubmed, class 2 is undersampled, while the predomi-
nant 1st class experiences oversampling, further skewing
the distribution in this dataset. This observation leads to the
hypothesis that, in some cases, the sampling procedure pro-
duces a natural shift that rebalances the class distributions,
which in turn helps to improve the performance.

Application to other models. Furthermore, we explore
the proposed mini-batch sampling procedure with the AllSet-
Transformer and EDHNN models by just sampling hy-
peredges without additional hyperparameter optimization.
From Table 2, we can observe a drop in performance for
most of the datasets both for AllSetTransformer and for
EDHNN, but overall they in turn outperform the HAN (mini-
batching) model. This suggests the substantial potential of
the proposed sampling procedure.

5.4. How do connectivity changes affect performance?

Two experimental approaches are designed to systemati-
cally alter the original connectivity of datasets. The first
setting involves removing hyperedges through various drop
connectivity strategies, and the results show that retaining
25% of the largest hyperedges in the Cora, CORA-CA,
and DBLP-CA datasets is sufficient to achieve performance
comparable to the original connectivity. Additionally, the
best-performing HNNs tend to ignore connectivity informa-
tion on Citeseer, Pubmed, 20Newsgroups and Mushroom.
Moreover, the CEGAT model shows improvement in perfor-
mance across 7 out of 9 datasets.

The second set of experiments focuses on preprocessing the
hypergraph connectivity by splitting the original hyperedges
to obtain more homophilic ones. Two different strategies are
considered: in the first one, the original hyperedges are split
into fully homophilic ones by partitioning considering node
labels. In the second, instead, we partition based on the
initial node features using k-means within each hyperedge.
The former demonstrates that graph-based methods achieve
equivalent performance to HNNs under perfect homophilic
hyperedges. In contrast, the latter strategy leads to an im-

provement for CEGCN and affects the distribution shifts for
MultiSetMixer.

More details about the drop connectivity and the prepro-
cessing connectivity strategies, as well as a deeper analysis
of the corresponding results can be found in Appendix I.2.
These findings shed some light on our fundamental ques-
tions Q1, Q2 and Q3.

6. Discussion
This last section aims to summarize some key findings from
our extensive evaluation that can potentially help in im-
proving future HNN related research. Here, we connect
our findings to each of the fundamental questions raised in
Section 1, which actually drove our research.

Q1: We show that the introduced message passing ho-
mophily measure allows for a deeper understanding of hy-
pernetwork dynamics, and the derived δ homophily metric
showcases a strong correlation with respect to HNN’s abil-
ity of exploiting their inductive biases. Overall, we argue
that the proposed measures are more meaningful than previ-
ous higher-order homophily concepts, potentially helping
to further explore new ways of assessing and processing
hypernetworks. (Sections 3, 5.2, and Appendix I.2)

Q2: We argue that three main contributions presented in
this paper –Message Passing Homophily, MultiSet frame-
work with hyperedge-dependent node representations, Mul-
tiSetMixer model with mini-batch sampling– have been di-
rectly inspired from natural properties of hypernetworks and
higher-order dynamics within them, thus no longer relying
on extensions of graph-based approaches. Our experimental
findings initiate a compelling discussion on the implications
of innovative techniques for processing hypergraph data and
defining HNNs. (Sections 4.2,4.3, and Appendix I.2)

Q3: Across our extensive evaluation, our results suggest that
the expressive power of node features alone is sufficient for a
decent performance in the node classification task execution;
the gap between models with inductive bias and without is
far shorter than one would expect. Addressing this gap
presents an open challenge for future research endeavors,
and we posit the necessity for additional benchmark datasets
where connectivity plays a pivotal role. (Section 5, and
Appendix I.2)

For a more in-depth discussion, please refer to the extended
conclusion and discussion in Appendix A.
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7. Impact Statement
This paper aims to advance hypergraph learning, enhancing
our comprehension of intricate relationships and structures
with applications across various disciplines. Our study is
particularly relevant to behavioral studies, where hypergraph
structures enable more accurate modeling of complex in-
teractions (Han et al., 2023; Sun et al., 2023). Moreover,
applications of HGNNs in recommendation systems and per-
sonalized services can lead to more accurate and tailored ex-
periences for individuals, improving user satisfaction. The
ethical considerations align with well-established concerns
in the broader field of Machine Learning rather than being
specific to our work. The application of hypergraph neural
networks in real-world scenarios may raise ethical consider-
ations, encompassing concerns about fairness, transparency,
and the potential amplification and propagation of biases
within the training data.
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Supplementary Materials

A. Extended Conclusion and Discussion
This section summarizes key findings from our extensive evaluation and proposed frameworks. Here we recap the question
and summarize the answers to these questions revealed by this work.

Q1: Can the concept of homophily play a crucial role in HNNs, similar to its significance in graph-based research?
We show that the concept of homophily in higher-order networks is considerably more complicated compared to networks
that exhibit only pairwise connections. To address the issue, we introduce a novel message passing homophily framework
that is capable of characterizing homophily in hypergraphs through the distribution of node features as well as node
class distribution. In Section 3, we present ∆ homophily, based on the dynamic nature of the proposed message passing
homophily, showing that it correlates better with HNN models’ performance than classical homophily measures over
the clique-expanded hypergraph. Our findings underscore the crucial role of accurately expressing homophily in HNNs,
emphasizing its complexity and the potential in capturing higher-order dynamics. Moreover, in our experiments (see
Appendix I.2.2) we demonstrate that rewiring hyperedges for perfect homophily leads to similar results for graph-based
methods (CEGCN, CEGAT) and HNN models. Overall, our findings potentially pave the way for new research directions
in hypergraph literature, from defining new dynamic-based homophily measures to develop novel connectivity rewiring
techniques.

Q2: Given that current HNNs are predominantly extensions of GNN architectures adapted to the hypergraph domain,
are these extended methodologies suitable, or should we explore new strategies tailored specifically for handling
hypergraph-based data? The three main contributions presented in this paper –Message Passing Homophily, MultiSet
framework with hyperedge-dependent node representations, MultiSetMixer model with mini-batch sampling – have been
directly inspired from natural properties of hypernetworks and higher-order dynamics within them, thus no longer relying
on extensions of graph-based approaches. Based on our experimental results and analysis, the proposed methodologies
open an interesting discussion about the impact of novel ways of processing hypergraph-data and defining HNNs. For
instance, our mini-batching sampling strategy –which helps addressing scalability issues of current solutions– allowed us
to realize the implicit introduction of node class distribution shifts in the process. This study could potentially lead to the
definition of meaningful connectivity rewiring techniques, as we already explore in Section 5.4. Furthermore, we show
that the introduced message passing and ∆ homophily measures allows for a deeper understanding of the hypernetwork
topology and its correlation to the HNN models’ performances. Overall, and despite also identifying some common failure
modes of our proposed methods (Section 5), we argue that these contributions provide a new perspective on dealing and
processing higher-order networks that go beyond the graph domain.

Q3: Are the existing hypergraph benchmarking datasets meaningful and representative enough to draw robust and
valid conclusions? In Appendices I.2.1 and I.2.2, we demonstrate that the significant performance gap between models
and MLP on Cora, CORA-CA, and DBLP-CA is primarily influenced by the largest hyperedge cardinalities. Further
analysis using ∆ homophily reveals that their notable improvement is strongly tied to the homophilic nature of the one-hop
neighborhood. Additionally, the experimental results in Section 5.1 and 5.4 highlight challenges for current HNNs with
certain benchmark hypergraph datasets. Specifically, we find that HNN models ignore connectivity for Citeseer, Pubmed,
and 20Newsgroups, as well as for the Mushroom dataset, due to highly discriminative features. Furthermore, we observe
that models that do not rely on inductive bias (i.e. do not use connectivity in the architecture), consistently exhibit good
performance across the majority of datasets. This suggests that the expressive power of node features alone is sufficient
for efficient task execution. Addressing this gap presents an open challenge for future research endeavors, and we posit
the necessity for additional benchmark datasets where connectivity plays a pivotal role. In addition to this, we believe it
would be also interesting to analyze datasets involving higher-order relationships where node classes explicitly depend
on hyperedges, as introduced in Choe et al. (2023).This could represent an insightful line of research to further exploit
hyperedge-based node representations.

B. Extended Related Works on Hypergraph Neural Networks
Numerous machine-learning techniques have been developed for processing hypergraph data. One commonly used approach
in early literature is to transform the hypergraph into a graph through clique expansion (CE). This technique involves
substituting each hyperedge with an edge for every pair of vertices within the hyperedge, creating a graph that can be

12



Hypergraph Neural Networks through the Lens of Message Passing

analyzed using graph-based algorithms (Agarwal et al., 2006; Zhou et al., 2006; Zhang et al., 2018; Li & Milenkovic, 2017).

Several techniques have been proposed that use Hypergraph Neural Networks (HNNs) for semi-supervised learning. One
of the earliest methods extends the graph convolution operator by incorporating the normalized hypergraph Laplacian
(Feng et al., 2019). As pointed out in Dong et al. (2020), spectral convolution with the normalized Laplacian corresponds
to performing a weighted CE of the hypergraph. HyperGCN (Yadati et al., 2019) employs mediators for incomplete CE
on the hypergraph, which reduces the number of edges required to represent a hyperedge from a quadratic to a linear
number of edges. The information diffusion is then carried out using spectral convolution for hypergraph-based semi-
supervised learning. Hypergraph Convolution and Hypergraph Attention (HCHA) (Bai et al., 2021) employs modified
degree normalizations and attention weights, with the attention weights depending on node and hyperedge features.

CE may cause the loss of important structural information and result in suboptimal learning performance (Hein et al., 2013;
Chien et al., 2022). Furthermore, these models typically obtain the best performance with shallow 2-layer architectures.
Adding more layers can lead to reduced performance due to oversmoothing (Huang & Yang, 2021). In the recent study
Chen & Zhang (2022), an attempt was made to address oversmoothing in this type of network by incorporating residual
connections; however, the method still relies on using hypergraph Laplacians to build a weighted graph through clique
expansion. Another method presented in Yang et al. (2020) introduces a new hypergraph expansion called line expansion
(LE) that treats vertices and hyperedges equally. The LE bijectively induces a homogeneous structure from the hypergraph
by modeling vertex-hyperedge pairs. In addition, the LE and CE techniques require significant computational resources to
transform the original hypergraph into a graph and perform subsequent computations, hence making the methods unpractical
for large hypergraphs.

Another line of research explores hypergraph modeling involving a two-stage procedure: information is transmitted from
nodes to hyperedges and then back from hyperedges to nodes (Wei et al., 2021; Yi & Park, 2020; Dong et al., 2020; Arya
et al., 2020; Huang & Yang, 2021; Yadati et al., 2020). This procedure can be viewed as a two-step message passing
mechanism. HyperSAGE (Arya et al., 2020) is a prominent early example of this line of research allowing transductive
and inductive learning over hypergraphs. Although HyperSAGE has shown improvement in capturing information from
hypergraph structures compared to spectral-based methods, it involves only one learnable linear transformation and cannot
model arbitrary multiset function (Chien et al., 2022). Moreover, the algorithm utilizes nested loops resulting in inefficient
computation and poor parallelism.

UniGNN (Huang & Yang, 2021) addresses some of these limitations by using a permutation-invariant function to aggregate
vertex features within each hyperedge in the first stage and using learnable weights only during the second stage to update
each vertex with its incident hyperedges. One of the variations of UniGNN, called UniGCNII addresses the oversmoothing
problem, which is common for most of the methods described above. It accomplishes this by adapting GCNII (Chen et al.,
2020) to hypergraphs. The AllSet method, proposed in Chien et al. (2022), employs a composition of two learnable multiset
functions to model hypergraphs. It presents two model variations: the first one exploits Deep Set (Zaheer et al., 2017) and
the second one Set Transformer (Lee et al., 2019). The AllSet method can be seen as a generalization of the most commonly
used hypergraph HNNs (Yadati et al., 2019; Feng et al., 2019; Bai et al., 2021; Dong et al., 2020; Arya et al., 2020).
More implementation details and detailed drawbacks discussion can be found in Section 4.1. Although AllSet achieves
state-of-the-art results, it suffers from the drawbacks of the message passing mechanism, including the local receptive field,
resulting in a limited ability to model long-range interactions (Gu et al., 2020; Balcilar et al., 2021). Two additional issues
are poor scalability to large hypergraph structures and oversmoothing that occurs when multiple layers are stacked.

Finally, we would like to mention two related papers that put the focus on hyperedge-dependent computations. On the
one hand, EDHNN (Wang et al., 2023) incorporates the option of hyperedge-dependent messages from hyperedges to
nodes; however, at each iteration of the message passing it aggregates all these messages to generate a unique node hidden
representation, and thus it doesn’t enable to keep different hyperedge-based node representations across the whole procedure
–as our MultiSetMixer does. On the other hand, the work Aponte et al. (2022) does allow multiple hyperedge-based
representations across the message passing, but the theoretical formulation of this unpublished paper is not clear and
rigorous, and the evaluation is neither reproducible nor comparable to other hypergraph models. Hence, we argue that our
MultiSet framework represents a step forward by rigorously formulating a simple but general MP framework for hypergraph
modelling that is flexible enough to deal with hyperedge-based node representations and residual connections, demonstrating
as well that it generalizes previous hypergraph and graph models.
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C. Details of the Implemented Methods
We provide a detailed overview of the models analyzed and tested in this work. In order to make their similarities and
differences more evident, we express their update steps through a standard and unified notation.

Notation. A hypergraph with n nodes and m hyperedges can be represented by an incidence matrix H ∈ Rn×m. If the
hyperedge ej is incident to a node vi (meaning vi ∈ ej), the entry in the incidence matrix Hi,j is set to 1. Instead, if vi /∈ ej ,
then Hi,j = 0.

We denote with W and b a learnable weight matrix and bias of a neural network, respectively. Generally, xv and ze are
used to denote features for a node v and a hyperedge e respectively. Stacking all node features together we obtain the node
feature matrix X , while Z is instead the hyperedge feature matrix. σ(·) indicates a nonlinear activation function (such as
ReLU, ELU or LeakyReLU) that depends on the model used. Finally, we use ∥ to denote concatenation.

C.1. AllSet-like models

This Section addresses the models that are covered in the AllSet unified framework introduced in 4.1, and that can potentially
be expressed as particular instances of equations 5 and 7. For a detailed proof of the claim for most of the following models,
refer to Theorem 3.4 in Chien et al. (2022).

CEGCN / CEGAT. As introduced in the previous Sections, the CE of a hypergraph G = (V, E) is a weighted graph
obtained from G with the same set of nodes. In terms of incidence matrix, it can be described as H(CE) = HHT (Chien
et al., 2022). A one-step update of the node feature matrix X ∈ Rn×f can be expressed both in a compact way as H(CE)X
or directly as a node-level update rule, as

x(t+1)
v =

∑
e∈Ev

∑
u:u∈e

x(t)
v . (15)

Some types of hypergraph convolutional layers in the literature adopt a CE-based propagation, for example generalizing
popular graph-targeting models such as Graph Convolutional Networks (Kipf & Welling, 2017) and Graph Attention
Networks (Veličković et al., 2017).

HNN. Before describing how HNN (Feng et al., 2019) works, it is necessary to define some notation. Let H be the
hypergraph’s incidence matrix. Suppose that each hyperedge e ∈ E is assigned a fixed positive weight ze, and let Z ∈ Rm×m

now denote the matrix stacking all these weights in the diagonal entries. Additionally, the vertex degree is defined as

dv =
∑
e∈Ev

ze, (16)

while the hyperedge degree, instead, is

be =
∑
v:v∈e

1. (17)

The degree values can be used to define two diagonal matrices, D ∈ Rn×n and B ∈ Rm×m.

The core of the hypergraph convolution introduced in Feng et al. (2019) can be expressed as

x(t+1)
v = σ

(∑
e∈Ev

∑
u:u∈e

zex
(t)
v W (t)

)
, (18)

where σ is a non-linear activation function like LeakyReLU and ELU, and W (t) ∈ Rf(t)×f(t+1)

is a weight matrix between
the (t)-th and (t + 1)-th layer, to be learnt during training. Note that in this case the dimensionality of the node feature
vectors f (t) can be layer-dependent.
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The update step can be rewritten also in matrix form as

X(t+1) = σ(HZHTX(t)W (t)), (19)

where X(t+1) ∈ Rn×f(t+1)

and X(t) ∈ Rn×f(t)

.

In practice, a normalized version of this update procedure is proposed. The matrix-based formulation allows to clearly
express the symmetric normalization that is actually put in place through the vertex and hyperedge degree matrices D and
B defined above:

X(t+1) = σ(D−1/2HZB−1HTD−1/2X(t)W (t)). (20)

HCHA. With respect to the previously described models, HCHA (Bai et al., 2021) uses a different kind of weights that
depend on the node and hyperedge features. Specifically, starting from the same convolutional model proposed by Feng
et al. (2019) and described in Equation 20, they explore the idea of introducing an attention learning model on H .

Their starting point is the intuition that hypergraph convolution as implemented in Equation 20 implicitly puts in place
some attention mechanism, which derives from the fact that the afferent and efferent information flow to vertexes may
be assigned different importance levels, which are statically encoded in the incidence matrix H , hence depend only on
the graph structure. In order to allow for such information on magnitude of importance to be determined dynamically
and possibly vary from layer to layer, they introduce an attention learning module on the incidence matrix H: instead of
maintaining H as a binary matrix with predefined and fixed entries depending on the hypergraph connectivity, they suggest
that its entries could be learnt during the training process. The entries of the matrix should express a probability distribution
describing the degree of node-hyperedge connectivity, through non-binary and real values.

Nevertheless, the proposed hypergraph attention is only feasible when the hyperedge and vertex sets share the same
homogeneous domain, otherwise, their similarities would not be compatible. In case the comparison is feasible, the
computation of attention scores is inspired by (Veličković et al., 2017): for a given vertex v and a hyperedge e, the score is
computed as

Hv,e =
exp(σ(sim(xvW , zeW )))∑

g∈Ev
exp(σ(sim(xvW , zgW )))

, (21)

where σ is a non-linear activation function, and sim is a similarity function defined as

sim(xv, ze) = aT [xv ∥ ze], (22)

in which a is a weight vector, and the resulting similarity value is a scalar.

HyperGCN. The method proposed by Yadati et al. (2019) can be described as performing two steps sequentially: first, a
graph structure is defined starting from the input hypergraph, through a particular procedure, and then the well known CGN
model (Kipf & Welling, 2017) for standard graph structures is executed on it. Depending on the approach followed in the
first step, three slight variations of the same model can be identified: 1-HyperGCN, HyperGCN (enhancing 1-HyperGCN
with so-called mediators) and FastHyperGCN.

Before analyzing the differences among the three techniques, we introduce some notation and express how the GCN-update
step is performed. Suppose that the input hypergraph G = (V, E) is equipped with initial edge weights {ze}e∈E and node
features {xv}v∈V (if missing, suppose to initialize them randomly or with constant values). Let Ā(t) denote the normalized
adjacency matrix associated to the graph structure at time-step (t). The node-level one-step update for a specific node v can
be formalized as:

x(t+1)
v = σ

((
W (t)

)T ∑
u∈Nv

Ā(t)
u,v · x(t)

u

)
, (23)
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in which x
(t+1)
v is the (t+1)-th step hidden representation of node v and Nv is the set of neighbors of v. For what concerns

Ā
(t)
u,v , it refers to the element at index u, v of Ā(t), which can be defined in the following ways according to the method:

1. 1-HyperGCN: starting from the hypergraph G = (V, E), a simple graph is defined by considering exactly
one representative simple edge for each hyperedge e ∈ E , and it is defined as (ve, ue) such that (ve, ue) =

argmaxv,u∈e∥
(
W (t)

)T
(x

(t)
v − x

(t)
u )∥2. This implies that each hyperedge e is represented by just one pairwise

edge (ve, ue), and this may also change from one step to the other, which leads to the graph adjacency matrix Ā(t)

being layer-dependent, too.

2. HyperGCN: the model extends the graph construction procedure of 1-HyperGCN by also considering mediator nodes,
that for each hyperedge e consist in Ke := {k ∈ e : k ̸= ve, k ̸= ue}. Once the representative edge (ve, ue) is
determined and added to the newly defined graph, two edges for each mediator are also introduced, connecting the
mediator to both ve and ue. Because there are 2|e| − 3 edges for each hyperedge e, each weight is chosen to be 1

2|e|−3

in order for the weights in each hyperedge to sum to 1. The generalized Laplacian obtained this way satisfies all the
properties of the HyperGCN’s Laplacian (Yadati et al., 2019).

3. FastHyperGCN: in order to save training time, in this case the adjacency matrix Ā(t) is computed only once before
training, by using only the initial node features of the input hypergraph.

UniGCNII. This model aims to extend to hypergraph structures the GCNII model proposed by Chen et al. (2020) for
simple graph structures, that is a deep graph convolutional network that puts in place an initial residual connection and
identity mapping as a way to reduce the oversmoothing problem (Huang & Yang, 2021).

Let dv denote the degree of vertex v, while de = 1
|e|
∑

i∈e di for each hyperedge e ∈ E . A single node-level update step
performed by UniGCNII can be expressed as:

x̂(t)
v =

1√
dv

∑
e∈Ev

z
(t)
e√
de
, (24)

x(t+1)
v = ((1− β)I + βW (t))((1− α)x̂(t)

v + αx(0)
v ). (25)

in which α and β are hyperparameters, I is identity matrix and x
(0)
v is the initial feature of vertex i.

HNHN. For the HNHN model by Dong et al. (2020), hypernode and hyperedge features are supposed to share the same
dimensionality d, hence in this case X ∈ Rn×d and Z ∈ Rm×d. The update rule in this case can be easily expressed using
the incidence matrix as

Z(t+1) = σ(HTX(t)WZ + bZ), (26)

X(t+1) = σ(HZ(t+1)WX + bX). (27)

in which σ is a nonlinear activation function, WX ,WZ ∈ Rd×d are weight matrices, and bX , bZ ∈ Rd are bias terms.

AllSet. The general formulation for the propagation setting of AllSet (Chien et al., 2022) is introduced in Subsection 4.1
and, starting from that, we now analyze the different instances of the model obtained by imposing specific design choices in
the general framework.

In the practical implementation of the model, the update functions fV→E and fE→V , that are required to be permutation
invariant with respect to their first input, are parametrized and learnt for each dataset and task. Furthermore, the information
of their second argument is not utilized in practice, hence their input can be more generally denoted as a set S.

The two architectures AllDeepSets and AllSetTransformer are obtained in the following way, depending on whether the
update functions are defined either as MLPs or Transformers:

1. AllDeepSets (Chien et al., 2022): fV→E(S) = fE→V(S) = MLP(
∑

s∈S MLP(s));
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2. AllSetTransformer (Chien et al., 2022), in which the update functions are defined iteratively through multiple steps as
they were first designed by Vaswani et al. (2017).

The first set of operations corresponds to the self-attention module. Suppose that h attention heads are considered:
first of all, h pairs of matrices Ki (keys) and Vi (values) with i ∈ {1, ..., h} are computed from the input set through
different MLPs. Additionally, h weights θi, i ∈ {1, ..., h} are also learned and together with the keys and values they
allow for the computation of each head-specific attention value Oi using an activation function ω (Vaswani et al., 2017).
The h attention heads are processed in parallel and they are then concatenated, leading to a unique vector being the
result of the multi-head attention module MHh,ω. After that, a sum operation and a Layer Normalization (LN) (Ba
et al., 2016) are applied:

Ki = MLPK
i (S),Vi = MLPV

i (S), where i ∈ {1, ..., h}, (28)

θ
∆
= ∥hi=1θi, (29)

Oi = ω(θi(Ki)
T )Vi, where i ∈ {1, ..., h}, (30)

MHh,ω(θ,S,S) = ∥hi=1O
(i), (31)

Y = LN(θ + MHh,ω(θ,S,S)). (32)

A feed-forward module follows the self-attention computations, in which a MLP is applied to the feature matrix and
then sum and LN are performed again, corresponding to the last operations to be performed:

fV→E(S) = fE→V(S) = LN(Y + MLP(Y )). (33)

C.2. Other models

This Section describes the models that are considered for the experiments but that don’t fall directly under the AllSet unified
framework defined in Section 4.1.

EDHNN. The Equivariant Diffusion-based HNN model, shortened as EDHNN (Wang et al., 2023) represents the first
attempt to draw a connection between the class of hypergraph diffusion algorithms and the design of Hypergraph Neural
Networks. The underlying motivation is that, by enabling the model to approximate any continuous equivariant hypergraph
diffusion operator, a broad spectrum of higher-order relations can be encoded.

In EDHNN, the hypergraph diffusion operators are learned directly from data, harnessing the expressive power of Neural
Networks. This leads to the development of a novel Hypergraph Neural Network inspired by hypergraph diffusion solvers,
with the subsequent operations executed at each layer described in the following.

The hyperedge-level feature update is performed as

z(t+1)
e =

∑
u∈e

ϕ̂(x(t)
u ), (34)

and starting from that, the node-level update is defined as

x(t+1)
v = ψ̂

(
x(t)
v ,

∑
e∈Ev

ρ̂(x(t)
v , z(t+1)

e ),x0
v, dv

)
. (35)

In the equations above, ψ̂, ϕ̂ and ρ̂ are three MLPs shared across layers.

HAN. The Heterogeneous Graph Attention Network model (Wang et al., 2019) is specifically designed for processing
and performing inference on heterogeneous graphs. Heterogeneous graphs have various types of nodes and/or edges, and
standard GNN models that treat all of them equally are not able to properly handle such complex information.

In order to apply this model on hypergraphs, (Chien et al., 2022) define a preprocessing step to derive a heterogeneous
graph from a hypergraph. Specifically, a bipartite graph is defined such that there is a bijection between its nodes and
the set of nodes and hyperedges in the original hypergraph. The nodes obtained in this way belong to one of two distinct
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types, that are the sets V and E (if they correspond to either a node or a hyperedge in the original hypergraph, respectively).
Edges only connect nodes of two different types, and one edge exists between a node uv ∈ V and a node ue ∈ E if and
only if v ∈ e in the input hypergraph. We consider two types of so-called meta-paths (in this case, paths of length 2) in
the heterogeneous graph, that are V → E → V and E → V → E. We denote the sets of such meta-paths as ΦV and ΦE
respectively. Furthermore, let NΦV

uv
denote the neighbors of node uv ∈ V through paths γv ∈ ΦV , and vice-versa let NΦE

ue

denote the neighbors of node ue ∈ E through paths γe ∈ ΦV .

At each step, the model updates separately and sequentially the node features of nodes in V and E. Consider for example the
case of nodes in V (for nodes in E the process is the same, except that ΦE is considered instead of ΦV ). The node-level
update is performed as follows, for a certain u ∈ V:

x̂(t)
u = W

(t)
ΦV

x(t)
u , (36)

x(t+1)
u = σ

 ∑
w∈NΦV

u

αΦV
u,wx̂

(t)
u

 . (37)

In the equations above, W (t)
ΦV

is a meta-path dependent weight matrix while αΦV
u,w is an attention score computed between

neighboring nodes in the same way as proposed in Veličković et al. (2017), through similar equations as 21 and 22. More
generally, h attention heads may be considered, that give rise to different attention scores for each head and consequently
multiple results for the node feature update, that are then concatenated to obtain a unique feature vector x(t+1)

u .

MLP. We also add the MLP model as a baseline; this model doesn’t use connectivity at all and only relies on the initial
node features to predict their class. The node feature matrix X is obtained as

X(t) = MLP(X(t−1)). (38)

MLP CB. This model employs a sampling procedure as outlined in Section 4.2, in which we straightforwardly apply a
Multilayer Perceptron to the initial features of nodes. During the training phase, we incorporate dropout by applying an
MLP with distinct weights dropped out for each hyperedge, resulting in slightly different representations for nodes for each
hyperedge they belong to. Furthermore, we execute the mini-batching procedure in accordance with the guidelines presented
in Section 4.2. Importantly, that these two choices affect the training approach significantly so that the results of this model
are very different from MLP’s performances: see, for example, Table 1.

During the validation phase dropout is not utilized, ensuring that the representations used for each hyperedge remain exactly
the same. Consequently, there is no need for the readout operation in this context. The node-level update is described by:

x(t+1)
v,e = x(t)

v,e + MLP(LN(x(t)
v,e)), (39)

x(T )
v =

1

dv

∑
e∈Ev

x(T )
v,e . (40)

Transformer. Along with MLP, we consider another simple baseline that is the basic Transformer model (Vaswani et al.,
2017).

Also in this case, let S denote the set of input vectors, and define as S = MLP(S) the matrix of input embeddings, obtained
from the input set through a MLP. The operations performed on S generalize the ones described for the Transformer
module adopted in AllSetTransformer, and they can be split in two main modules, that are the self-attention module and the
feed-forward module:

1. Suppose that h attention heads are considered in the self attention module. First of all, h triples of matrices Ki (keys),
Vi (values) and Qi (queries) with i ∈ {1, ..., h} are obtained from S through linear matrix multiplications with weight
matrices WK

i ,W V
i and WQ

i that are learned during training. The result for each attention module is computed
through the key, query and key matrices using an activation function ω (Vaswani et al., 2017) and a normalization factor
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dk, that corresponds to the dimension of the key and query vectors associated to each input element. The h outputs of
the different attention heads are then concatenated, leading to a unique result matrix. After that, a sum operation and a
Layer Normalization (LN) (Ba et al., 2016) are applied:

Ki = SWK
i ,Vi = SW V

i ,Qi = SWQ
i , where i ∈ {1, ..., h}, (41)

Oi = ω

(
Qi(Ki)

T

√
dk

)
Vi, where i ∈ {1, ..., h}, (42)

MHh,ω(S,S) = ∥hi=1O
(i), (43)

Y = LN(S + MHh,ω(S,S)). (44)

2. As described for AllSetTransformer (Chien et al., 2022), in the feed-forward module a MLP is applied to the feature
matrix, followed by a sum operation and Layer Normalization. After that, the output of the overall Transformer
architecture is obtained:

Yout = LN(Y + MLP(Y )). (45)

D. Proof of Proposition 4.1
UniGCNII inherits the same hyperedge update rule of other hypergraph models (e.g. HNN (Feng et al., 2019), HyperGCN
(Yadati et al., 2019)), so it directly follows from Theorem 3.4 of (Chien et al., 2022) that it can be expressed through 5. By
looking at the definition of the node update rule of UniGCNII (Eq. 24 and 25), we can re-express it as

x(t+1)
v = ((1− β)I + βW (t))

(
(1− α)

1√
dv

∑
e∈Ev

z
(t+1)
e√
de

+ αx(0)
v

)
= fE→V({z(t+1)

e }e∈Ev
;x(0)

v ). (46)

Note that this is a particular instance of the extended AllSet node update rule 7 where only a residual connection to the initial
node features is considered. Lastly, it is straightforward to see that fE→V is permutation invariant w.r.t the set {z(t+1)

e }e∈Ev
,

as it processes the set through a weighted mean.

E. Proof of Proposition 4.2
We prove this proposition by showing that we can obtain AllSet update rules 5-6 and 7 from our proposed MultiSet framework
8-9-10. This can easily follow by not distinguishing node representations among hyperedges, so X(t)

v = {x(t)
v,e}e∈Ev = x

(t)
v .

With this particular choice, we directly get 5 from 8, and 7 can be obtained from 9 by further disregarding the hyperedge
subscript –as there is only a single node representation to update. Analogously, we can get 6 from 9 if we additionally do
not consider node residual connections, so {X(k)

v }tk=0 simply becomes x(t)v . Finally, the readout 10 can be defined as the
identity function applied to the node representations at the last message passing step T .

F. Proof of Proposition 4.3
We also prove this proposition by showing that we can obtain EDHNN (Wang et al., 2023) update rules from our proposed
MultiSet framework 8-9-10. EDHNN hyperedge update rule can be expressed as

z(t+1)
e =

∑
u∈e

ϕ̂(x(t)u ) = fV→E({x(k)u }u∈V),

which is a particular instance of 8 given that {x(k)u }u∈V ⊂ X(t)
v . As for the node update rule, we have

x(t+1)
v = ψ̂

(
x(t)v ,

∑
e∈Ev

ρ̂(x(t)v , z(t+1)
e ), x0v, dv

)
= fE→V

(
{z(t+1)

e }e∈Ev ; {x(k)
v }k∈{0,t}

)
, (47)

where we recall that dv := |Ev|. By disregarding the hyperedge superscript in Eq. 9 –essentially making all hyperedge-based
node representations the same one–, it is straightforward to see that the previous expression 47 is a particular case of the
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MultiSet node update rule. Lastly, the readout step 10 can be just defined as the identity function, given that all involved
hyperedge-based messages to nodes (i.e. ρ̂(x(t)v , z

(t+1)
e )) are already being aggregated at each iteration while updating the

node state.

G. Proof of Proposition 4.4
It is straightforward that functions fV→E , fE→V and fV→V defined in MultiSetMixer (Equations 11-13) are permutation
invariant w.r.t their first argument: hyperedge update rule 11 and readout 13 process it through a mean operation, whereas
the node update rule only receives a single-element set. The rest of the proof follows from the proof of Proposition 4.1 of
Chien et al. (2022).

H. Experiments
H.1. Hyperparameters optimization

In order to implement the benchmark models, we followed the procedure described in Chien et al. (2022); in particular, the
maximum epochs were set to 200 for all the models. The models were trained with categorical cross-entropy loss, and the
best architecture was selected at the end of training depending on validation accuracy. For the AllDeepSets (Chien et al.,
2022), AllSetTransformer (Chien et al., 2022), UniGCNII (Huang & Yang, 2021), CEGAT, CEGCN, HCHA (Bai et al.,
2021), HNN (Feng et al., 2019), HNHN (Dong et al., 2020), HyperGCN (Yadati et al., 2019), HAN(Wang et al., 2019), and
HAN (mini-batching) (Wang et al., 2019) and MLP, we performed the same hyperparameter optimization proposed in Chien
et al. (2022). For both the proposed model and the introduced baseline, we conducted a thorough hyperparameter search
across the following values:

• learning rate within the range of 0.001, 0.01;

• weight decay values from the set 0.0, 1e− 5, 1;

• MLP hidden layer sizes of 64, 128, 256, 512;

• mini-batch sizes set to 256, 512, with full-batch utilization when memory resources allow;

• the number of sampled neighbors per hyperedge ranged from 2, 3, 5, 10.

It’s important to note that the limitation of the number of sampled neighbors per hyperedge to this small range was intentional.
This limitation showcases that even for datasets with large hyperedges, effective processing can be achieved by considering
only a subset of neighbors.

The models’ hyperparameters were optimized for a 50% split and subsequently applied to all the other splits.

Reproducibility. We are committed to providing a comprehensive overview of our experimental setup, encompassing
machine specifications, environmental details, and the optimal hyperparameters selected for each model. Additionally, the
source code, including training/validation/test splits, will be supplied with both the initial release and the camera-ready
version, ensuring the reproducibility of our results.

H.2. Further information about the datasets

For our experiments we utilized various benchmark datasets from existing literature on hypergraph neural networks, the
statistical properties of which are in Table 3. For what concerns co-authorship networks (Cora-CA and DPBL-CA) and
co-citation networks (Cora, Citeseer, and Pubmed), we relied on the datasets provided in Yadati et al. (2019). Additionally,
we employed the Princeton ModelNet40 (Wu et al., 2015) and the National Taiwan University (Chen et al., 2003) dataset
introduced for 3D object classification. For these two datasets, we complied with what Feng et al. (2019) and Yang et al.
(2020) proposed for the construction of the hypergraphs, using both MVCNN (Su et al., 2015) and GVCNN (Feng et al.,
2019) features. Additionally, we tested our model on three datasets with categorical attributes, namely 20Newsgroups,
Mushroom, and ZOO, obtained from the UCI Categorical Machine Learning Repository (Dua et al., 2017). In order to
construct hypergraphs for these datasets, we followed the approach described in Yadati et al. (2019), where a hyperedge is
defined for all data points sharing the same categorical feature value.
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Table 3: Statistics of hypergraph datasets: |e| denotes the size of hyperedges while dv denotes the node degree.

Cora Citeseer Pubmed CORACA DBLP-CA ZOO 20Newsgroups Mushroom NTU2012 ModelNet40

|E| 1579 1079 7963 1072 22363 43 100 298 2012 12311
# classes 7 6 3 7 6 7 4 2 67 40
min |e| 2 2 2 2 2 1 29 1 5 5
med |e| 3 2 3 3 3 40 537 72 5 5
max dv 145 88 99 23 18 17 44 5 19 30
min dv 0 0 0 0 1 17 1 5 1 1
avg dv 1.77 1.04 1.76 1.69 2.41 17 4.03 5 5 5
med dv 1 0 0 2 2 17 3 5 5 4

CE Homophily 89.74 89.32 95.24 80.26 86.88 82.88 75.25 85.33 46.07 24.07
1
|V|
∑

v∈V h
0
v 84.10 78.25 82.05 80.81 88.86 91.13 81.26 88.05 53.24 42.16

1
|V|
∑

v∈V h
1
v 78.08 74.18 75.73 76.51 86.01 85.79 74.78 84.41 41.95 29.42

We downloaded co-citation and co-authoring networks from Yadati et al. (2019). Below are the details on how the hypergraph
was constructed. Cora-CA, DBLP: all documents co-authored by an author are in one hyperedge, following what was done
in Yadati et al. (2019). Co-citation data Citeseer, Pubmed, Cora: all documents cited by a document are connected by a
hyperedge. Each hypernode (document abstract) is represented by bag-of-words features (feature matrix X).

Citation and co-authorship datasets. In the co-citation and co-authorship networks datasets, the node features are
the bag-of-words representations of the corresponding documents. In co-citation datasets (Cora, Citeseer, PubMed) all
documents cited by a document are connected by a hyperedge. In co-authored datasets (CORA-CA, DBLP-CA), all
documents co-authored by an author belong to the same hyperedge.

Computer vision/graphics. The hyperedges are constructed using the k-nearest neighbor algorithm in which k = 5.

Categorical datasets. There are instances with categorical attributes within the datasets. To construct the hypergraph,
each attribute value is treated as a hyperedge, meaning that all instances (hypernodes) with the same attribute value are
contained in a hyperedge. The node features of 20Newsgroups are the TF-IDF representations of news messages. The node
features of mushrooms (in Mushroom dataset) represent categorical descriptions of 23 species. The node features of a zoo
(in ZOO dataset) are a combination of categorical and numeric measurements describing various animals.

Table 4: Node Connectivity Statistics. For brevity we use the following notation in this table: under the columns labeled
|Ev| = k, we report the amount of nodes that belong to k hyperedges. This value can be expressed in a more formal way
as |v ∈ V : |Ev| = k|. Moreover, |Ev| = 0, denotes the number of isolated nodes. In addition, the columns labeled “%
|Ev| = k” indicate the percentage of nodes belonging to k hyperedges relatively to the total number of nodes. Finally,∑

e∈E |e| corresponds to the number of hyperedge-dependent node representations.

|V| |Ev| = 0 |Ev| = 1 |{v : |Ev| = 2}| |Ev| = 3 |Ev| > 3 % |Ev| = 0 % |Ev| = 1 % |Ev| = 2 % |Ev| = 31 % |Ev| > 3
∑

e∈E |e|
Cora 2708 1274 575 327 156 376 47.05 21.23 12.08 5.76 13.88 6060

Citeseer 3312 1854 798 307 144 209 55.98 24.09 9.27 4.35 6.31 5307
Pubmed 19717 15877 339 313 292 2896 80.52 1.72 1.59 1.48 14.69 50506

CORA-CA 2708 320 995 951 287 155 11.82 36.74 35.12 10.60 5.72 4905
DBLP-CA 41302 0 8998 16724 9249 6331 0.00 21.79 40.49 22.39 15.33 99561
Mushroom 8124 0 0 0 0 8124 0.00 0.00 0.00 0.00 100.00 40620
NTU2012 2012 0 173 256 296 1287 0.00 8.60 12.72 14.71 63.97 10060

ModelNet40 12311 0 1491 1755 1594 7471 0.00 12.11 14.26 12.95 60.69 61555
20newsW100 16242 0 3053 3149 2720 7320 0.00 18.80 19.39 16.75 45.07 65451

ZOO 101 0 0 0 0 101 0.00 0.00 0.00 0.00 100.00 1717

I. Experiment results
I.1. Benchmarking models across multiple training proportions splits
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Table 5: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training split: 50%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 6.80

AllSetTransformer 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 3.25
UniGCNII 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 4.75
EDHNN 80.74 ± 1.00 73.22 ± 1.14 89.12 ± 0.47 85.17 ± 1.02 91.94 ± 0.23 99.94 ± 0.11 88.04 ± 1.65 97.70 ± 0.19 81.64 ± 0.49 89.49 ± 6.99 2.90
CEGAT 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 NA 44.62 ± 9.18 12.11
CEGCN 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 NA 49.23 ± 6.81 12.56
HCHA 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 7.85
HGNN 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 7.95
HNHN 77.68 ± 1.08 73.47 ± 1.36 87.88 ± 0.47 78.53 ± 1.15 86.73 ± 0.40 99.97 ± 0.04 88.28 ± 1.50 97.84 ± 0.15 81.53 ± 0.55 89.23 ± 7.85 5.55

HyperGCN 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 14.30
HAN 80.73 ± 1.37 73.69 ± 0.95 86.34 ± 0.61 84.19 ± 0.81 91.10 ± 0.20 91.33 ± 0.91 83.78 ± 1.75 93.85 ± 0.33 79.67 ± 0.55 80.26 ± 6.42 8.90

HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 10.60
MultiSetMixer 78.06 ± 1.24 71.85 ± 1.50 87.19 ± 0.53 82.74 ± 1.23 90.68 ± 0.19 99.58 ± 0.16 88.90 ± 1.30 98.38 ± 0.21 88.57 ± 1.96 88.08 ± 8.04 6.20

MLP CB 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 99.93 ± 0.08 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 10.30
MLP 73.27 ± 1.09 72.07 ± 1.65 87.13 ± 0.49 73.27 ± 1.09 84.77 ± 0.41 99.91 ± 0.08 79.70 ± 1.56 95.31 ± 0.28 80.93 ± 0.59 85.13 ± 6.90 11.50

Transformer 74.15 ± 1.17 71.82 ± 1.51 87.37 ± 0.49 73.61 ± 1.55 85.26 ± 0.38 99.95 ± 0.08 82.88 ± 1.93 96.29 ± 0.29 81.17 ± 0.54 88.72 ± 10.25 9.85

Table 6: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training split: 40%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 76.09 ± 1.22 70.32 ± 1.39 88.58 ± 0.46 81.32 ± 1.27 90.96 ± 0.24 99.94 ± 0.08 85.60 ± 1.46 96.71 ± 0.21 81.11 ± 0.43 89.57 ± 5.91 7.20

AllSetTransformer 78.81 ± 0.99 71.65 ± 1.05 88.17 ± 0.45 83.26 ± 1.12 91.26 ± 0.24 99.94 ± 0.09 87.04 ± 1.07 97.92 ± 0.14 81.30 ± 0.41 91.72 ± 6.38 3.75
UniGCNII 77.78 ± 1.15 72.30 ± 1.45 87.86 ± 0.37 83.39 ± 0.95 91.32 ± 0.19 99.88 ± 0.09 87.30 ± 1.34 97.86 ± 0.16 81.14 ± 0.45 89.68 ± 6.42 4.45
EDHNN 80.46 ± 0.91 72.62 ± 0.98 88.70 ± 0.34 84.41 ± 0.87 91.60 ± 0.20 99.95 ± 0.09 87.33 ± 1.20 97.65 ± 0.20 81.41 ± 0.37 90.75 ± 5.54 2.00
CEGAT 75.68 ± 1.09 70.59 ± 0.89 86.39 ± 0.47 76.91 ± 1.22 88.18 ± 0.31 96.72 ± 1.50 80.97 ± 1.30 92.46 ± 0.29 NA 45.27 ± 9.41 11.67
CEGCN 76.19 ± 1.06 70.08 ± 1.26 86.22 ± 0.50 76.17 ± 1.44 87.61 ± 0.26 95.00 ± 0.38 79.41 ± 1.26 89.79 ± 0.39 NA 51.40 ± 7.24 12.72
HCHA 78.87 ± 1.04 71.73 ± 0.91 86.28 ± 0.43 83.05 ± 0.99 91.04 ± 0.23 99.00 ± 0.48 85.53 ± 1.43 94.53 ± 0.28 80.77 ± 0.31 90.54 ± 5.29 7.40
HGNN 78.87 ± 1.04 71.44 ± 1.00 86.28 ± 0.43 82.95 ± 1.06 91.06 ± 0.24 99.00 ± 0.48 85.71 ± 1.37 94.53 ± 0.28 80.77 ± 0.31 90.54 ± 5.29 7.40
HNHN 76.47 ± 0.90 72.25 ± 1.10 87.17 ± 0.45 77.27 ± 1.11 86.61 ± 0.31 99.96 ± 0.08 87.14 ± 1.23 97.82 ± 0.17 81.28 ± 0.49 89.46 ± 6.50 6.10

HyperGCN 73.56 ± 0.91 64.65 ± 1.28 82.09 ± 0.67 76.44 ± 1.06 86.22 ± 2.93 69.49 ± 5.02 46.78 ± 4.61 45.34 ± 7.34 80.82 ± 0.59 52.80 ± 8.90 14.00
HAN 79.89 ± 0.78 73.16 ± 1.04 86.11 ± 0.56 83.84 ± 0.91 90.96 ± 0.19 91.39 ± 0.93 82.79 ± 1.16 93.83 ± 0.27 79.52 ± 0.47 80.11 ± 6.46 8.75

HAN minibatch 80.07 ± 1.68 69.44 ± 6.58 86.08 ± 0.84 82.33 ± 1.91 NA 93.60 ± 0.91 79.41 ± 1.62 NA 79.43 ± 0.91 64.84 ± 12.59 11.56
MultiSetMixer 77.14 ± 1.25 70.96 ± 1.66 86.67 ± 0.42 82.09 ± 0.79 90.45 ± 0.25 99.61 ± 0.23 87.41 ± 1.10 98.31 ± 0.17 88.82 ± 1.56 88.71 ± 6.33 6.15

MLP CB 72.60 ± 1.44 71.08 ± 1.68 85.14 ± 0.47 72.63 ± 1.31 84.63 ± 0.31 99.91 ± 1.03 83.72 ± 1.40 96.25 ± 0.25 87.28 ± 3.50 81.42 ± 11.55 10.15
MLP 70.61 ± 7.44 70.96 ± 1.65 86.60 ± 0.40 70.70 ± 7.33 84.42 ± 0.28 99.91 ± 0.09 77.83 ± 1.63 95.24 ± 0.23 80.95 ± 0.54 85.38 ± 8.02 11.35

Transformer 72.65 ± 1.15 70.70 ± 1.50 86.79 ± 0.34 71.96 ± 1.03 84.97 ± 0.27 99.92 ± 0.09 80.69 ± 1.55 96.18 ± 0.24 80.95 ± 0.46 89.68 ± 7.31 9.80

Table 7: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training split: 30%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 74.78 ± 1.02 69.10 ± 1.34 88.01 ± 0.39 79.69 ± 1.44 90.57 ± 0.20 99.95 ± 0.06 84.04 ± 1.39 96.49 ± 0.26 80.99 ± 0.41 87.04 ± 6.74 7.25

AllSetTransformer 77.67 ± 0.92 71.06 ± 1.00 87.62 ± 0.34 82.14 ± 0.96 91.10 ± 0.18 99.94 ± 0.09 85.73 ± 1.38 97.73 ± 0.21 81.05 ± 0.49 90.19 ± 6.18 4.05
UniGCNII 76.29 ± 1.05 71.38 ± 1.32 87.48 ± 0.35 81.93 ± 1.09 90.97 ± 0.20 99.88 ± 0.08 85.59 ± 1.60 97.89 ± 0.16 81.10 ± 0.44 88.33 ± 6.29 4.55
EDHNN 79.30 ± 1.03 71.85 ± 0.84 88.25 ± 0.38 83.13 ± 1.03 91.37 ± 0.18 99.94 ± 0.11 86.09 ± 1.44 97.55 ± 0.23 81.26 ± 0.34 89.44 ± 6.38 2.35
CEGAT 74.25 ± 1.24 69.75 ± 0.90 85.41 ± 0.44 75.24 ± 1.05 87.54 ± 0.23 96.86 ± 1.27 79.12 ± 1.60 91.89 ± 0.30 NA 42.87 ± 8.96 11.94
CEGCN 74.84 ± 1.35 69.17 ± 0.93 85.17 ± 0.41 74.83 ± 1.72 87.10 ± 0.25 95.08 ± 0.40 78.13 ± 1.35 89.34 ± 0.40 NA 48.70 ± 5.96 12.44
HCHA 77.81 ± 1.07 71.10 ± 1.11 84.97 ± 0.41 81.81 ± 1.08 90.85 ± 0.18 99.00 ± 0.47 84.34 ± 1.61 94.38 ± 0.28 80.78 ± 0.43 90.65 ± 5.58 7.40
HGNN 77.81 ± 1.07 70.88 ± 1.05 84.97 ± 0.41 81.78 ± 1.13 90.85 ± 0.16 99.00 ± 0.47 84.40 ± 1.38 94.38 ± 0.28 80.78 ± 0.43 90.65 ± 5.58 7.60
HNHN 74.85 ± 1.14 71.34 ± 1.03 86.34 ± 0.39 75.46 ± 1.02 86.33 ± 0.25 99.95 ± 0.07 84.93 ± 1.49 97.75 ± 0.20 81.10 ± 0.48 85.37 ± 7.96 6.30

HyperGCN 71.54 ± 1.26 63.82 ± 1.34 81.87 ± 0.56 74.44 ± 1.25 85.63 ± 2.89 69.44 ± 5.02 46.70 ± 4.01 45.28 ± 8.18 80.64 ± 0.48 55.46 ± 6.78 14.20
HAN 78.60 ± 1.28 72.44 ± 1.05 85.89 ± 0.44 82.69 ± 0.77 90.85 ± 0.19 91.47 ± 0.79 81.54 ± 1.44 93.79 ± 0.20 79.51 ± 0.58 79.81 ± 6.61 7.90

HAN minibatch 78.84 ± 1.19 72.26 ± 0.93 85.70 ± 0.81 79.81 ± 1.53 NA 93.59 ± 0.84 77.97 ± 1.63 NA 79.46 ± 1.10 45.74 ± 13.83 9.88
MultiSetMixer 76.03 ± 1.37 70.60 ± 1.15 86.12 ± 0.36 80.58 ± 1.11 90.19 ± 0.20 99.56 ± 0.16 85.95 ± 1.43 98.20 ± 0.17 88.20 ± 1.24 86.11 ± 6.96 5.90

MLP CB 71.14 ± 1.09 70.21 ± 1.14 84.24 ± 0.63 71.14 ± 1.61 84.17 ± 0.24 99.92 ± 0.08 81.18 ± 1.79 96.10 ± 0.22 85.94 ± 5.83 79.58 ± 8.22 10.40
MLP 66.14 ± 11.37 69.92 ± 1.32 85.86 ± 0.29 66.14 ± 11.37 83.96 ± 0.25 99.89 ± 0.11 75.08 ± 1.69 95.05 ± 0.31 80.82 ± 0.45 82.87 ± 7.37 11.70

Transformer 70.41 ± 1.13 69.75 ± 1.33 86.05 ± 0.28 69.93 ± 0.92 84.57 ± 0.25 99.93 ± 0.10 78.20 ± 1.73 95.92 ± 0.20 80.87 ± 0.37 86.85 ± 9.97 10.25
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Table 8: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training split: 20%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 72.56 ± 1.60 67.49 ± 1.57 87.24 ± 0.36 77.24 ± 1.52 89.91 ± 0.26 99.92 ± 0.07 80.71 ± 1.32 96.30 ± 0.24 80.59 ± 0.33 84.72 ± 7.95 7.05

AllSetTransformer 75.69 ± 1.09 69.39 ± 1.30 86.63 ± 0.40 80.54 ± 0.94 90.72 ± 0.17 99.92 ± 0.07 82.58 ± 1.31 97.48 ± 0.24 80.82 ± 0.28 85.61 ± 7.29 3.95
UniGCNII 74.11 ± 1.28 70.51 ± 1.48 86.97 ± 0.41 79.41 ± 1.23 90.47 ± 0.19 99.90 ± 0.06 82.54 ± 1.60 97.83 ± 0.15 80.88 ± 0.32 88.21 ± 5.55 4.20
EDHNN 77.09 ± 1.30 70.76 ± 1.39 87.52 ± 0.40 81.06 ± 1.27 90.91 ± 0.20 99.91 ± 0.10 83.45 ± 1.34 97.37 ± 0.17 80.92 ± 0.35 88.54 ± 6.38 2.10
CEGAT 71.86 ± 1.42 68.11 ± 1.34 84.03 ± 0.51 73.18 ± 1.32 86.98 ± 0.27 96.19 ± 1.38 76.14 ± 1.20 91.34 ± 0.31 NA 41.22 ± 6.16 11.67
CEGCN 73.25 ± 1.35 67.23 ± 1.39 83.47 ± 0.52 72.50 ± 1.44 86.29 ± 0.21 94.98 ± 0.31 75.55 ± 1.37 88.60 ± 0.41 NA 49.51 ± 6.31 12.44
HCHA 76.04 ± 1.30 69.90 ± 1.25 83.65 ± 0.37 80.03 ± 0.87 90.53 ± 0.17 99.03 ± 0.43 81.48 ± 1.29 94.31 ± 0.20 80.60 ± 0.29 89.35 ± 5.89 6.50
HGNN 76.04 ± 1.30 69.59 ± 1.22 83.65 ± 0.37 80.02 ± 0.88 90.51 ± 0.19 99.03 ± 0.43 81.60 ± 1.24 94.31 ± 0.20 80.60 ± 0.29 89.35 ± 5.89 6.60
HNHN 72.47 ± 1.06 69.44 ± 1.21 85.10 ± 0.47 73.16 ± 0.99 85.82 ± 0.21 99.88 ± 0.10 81.56 ± 1.54 97.61 ± 0.24 80.48 ± 0.32 82.60 ± 7.71 7.90

HyperGCN 68.59 ± 1.79 62.08 ± 1.28 81.57 ± 0.43 71.42 ± 1.27 85.45 ± 2.31 69.36 ± 5.10 44.01 ± 3.47 46.40 ± 8.41 80.38 ± 0.37 53.25 ± 8.74 14.10
HAN 76.73 ± 1.18 71.21 ± 1.13 85.72 ± 0.44 80.83 ± 0.89 90.56 ± 0.15 91.50 ± 0.98 79.46 ± 1.30 93.77 ± 0.23 79.33 ± 0.45 78.54 ± 6.50 7.45

HAN minibatch 76.89 ± 1.51 NA 85.59 ± 0.72 78.55 ± 1.43 NA 93.22 ± 1.34 73.79 ± 1.54 NA 79.50 ± 0.42 47.72 ± 14.96 10.14
MultiSetMixer 73.93 ± 1.15 68.95 ± 1.37 85.00 ± 0.62 78.32 ± 0.94 89.80 ± 0.19 99.42 ± 0.20 82.40 ± 1.41 98.01 ± 0.19 87.85 ± 1.53 81.06 ± 7.04 6.60

MLP CB 68.07 ± 1.50 68.64 ± 1.34 83.06 ± 0.58 68.37 ± 1.23 83.43 ± 0.25 99.84 ± 1.38 77.01 ± 1.69 95.85 ± 0.27 85.66 ± 5.70 75.61 ± 9.73 10.45
MLP 51.73 ± 17.51 68.20 ± 1.21 85.09 ± 0.34 51.73 ± 17.51 83.22 ± 0.21 99.84 ± 0.12 69.35 ± 9.49 94.69 ± 0.34 80.58 ± 0.31 78.54 ± 8.98 11.70

Transformer 67.34 ± 1.26 68.06 ± 1.39 85.31 ± 0.40 66.61 ± 1.50 83.93 ± 0.27 99.86 ± 0.13 74.17 ± 1.65 95.65 ± 0.29 80.51 ± 0.38 81.45 ± 6.81 10.70

Table 9: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training split: 10%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 68.51 ± 1.64 64.50 ± 1.43 85.55 ± 0.38 73.67 ± 1.79 88.82 ± 0.25 99.88 ± 0.08 73.44 ± 1.91 95.96 ± 0.21 79.61 ± 0.36 76.81 ± 7.05 7.05

AllSetTransformer 71.82 ± 1.18 65.96 ± 1.48 84.71 ± 0.55 76.16 ± 1.36 90.09 ± 0.18 99.86 ± 0.09 75.78 ± 1.96 96.93 ± 0.21 80.18 ± 0.31 75.22 ± 10.78 4.70
UniGCNII 69.36 ± 1.63 66.41 ± 1.59 85.51 ± 0.50 75.84 ± 1.13 89.70 ± 0.25 99.86 ± 0.09 74.86 ± 2.20 97.58 ± 0.18 80.44 ± 0.26 79.86 ± 7.97 4.10
EDHNN 72.78 ± 1.54 67.90 ± 1.51 86.00 ± 0.51 77.20 ± 1.31 90.30 ± 0.17 99.86 ± 0.10 76.60 ± 1.79 96.91 ± 0.27 80.47 ± 0.29 79.06 ± 7.88 2.30
CEGAT 68.08 ± 1.65 64.15 ± 1.60 81.83 ± 0.43 69.04 ± 1.60 85.92 ± 0.23 96.01 ± 1.31 69.26 ± 2.27 90.17 ± 0.37 NA 39.20 ± 6.19 12.00
CEGCN 70.22 ± 1.62 62.68 ± 1.49 82.13 ± 0.44 67.45 ± 1.54 85.41 ± 0.26 94.85 ± 0.36 68.31 ± 2.08 87.28 ± 0.39 NA 49.20 ± 5.69 12.11
HCHA 72.76 ± 1.82 66.15 ± 1.27 82.41 ± 0.36 76.97 ± 0.95 90.00 ± 0.19 98.93 ± 0.41 74.44 ± 2.31 94.04 ± 0.21 80.23 ± 0.32 79.78 ± 7.89 5.95
HGNN 72.76 ± 1.82 65.69 ± 1.57 82.41 ± 0.36 76.96 ± 1.10 90.00 ± 0.18 98.93 ± 0.41 74.53 ± 2.44 94.04 ± 0.21 80.23 ± 0.32 79.78 ± 7.89 6.25
HNHN 67.43 ± 1.62 65.02 ± 1.40 82.33 ± 0.76 68.10 ± 1.67 84.74 ± 0.31 99.69 ± 0.18 73.82 ± 2.11 97.34 ± 0.25 80.00 ± 0.26 73.12 ± 6.57 8.80

HyperGCN 63.21 ± 1.95 57.81 ± 1.91 80.83 ± 0.46 65.58 ± 2.02 84.37 ± 1.73 67.56 ± 8.16 40.30 ± 3.67 45.92 ± 7.60 79.57 ± 0.38 51.96 ± 6.32 14.10
HAN 72.08 ± 1.47 67.86 ± 1.46 85.10 ± 0.43 77.48 ± 1.22 90.02 ± 0.17 91.67 ± 0.86 72.91 ± 1.88 93.52 ± 0.32 78.77 ± 0.49 70.94 ± 14.54 7.30

HAN minibatch 69.61 ± 6.86 68.25 ± 1.15 84.93 ± 0.65 76.27 ± 1.54 NA NA 63.36 ± 2.66 NA NA 43.62 ± 9.44 8.17
MultiSetMixer 69.69 ± 1.36 65.71 ± 1.46 83.01 ± 0.65 74.88 ± 1.01 89.11 ± 0.21 99.08 ± 0.33 74.82 ± 2.10 97.52 ± 0.20 86.92 ± 1.66 73.53 ± 7.58 6.10

MLP CB 62.42 ± 1.37 64.85 ± 1.30 81.43 ± 0.86 62.82 ± 1.80 82.02 ± 0.36 99.61 ± 0.18 68.80 ± 1.51 95.16 ± 0.26 85.21 ± 3.81 67.46 ± 9.14 10.70
MLP 38.64 ± 12.37 64.21 ± 1.53 83.56 ± 0.49 37.85 ± 11.79 81.88 ± 0.21 99.72 ± 0.15 63.39 ± 2.24 93.71 ± 0.38 79.63 ± 0.42 72.17 ± 9.21 11.60

Transformer 61.45 ± 1.66 63.75 ± 1.39 83.86 ± 0.50 60.65 ± 1.87 82.40 ± 0.47 99.74 ± 0.20 65.14 ± 1.61 94.66 ± 0.42 79.61 ± 0.39 68.82 ± 8.32 11.15

I.2. Connectivity modification

In the upcoming section, we extensively explore the structure of datasets and assess model performance by manipulating
the original connectivity of the datasets. The extent to which the performance of the models is affected by changes in
connectivity provides valuable information both on the properties of the datasets and on the the considered architectures.

We design two different experimental approaches, aiming to systematically modify the original connectivity of datasets.
The first experiment tests the performance when some hyperedges are removed following different drop connectivity
strategies. The second one examines the models performance by introducing two preprocessing strategies on the hypergraph
connectivity. Our findings below shed some light on the fundamental questions Q1, Q2 and Q3.

I.2.1. REDUCING CONNECTIVITY

This experiment aims to investigate the significance of all connectivity information in datasets and the extent to which
it influences the performance of the models. We divide this experiment into two parts: (i) drop connectivity and (ii)
connectivity rewiring. In the first part of the experiment, we employ three strategies to introduce variations in the initial
dataset’s connectivity. The first two strategies involve ordering hyperedges based on their lengths in ascending order. In
the first approach, referred to as trimming, we remove the initial x% of ordered hyperedges, for a certain fixed fraction x.
The second approach, referred to as retention, involves keeping the first x% of hyperedges and discarding the remaining
100− x%. The last strategy instead involves randomly dropping x% of hyperedges from the dataset, and it is referred to as
random drop.

Results. The results are shown in Table 10, and they indicate that connectivity minimally impacts CEGCN and AllSet-
Transformer for the Citeseer and Pubmed datasets. On the other hand, MultiSetMixer performs better at the trimming 25%
setting, although the achieved performance is on par with MLP reported in Table 1. This suggests that the proposed model is
negatively affected by the distribution shift. Conversely, we observe a similar but opposite trend for the Pubmed dataset,
where MultiSetMixer’s performance improves due to the reduced impact of the distribution shift. Another interesting
observation is that the CEGCN model gains improvement in 6 out of 9 datasets, with a doubled increase for the ZOO dataset.
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In the case of Cora, CORA-CA, and DBLP-CA datasets, another interesting pattern emerges: retaining only 25% of the
highest relationships (retention 25%) consistently results in better performance compared to retaining 50% or 75%. This
is surprising, as at the 25% level we are preserving only a small fraction of the higher-order relationships. The opposite
pattern holds for the trimming strategy. For the datasets mentioned above, this phenomenon remains consistent across all
models. Notice that this is not observed instead when we remove hyperedges randomly; in this case, as expected, the more
hyperedges we remove, the more the performances decrease.

Table 10: Drop connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking

A
llD
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et
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Original 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 2.85
Random 25% 76.65 ± 1.03 70.83 ± 1.70 88.87 ± 0.47 80.39 ± 1.51 90.36 ± 0.28 99.91 ± 0.09 85.49 ± 1.74 96.85 ± 0.26 81.15 ± 0.52 88.72 ± 5.97 4.05
Random 50% 75.66 ± 1.18 70.70 ± 1.77 88.86 ± 0.41 77.97 ± 1.18 89.36 ± 0.25 99.93 ± 0.05 84.42 ± 1.75 96.88 ± 0.27 81.21 ± 0.39 84.49 ± 6.66 4.90
Random 75% 74.96 ± 1.08 70.46 ± 1.66 88.76 ± 0.45 76.09 ± 1.27 87.68 ± 0.30 99.53 ± 0.13 81.70 ± 1.57 96.84 ± 0.27 81.31 ± 0.50 81.15 ± 6.88 7.50

Retention 25% 76.87 ± 0.98 70.96 ± 1.82 88.94 ± 0.48 81.63 ± 1.26 90.93 ± 0.18 99.83 ± 0.09 85.13 ± 2.05 96.85 ± 0.26 81.09 ± 0.46 86.67 ± 7.26 3.65
Retention 50% 75.80 ± 1.06 70.44 ± 1.63 88.84 ± 0.40 80.50 ± 1.38 90.55 ± 0.21 99.91 ± 0.09 82.25 ± 2.21 96.42 ± 0.23 81.04 ± 0.45 69.61 ± 9.28 6.75
Retention 75% 75.52 ± 1.49 70.36 ± 1.71 88.78 ± 0.47 79.50 ± 1.09 89.48 ± 0.21 99.97 ± 0.04 78.85 ± 1.93 96.44 ± 0.27 81.19 ± 0.45 74.49 ± 9.97 6.85
Trimming 25% 74.12 ± 1.30 70.95 ± 1.92 88.77 ± 0.45 74.87 ± 1.32 86.39 ± 0.31 99.85 ± 0.15 77.47 ± 1.67 96.18 ± 0.28 81.61 ± 0.47 89.23 ± 8.11 7.10
Trimming 50% 75.24 ± 0.99 70.42 ± 1.62 88.87 ± 0.46 75.89 ± 1.53 87.14 ± 0.31 99.93 ± 0.06 82.76 ± 1.61 96.75 ± 0.23 81.47 ± 0.48 86.28 ± 8.73 6.15
Trimming 75% 76.03 ± 1.39 70.86 ± 1.48 88.83 ± 0.48 77.50 ± 1.52 88.64 ± 0.27 99.93 ± 0.09 84.74 ± 1.81 96.82 ± 0.20 81.20 ± 0.48 86.03 ± 8.48 5.20
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Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 1.95
Random 25% 79.11 ± 0.99 72.75 ± 1.14 88.67 ± 0.47 82.36 ± 1.38 90.61 ± 0.29 99.94 ± 0.09 87.50 ± 1.36 97.98 ± 0.17 81.70 ± 0.52 89.87 ± 7.66 3.10
Random 50% 77.77 ± 1.34 72.21 ± 1.25 88.50 ± 0.45 79.73 ± 1.58 89.46 ± 0.27 99.96 ± 0.04 87.34 ± 1.55 97.83 ± 0.17 81.55 ± 0.66 89.49 ± 6.30 5.85
Random 75% 76.92 ± 1.20 72.40 ± 1.22 88.54 ± 0.47 77.88 ± 1.74 87.73 ± 0.32 99.76 ± 0.15 86.31 ± 1.34 97.52 ± 0.20 81.46 ± 0.62 87.69 ± 6.09 8.10

Retention 25% 79.19 ± 1.11 72.49 ± 0.86 88.73 ± 0.40 83.58 ± 1.30 91.18 ± 0.17 99.93 ± 0.09 87.21 ± 1.58 97.82 ± 0.17 81.63 ± 0.48 86.92 ± 7.18 4.10
Retention 50% 78.16 ± 0.98 72.55 ± 1.13 88.70 ± 0.37 82.90 ± 1.15 90.80 ± 0.22 99.89 ± 0.18 86.67 ± 1.64 97.36 ± 0.21 81.61 ± 0.49 88.08 ± 7.51 5.20
Retention 75% 77.38 ± 1.35 72.43 ± 0.98 88.71 ± 0.39 81.07 ± 1.20 89.83 ± 0.25 99.97 ± 0.04 85.58 ± 1.70 97.27 ± 0.22 81.58 ± 0.48 88.97 ± 6.91 5.80
Trimming 25% 75.83 ± 1.31 72.39 ± 1.50 88.40 ± 0.45 76.51 ± 1.35 86.38 ± 0.32 99.84 ± 0.13 86.88 ± 1.66 97.10 ± 0.24 81.55 ± 0.55 93.08 ± 7.79 8.05
Trimming 50% 77.37 ± 1.17 72.32 ± 1.30 88.49 ± 0.40 77.41 ± 1.73 87.03 ± 0.27 99.91 ± 0.12 86.86 ± 1.53 97.86 ± 0.21 81.45 ± 0.50 89.74 ± 8.53 7.50
Trimming 75% 78.15 ± 1.11 72.67 ± 1.00 88.48 ± 0.39 78.91 ± 1.54 88.55 ± 0.26 99.92 ± 0.09 87.68 ± 1.56 97.90 ± 0.23 81.41 ± 0.61 91.03 ± 7.17 5.35

U
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G
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Original 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 2.25
Random 25% 78.31 ± 1.29 72.91 ± 1.24 88.09 ± 0.47 82.42 ± 1.05 90.86 ± 0.22 99.85 ± 0.10 87.82 ± 1.46 97.87 ± 0.19 81.08 ± 0.52 89.10 ± 7.76 3.55
Random 50% 77.36 ± 1.34 72.54 ± 1.40 87.94 ± 0.52 80.17 ± 1.16 89.96 ± 0.24 99.85 ± 0.12 87.42 ± 1.44 97.77 ± 0.15 81.06 ± 0.55 87.31 ± 8.21 6.10
Random 75% 76.70 ± 1.35 72.23 ± 1.81 87.91 ± 0.50 77.75 ± 1.31 88.54 ± 0.25 99.87 ± 0.09 87.56 ± 1.56 97.49 ± 0.18 81.06 ± 0.54 87.05 ± 6.50 7.30

Retention 25% 78.80 ± 0.92 72.67 ± 1.24 88.10 ± 0.51 83.68 ± 0.96 91.26 ± 0.20 99.87 ± 0.06 87.56 ± 1.43 97.76 ± 0.16 81.01 ± 0.49 87.18 ± 7.58 4.05
Retention 50% 77.18 ± 1.32 72.51 ± 1.54 88.02 ± 0.47 82.81 ± 1.32 90.99 ± 0.17 99.83 ± 0.08 87.16 ± 1.33 97.29 ± 0.17 80.82 ± 0.49 86.15 ± 8.49 7.15
Retention 75% 76.63 ± 1.23 72.64 ± 1.15 88.07 ± 0.52 81.33 ± 1.27 90.17 ± 0.20 99.83 ± 0.14 86.71 ± 1.33 97.04 ± 0.16 80.87 ± 0.45 87.44 ± 7.49 7.20
Trimming 25% 75.34 ± 1.26 72.68 ± 1.57 87.81 ± 0.47 76.18 ± 1.19 87.42 ± 0.30 99.87 ± 0.10 87.43 ± 1.53 97.00 ± 0.17 81.50 ± 0.47 92.95 ± 8.15 6.70
Trimming 50% 76.75 ± 1.10 72.30 ± 1.64 87.87 ± 0.48 77.19 ± 1.42 88.00 ± 0.27 99.90 ± 0.10 87.47 ± 1.56 97.71 ± 0.18 81.22 ± 0.54 90.26 ± 7.40 6.15
Trimming 75% 77.27 ± 1.08 72.69 ± 1.31 87.93 ± 0.52 78.68 ± 0.96 89.26 ± 0.28 99.84 ± 0.10 87.93 ± 1.69 97.86 ± 0.16 81.22 ± 0.45 90.64 ± 6.90 4.55

E
D
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N

Original 80.74 ± 1.00 73.22 ± 1.14 89.12 ± 0.47 85.17 ± 1.02 91.94 ± 0.23 99.94 ± 0.11 88.04 ± 1.65 97.70 ± 0.19 81.64 ± 0.49 89.49 ± 6.99 1.30
Random 25% 79.88 ± 1.17 72.03 ± 1.59 89.02 ± 0.33 80.54 ± 1.37 89.97 ± 0.28 99.64 ± 0.16 85.37 ± 1.51 97.19 ± 0.27 78.70 ± 0.49 89.23 ± 7.03 3.75
Random 50% 78.45 ± 1.39 72.21 ± 1.60 88.81 ± 0.37 78.35 ± 1.52 88.77 ± 0.25 99.82 ± 0.16 84.19 ± 1.67 97.02 ± 0.24 74.37 ± 0.59 87.69 ± 6.18 6.00
Random 75% 77.55 ± 1.60 72.33 ± 1.61 88.94 ± 0.35 77.29 ± 1.29 87.41 ± 0.24 99.45 ± 0.20 82.72 ± 1.43 96.44 ± 0.22 69.37 ± 0.61 80.13 ± 6.78 7.85

Retention 25% 79.79 ± 1.31 71.97 ± 1.39 89.09 ± 0.44 81.57 ± 1.34 90.37 ± 0.22 99.93 ± 0.09 84.49 ± 1.51 97.03 ± 0.22 78.43 ± 0.58 86.28 ± 5.95 4.00
Retention 50% 78.71 ± 1.44 72.26 ± 1.44 88.97 ± 0.36 80.26 ± 1.28 89.91 ± 0.27 99.97 ± 0.06 82.12 ± 1.91 96.40 ± 0.28 73.97 ± 0.53 69.10 ± 7.86 5.90
Retention 75% 78.37 ± 1.45 72.60 ± 1.38 88.94 ± 0.41 78.86 ± 1.14 88.82 ± 0.18 99.99 ± 0.03 81.01 ± 1.69 96.18 ± 0.24 67.38 ± 0.76 73.97 ± 6.44 6.55
Trimming 25% 77.03 ± 1.37 72.71 ± 1.45 88.63 ± 0.52 77.34 ± 1.46 87.00 ± 0.25 98.75 ± 0.46 82.00 ± 1.66 95.87 ± 0.30 78.58 ± 0.54 86.15 ± 9.07 8.00
Trimming 50% 78.42 ± 1.33 72.49 ± 1.30 88.80 ± 0.38 78.10 ± 1.48 87.48 ± 0.26 99.74 ± 0.14 82.92 ± 1.35 96.83 ± 0.25 77.78 ± 0.62 83.59 ± 10.00 6.80
Trimming 75% 79.10 ± 1.30 72.18 ± 1.34 88.82 ± 0.48 78.68 ± 1.32 88.44 ± 0.28 99.86 ± 0.11 85.04 ± 1.50 96.96 ± 0.28 78.70 ± 0.64 89.74 ± 7.78 4.85

C
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Original 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 NA 44.62 ± 9.18 5.17
Random 25% 75.88 ± 1.53 71.81 ± 1.05 87.03 ± 0.47 78.00 ± 1.68 87.58 ± 0.35 94.56 ± 2.09 82.03 ± 1.47 93.14 ± 0.34 NA 46.03 ± 9.01 5.94
Random 50% 75.34 ± 1.52 71.86 ± 1.22 86.91 ± 0.48 76.92 ± 1.00 86.81 ± 0.32 95.14 ± 2.00 81.73 ± 1.44 93.62 ± 0.35 NA 47.69 ± 8.78 6.89
Random 75% 75.26 ± 1.45 72.17 ± 1.59 87.02 ± 0.47 76.37 ± 1.26 85.79 ± 0.35 96.90 ± 1.40 82.66 ± 1.39 94.54 ± 0.43 NA 59.87 ± 8.55 5.22

Retention 25% 75.96 ± 1.16 71.39 ± 1.33 87.13 ± 0.50 77.35 ± 1.52 88.48 ± 0.30 96.65 ± 1.49 80.39 ± 1.53 93.20 ± 0.45 NA 45.26 ± 9.40 6.39
Retention 50% 75.36 ± 1.30 71.56 ± 1.27 87.16 ± 0.53 77.35 ± 1.52 88.14 ± 0.31 96.73 ± 1.59 80.56 ± 2.16 93.86 ± 0.41 NA 45.38 ± 9.97 6.00
Retention 75% 75.02 ± 1.64 72.06 ± 1.41 87.22 ± 0.48 77.20 ± 1.47 87.54 ± 0.28 97.49 ± 0.89 81.82 ± 1.23 94.94 ± 0.29 NA 45.38 ± 9.22 5.06
Trimming 25% 75.40 ± 1.45 72.67 ± 1.76 87.68 ± 0.52 76.14 ± 1.10 85.32 ± 0.42 99.72 ± 0.10 84.94 ± 1.57 94.42 ± 0.33 NA 89.23 ± 7.38 3.67
Trimming 50% 75.90 ± 1.48 72.15 ± 1.62 87.41 ± 0.51 76.09 ± 1.65 85.69 ± 0.40 99.80 ± 0.12 82.04 ± 1.32 93.22 ± 0.38 NA 67.05 ± 7.87 4.44
Trimming 75% 76.19 ± 1.68 71.82 ± 1.32 87.03 ± 0.56 76.04 ± 0.95 86.18 ± 0.38 99.31 ± 0.24 81.74 ± 1.48 92.79 ± 0.33 NA 53.33 ± 6.60 6.22
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Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 NA 49.23 ± 6.81 4.61
Random 25% 76.08 ± 1.55 71.35 ± 1.44 86.89 ± 0.59 76.51 ± 1.53 87.01 ± 0.39 93.11 ± 0.46 80.68 ± 1.86 90.36 ± 0.46 NA 49.74 ± 6.22 6.22
Random 50% 75.55 ± 1.63 71.42 ± 1.60 86.70 ± 0.48 75.27 ± 1.22 86.24 ± 0.35 93.28 ± 0.61 80.63 ± 1.78 90.69 ± 0.54 NA 56.92 ± 7.24 6.33
Random 75% 75.34 ± 1.62 71.73 ± 1.90 86.97 ± 0.51 74.53 ± 1.56 85.36 ± 0.26 93.01 ± 0.45 80.56 ± 1.76 91.91 ± 0.54 NA 63.20 ± 5.59 6.33

Retention 25% 76.12 ± 1.58 70.87 ± 1.42 86.94 ± 0.56 76.98 ± 1.53 87.90 ± 0.29 94.94 ± 0.48 79.20 ± 1.42 90.59 ± 0.59 NA 49.87 ± 7.59 5.50
Retention 50% 75.43 ± 1.28 70.83 ± 1.52 86.95 ± 0.54 76.87 ± 1.49 87.58 ± 0.28 94.97 ± 0.40 78.53 ± 1.90 90.09 ± 0.56 NA 45.77 ± 6.88 6.89
Retention 75% 75.53 ± 1.25 71.72 ± 1.42 87.11 ± 0.53 76.36 ± 1.42 87.03 ± 0.28 94.74 ± 0.39 79.82 ± 1.41 92.29 ± 0.46 NA 40.38 ± 5.42 5.44
Trimming 25% 75.58 ± 1.56 72.26 ± 1.52 87.36 ± 0.51 74.84 ± 1.31 84.97 ± 0.31 99.60 ± 0.11 83.10 ± 1.69 91.85 ± 0.42 NA 87.69 ± 7.31 3.44
Trimming 50% 76.57 ± 1.47 71.81 ± 1.44 87.07 ± 0.55 74.66 ± 1.68 85.24 ± 0.33 99.54 ± 0.18 80.72 ± 1.64 90.64 ± 0.54 NA 71.28 ± 6.60 4.00
Trimming 75% 76.53 ± 1.50 71.45 ± 1.45 86.75 ± 0.54 74.56 ± 1.32 85.56 ± 0.33 99.14 ± 0.23 80.38 ± 1.91 90.06 ± 0.37 NA 58.46 ± 7.17 6.22
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Table 10: Drop connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking

H
C

H
A

Original 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 2.40
Random 25% 78.74 ± 1.30 72.33 ± 1.28 86.84 ± 0.56 81.98 ± 1.34 90.09 ± 0.35 98.55 ± 0.55 85.94 ± 1.76 94.78 ± 0.28 80.16 ± 0.46 89.10 ± 6.71 4.30
Random 50% 77.65 ± 1.46 72.11 ± 1.42 86.67 ± 0.48 79.23 ± 1.41 88.88 ± 0.35 98.61 ± 0.48 85.32 ± 1.75 95.17 ± 0.28 79.68 ± 0.50 87.56 ± 6.97 6.60
Random 75% 76.56 ± 1.60 72.23 ± 1.33 86.72 ± 0.56 77.11 ± 1.28 87.07 ± 0.34 98.59 ± 0.76 84.88 ± 1.44 95.57 ± 0.34 79.49 ± 0.43 82.18 ± 6.58 7.30

Retention 25% 79.09 ± 1.25 72.29 ± 1.17 86.95 ± 0.52 83.06 ± 1.09 90.63 ± 0.25 98.82 ± 0.50 85.56 ± 1.66 94.73 ± 0.34 80.27 ± 0.44 86.03 ± 5.20 3.85
Retention 50% 77.77 ± 1.38 72.20 ± 1.20 86.82 ± 0.48 82.16 ± 1.27 90.17 ± 0.29 98.22 ± 0.28 84.80 ± 1.79 94.54 ± 0.22 79.96 ± 0.44 75.77 ± 6.86 6.70
Retention 75% 77.05 ± 1.53 72.37 ± 1.20 86.79 ± 0.47 80.79 ± 0.95 88.97 ± 0.24 97.62 ± 0.30 84.35 ± 1.65 95.21 ± 0.30 79.40 ± 0.52 84.36 ± 6.77 6.70
Trimming 25% 75.68 ± 1.21 72.15 ± 1.72 86.83 ± 0.47 75.94 ± 1.35 85.85 ± 0.40 99.87 ± 0.11 85.60 ± 1.92 95.02 ± 0.26 80.66 ± 0.56 91.92 ± 7.10 5.50
Trimming 50% 77.76 ± 1.28 72.10 ± 1.49 86.96 ± 0.48 77.26 ± 1.17 86.57 ± 0.36 99.84 ± 0.11 84.58 ± 1.37 94.73 ± 0.28 80.18 ± 0.60 83.08 ± 8.72 6.45
Trimming 75% 78.38 ± 1.30 72.22 ± 1.12 86.81 ± 0.53 78.82 ± 0.95 88.09 ± 0.27 99.73 ± 0.18 86.05 ± 1.60 94.61 ± 0.27 80.02 ± 0.57 89.36 ± 8.49 5.20

H
G

N
N

Original 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 2.50
Random 25% 78.74 ± 1.30 72.15 ± 1.36 86.84 ± 0.56 81.94 ± 1.31 90.11 ± 0.34 98.55 ± 0.55 85.82 ± 1.65 94.78 ± 0.28 80.16 ± 0.43 89.10 ± 6.71 4.70
Random 50% 77.65 ± 1.46 72.20 ± 1.62 86.67 ± 0.48 79.20 ± 1.48 88.84 ± 0.42 98.61 ± 0.48 85.59 ± 1.49 95.17 ± 0.28 79.68 ± 0.50 87.56 ± 6.97 5.95
Random 75% 76.56 ± 1.60 72.16 ± 1.56 86.72 ± 0.56 77.03 ± 1.37 86.95 ± 0.34 98.59 ± 0.76 85.12 ± 1.27 95.57 ± 0.34 79.50 ± 0.42 82.18 ± 6.58 7.30

Retention 25% 79.09 ± 1.25 72.13 ± 1.17 86.95 ± 0.52 83.11 ± 1.09 90.66 ± 0.23 98.82 ± 0.50 85.33 ± 1.52 94.73 ± 0.34 80.23 ± 0.44 86.03 ± 5.20 4.25
Retention 50% 77.77 ± 1.38 72.20 ± 1.32 86.82 ± 0.48 82.20 ± 1.29 90.21 ± 0.27 98.22 ± 0.28 84.51 ± 1.77 94.54 ± 0.22 79.93 ± 0.46 75.77 ± 6.86 6.45
Retention 75% 77.05 ± 1.53 72.35 ± 1.40 86.79 ± 0.47 80.88 ± 0.93 89.02 ± 0.23 97.62 ± 0.30 84.19 ± 1.49 95.21 ± 0.30 79.36 ± 0.54 84.36 ± 6.77 6.60
Trimming 25% 75.68 ± 1.21 71.91 ± 1.61 86.83 ± 0.47 75.73 ± 1.44 85.78 ± 0.41 99.87 ± 0.11 85.89 ± 1.67 95.02 ± 0.26 80.66 ± 0.56 91.92 ± 7.10 5.55
Trimming 50% 77.76 ± 1.28 71.91 ± 1.50 86.96 ± 0.48 77.29 ± 1.18 86.48 ± 0.34 99.84 ± 0.11 84.67 ± 1.43 94.73 ± 0.28 80.18 ± 0.60 83.08 ± 8.72 6.30
Trimming 75% 78.38 ± 1.30 72.07 ± 1.25 86.81 ± 0.53 78.78 ± 1.04 87.99 ± 0.34 99.73 ± 0.18 86.00 ± 1.55 94.61 ± 0.27 80.02 ± 0.57 89.36 ± 8.49 5.40
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Original 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 3.40
Random 25% 35.60 ± 1.76 34.71 ± 1.62 68.80 ± 0.62 55.31 ± 1.83 81.18 ± 0.39 69.61 ± 4.77 57.42 ± 3.22 47.78 ± 7.33 77.50 ± 0.54 51.41 ± 9.82 6.05
Random 50% 33.75 ± 2.58 39.94 ± 1.72 69.37 ± 0.59 40.11 ± 1.97 67.36 ± 2.94 67.59 ± 6.63 49.36 ± 3.42 48.12 ± 5.98 71.74 ± 0.58 51.67 ± 9.40 6.80
Random 75% 42.42 ± 2.51 49.31 ± 1.85 70.99 ± 0.65 37.25 ± 1.94 50.33 ± 0.74 66.01 ± 8.15 45.31 ± 3.01 49.08 ± 2.52 62.76 ± 0.73 51.92 ± 9.02 6.60

Retention 25% 37.56 ± 1.65 35.87 ± 1.80 68.73 ± 0.53 63.64 ± 1.22 84.26 ± 0.32 69.61 ± 4.81 61.33 ± 2.63 72.36 ± 3.39 79.24 ± 0.48 51.54 ± 8.84 4.55
Retention 50% 34.87 ± 2.14 37.98 ± 1.70 69.04 ± 0.53 56.45 ± 1.70 77.98 ± 0.36 69.58 ± 4.75 76.59 ± 2.60 81.69 ± 1.75 75.60 ± 0.57 51.54 ± 9.45 4.70
Retention 75% 36.71 ± 1.95 44.39 ± 1.69 69.98 ± 0.52 45.09 ± 2.09 63.78 ± 3.04 69.20 ± 5.16 77.44 ± 3.62 84.44 ± 2.23 67.99 ± 0.51 52.18 ± 8.61 4.60
Trimming 25% 50.59 ± 1.72 55.15 ± 1.57 74.16 ± 0.66 52.78 ± 1.99 68.13 ± 0.79 52.37 ± 1.41 79.05 ± 2.74 81.31 ± 4.34 73.13 ± 0.92 46.67 ± 21.96 4.60
Trimming 50% 36.20 ± 2.74 44.47 ± 1.38 71.35 ± 0.58 39.84 ± 2.35 55.53 ± 0.45 54.57 ± 7.40 59.52 ± 1.81 65.29 ± 3.52 68.07 ± 1.26 51.03 ± 10.20 6.70
Trimming 75% 34.73 ± 1.52 36.60 ± 1.89 69.59 ± 0.54 37.81 ± 1.86 61.89 ± 1.82 61.73 ± 3.19 65.10 ± 2.77 73.05 ± 1.78 73.42 ± 0.63 50.90 ± 11.14 7.00
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Original 78.06 ± 1.24 71.85 ± 1.50 87.19 ± 0.53 82.74 ± 1.23 90.68 ± 0.19 99.58 ± 0.16 88.90 ± 1.30 98.38 ± 0.21 88.57 ± 1.96 88.08 ± 8.04 2.65
Random 25% 77.73 ± 1.24 71.73 ± 1.73 86.98 ± 1.02 81.14 ± 1.19 89.74 ± 0.21 99.42 ± 0.30 88.00 ± 1.25 97.83 ± 0.20 80.84 ± 1.56 88.46 ± 7.00 4.75
Random 50% 76.76 ± 1.28 71.69 ± 1.75 87.29 ± 0.63 78.32 ± 1.20 88.55 ± 0.31 99.43 ± 0.35 86.68 ± 1.55 97.46 ± 0.22 77.28 ± 1.16 86.33 ± 7.05 6.40
Random 75% 76.06 ± 1.28 72.11 ± 1.81 87.31 ± 0.51 76.54 ± 1.41 86.32 ± 0.33 99.42 ± 0.48 85.50 ± 1.91 96.89 ± 0.26 77.35 ± 0.65 86.28 ± 8.14 7.25

Retention 25% 77.88 ± 1.13 71.33 ± 1.43 86.86 ± 0.96 82.27 ± 1.40 90.30 ± 0.26 99.67 ± 0.18 87.24 ± 1.76 97.82 ± 0.27 87.12 ± 1.36 86.77 ± 8.32 4.40
Retention 50% 76.86 ± 1.20 71.49 ± 1.76 87.02 ± 0.99 81.15 ± 1.06 89.95 ± 0.24 99.56 ± 0.30 86.11 ± 1.93 96.88 ± 0.27 85.15 ± 1.42 89.12 ± 7.59 5.10
Retention 75% 76.29 ± 1.62 71.23 ± 2.00 87.16 ± 0.77 79.59 ± 1.05 88.75 ± 0.25 98.84 ± 1.00 85.16 ± 1.35 96.76 ± 0.32 83.87 ± 1.27 88.80 ± 5.97 7.00
Trimming 25% 75.07 ± 1.44 72.41 ± 1.61 87.19 ± 0.56 75.84 ± 1.35 85.86 ± 0.31 99.95 ± 0.07 84.61 ± 1.47 96.68 ± 0.25 79.29 ± 0.55 88.85 ± 8.23 6.55
Trimming 50% 76.34 ± 1.33 72.17 ± 1.46 87.42 ± 0.50 76.97 ± 1.50 86.46 ± 0.37 99.75 ± 0.13 85.29 ± 2.04 97.47 ± 0.26 74.42 ± 0.68 86.92 ± 8.24 5.70
Trimming 75% 77.11 ± 1.37 71.76 ± 1.56 87.35 ± 0.56 77.80 ± 0.94 88.16 ± 0.25 99.59 ± 0.20 87.19 ± 1.58 97.73 ± 0.21 67.00 ± 1.22 88.43 ± 8.07 5.20

I.2.2. REWIRING CONNECTIVITY

In this experiment we preserve the original connectivity while investigating the influence of homophilic hyperedges on
performance. To do so, we adjust the given connectivity in two different ways. The first strategy aims to unveil the full
potential of the homophily measure for each dataset, by splitting the given hyperedges into fully homophilic ones based
on their node labels. In contrast, the second strategy explores the possibility of partitioning hyperedges based on their
initial node features. The hyperedge splitting results from applying multiple times k-means algorithm for each hyperedge e,
varying at each iteration the number of centroids m from 2 to min(C, |e|); the elbow method is then used to determine the
optimal hyperedge partitioning.

Results. As shown in Table 11, the Label Based strategy enhances performance for all datasets and models. Notably, the
graph-based method CEGCN achieves similar results to HNNs with this strategy. Additionally, on average, only CEGCN
performs better with the k-means strategy, and this method also mitigates distribution shifts for MultiSetMixer. These
findings collectively suggest the crucial role of connectivity preprocessing, especially for graph-based models.

25



Hypergraph Neural Networks through the Lens of Message Passing

Table 11: Rewiring connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
Label Based 82.24 ± 1.12 75.65 ± 1.57 90.49 ± 0.40 91.12 ± 0.92 96.59 ± 0.17 99.96 ± 0.04 93.13 ± 1.29 99.52 ± 0.11 99.79 ± 0.13 91.54 ± 7.24 1.05

AllDeepSets k-means 75.20 ± 1.11 70.87 ± 1.54 88.96 ± 0.48 79.59 ± 1.42 89.75 ± 0.25 99.94 ± 0.09 84.23 ± 1.50 97.17 ± 0.13 81.18 ± 0.54 86.92 ± 7.73 2.80
Original 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 2.15

Label Based 83.43 ± 1.36 76.45 ± 1.43 90.19 ± 0.42 91.71 ± 0.89 96.75 ± 0.16 99.96 ± 0.05 94.81 ± 1.04 99.68 ± 0.09 99.93 ± 0.03 94.10 ± 6.91 1.05
AllSetTransformer k-means 77.14 ± 1.46 72.83 ± 1.07 88.60 ± 0.41 81.92 ± 1.35 89.79 ± 0.30 99.96 ± 0.06 87.95 ± 1.28 97.29 ± 0.20 81.58 ± 0.55 88.72 ± 7.69 2.75

Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 2.20
Label Based 82.12 ± 1.11 75.23 ± 1.64 89.18 ± 0.50 89.80 ± 0.95 94.78 ± 0.13 99.93 ± 0.07 92.87 ± 1.32 99.31 ± 0.10 99.70 ± 0.10 94.74 ± 6.35 1.00

UniGCNII k-means 76.49 ± 1.01 72.73 ± 1.50 88.02 ± 0.48 81.13 ± 1.41 90.13 ± 0.26 99.88 ± 0.07 88.05 ± 1.78 97.10 ± 0.21 81.06 ± 0.48 89.23 ± 7.52 3.00
Original 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 2.00

Label Based 84.51 ± 1.23 76.76 ± 1.51 90.63 ± 0.53 92.28 ± 0.86 97.35 ± 0.15 99.96 ± 0.09 93.64 ± 1.12 99.59 ± 0.09 99.88 ± 0.08 92.44 ± 8.72 1.00
EDHNN k-means 78.43 ± 1.08 73.21 ± 1.25 88.98 ± 0.43 82.99 ± 1.33 90.45 ± 0.25 99.94 ± 0.08 86.91 ± 1.51 96.83 ± 0.16 81.34 ± 0.55 86.54 ± 7.68 2.95

Original 80.74 ± 1.00 73.22 ± 1.14 89.12 ± 0.47 85.17 ± 1.02 91.94 ± 0.23 99.94 ± 0.11 88.04 ± 1.65 97.70 ± 0.19 81.64 ± 0.49 89.49 ± 6.99 2.05
Label Based 83.05 ± 1.08 77.82 ± 1.59 90.25 ± 0.39 91.42 ± 0.88 96.25 ± 0.13 99.91 ± 0.07 94.23 ± 0.77 99.26 ± 0.14 OOM 93.85 ± 7.39 1.00

CEGAT k-means 75.45 ± 1.54 72.57 ± 1.12 87.32 ± 0.47 77.11 ± 1.51 87.27 ± 0.29 97.66 ± 0.72 85.48 ± 1.66 96.39 ± 0.26 OOM 68.08 ± 8.28 2.33
Original 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 OOM 44.62 ± 9.18 2.67

Label Based 83.70 ± 1.02 77.50 ± 1.53 90.08 ± 0.42 91.28 ± 0.97 96.68 ± 0.14 99.95 ± 0.05 94.03 ± 1.24 99.30 ± 0.14 OOM 95.00 ± 7.08 1.00
CEGCN k-means 75.89 ± 1.53 72.07 ± 1.18 87.13 ± 0.51 76.43 ± 1.41 86.76 ± 0.24 94.84 ± 0.47 85.34 ± 1.71 95.77 ± 0.31 OOM 73.72 ± 7.89 2.44

Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 OOM 49.23 ± 6.81 2.56
Label Based 84.06 ± 1.08 77.12 ± 1.37 88.81 ± 0.43 92.77 ± 0.73 96.70 ± 0.12 99.96 ± 0.06 95.21 ± 1.27 99.67 ± 0.09 99.93 ± 0.04 94.61 ± 6.97 1.00

HCHA k-means 77.51 ± 1.41 72.62 ± 1.33 86.89 ± 0.48 81.19 ± 1.31 89.42 ± 0.29 99.56 ± 0.27 87.62 ± 1.33 96.98 ± 0.15 80.58 ± 0.57 84.10 ± 9.83 2.60
Original 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 2.40

Label Based 84.06 ± 1.08 77.11 ± 1.47 88.81 ± 0.43 92.86 ± 0.65 96.70 ± 0.11 99.96 ± 0.06 95.34 ± 1.07 99.67 ± 0.09 99.93 ± 0.04 94.61 ± 6.97 1.00
HGNN k-means 77.51 ± 1.41 72.41 ± 1.55 86.89 ± 0.48 81.19 ± 1.38 89.42 ± 0.27 99.56 ± 0.27 87.52 ± 1.51 96.98 ± 0.15 80.58 ± 0.57 84.10 ± 9.83 2.60

Original 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 2.40
Label Based 72.88 ± 1.23 66.10 ± 1.79 82.18 ± 0.62 76.20 ± 1.50 84.86 ± 0.39 69.68 ± 4.90 43.37 ± 4.65 47.19 ± 6.42 82.14 ± 0.43 53.97 ± 8.24 1.50

HyperGCN k-means 45.76 ± 1.97 49.96 ± 1.68 77.97 ± 0.75 47.63 ± 1.36 40.88 ± 4.04 69.53 ± 4.91 32.21 ± 2.57 41.96 ± 2.40 80.85 ± 0.46 53.46 ± 8.65 2.70
Original 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 1.80

Label Based 83.31 ± 1.09 74.98 ± 1.45 89.42 ± 0.56 92.34 ± 1.09 97.37 ± 0.20 99.98 ± 0.03 93.89 ± 1.34 99.49 ± 0.10 99.87 ± 0.06 91.28 ± 7.35 1.00
MultiSetMixer kmeans based 76.02 ± 1.33 72.47 ± 1.50 87.43 ± 0.50 79.80 ± 1.50 88.38 ± 0.33 99.92 ± 0.08 87.55 ± 1.21 97.03 ± 0.19 80.54 ± 0.57 88.85 ± 8.65 2.60

Original 78.06 ± 1.24 71.85 ± 1.50 87.19 ± 0.53 82.74 ± 1.23 90.68 ± 0.19 99.58 ± 0.16 88.90 ± 1.30 98.38 ± 0.21 88.57 ± 1.96 88.08 ± 8.04 2.40
Label Based 74.54 ± 1.51 72.41 ± 1.47 86.02 ± 0.50 74.71 ± 1.16 84.88 ± 0.38 99.97 ± 0.06 85.94 ± 1.59 96.38 ± 0.32 81.09 ± 0.52 87.56 ± 7.33 1.45

MLP CB k-means 74.53 ± 1.34 72.23 ± 1.55 85.99 ± 0.39 74.46 ± 1.32 84.78 ± 0.35 99.92 ± 0.07 86.16 ± 1.54 96.31 ± 0.27 81.09 ± 0.55 87.44 ± 7.75 2.25
Original 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 99.93 ± 0.08 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 2.30

I.3. Additional experiments with heterophilic datasets

In this section, we broaden our experimental scope by including a set of datasets that were previously used in Wang et al.
(2023). These datasets, namely Senate, Congress, House, and Walmart, are classified as heterophilic based on the CE
homophily measure. Notably, they present an interesting challenge as they do not have inherent node features. Therefore,
generating artificial node attributes is necessary before applying hypergraph models. Due to this constraint, we have decided
to postpone the exploration of these datasets to future work, as we acknowledge the significance of addressing such limitation
for a more thorough analysis.

Table 12 displays the performance results of MultiSetMixer, EDHNN, and AllSet-like architectures on the mentioned
datasets. Notably, EDHNN consistently outperforms other models across all datasets, demonstrating superior results.
MultiSetMixer ranks as the second-best model, deviating by one standard deviation from EDHNN on Senate and House
datasets, and performing similarly to AllSetTransformer and AddDeepSets on Congress and Walmart.

Table 12: Additional hypergraph model performance benchmarks on heterophilic datasets (test accuracy in %). Results for
AllDeepSets and AllSetTransformer are taken from Wang et al. (2023).

Senate Congress House Walmart
AllDeepSets 48.17 ± 5.67 91.80 ± 1.53 67.82 ± 2.40 64.55 ± 0.33

AllSetTransformer 51.83 ± 5.22 92.16 ± 1.05 69.33 ± 2.20 65.46 ± 0.25
EDHNN 64.79 ± 5.14 95.00 ± 0.99 72.45 ± 2.28 66.91 ± 0.41

MultiSetMixer 61.34 ± 3.45 92.13 ± 1.30 70.77 ± 2.03 64.23 ± 0.41

J. Comparison and Analysis between MultiSet and AllSet Framework Performances
In this section, we compare the MultiSetMixer and AllSet models. Table 1 highlights MultiSetMixer’s superior performance
on three datasets: NTU2012, ModelNet40, and 20Newsgroups. The enhanced result on 20Newsgroups can be attributed
to the distribution shift and the pooling operations over restricted neighbors within hyperedges. These are the results of
mini-batching steps 1 and 2. We believe MultiSetMixer achieves worse performance and Zoo due to the negative impact
of the distribution shift. We showed that this can be mitigated by applying k-means to the connectivity, as demonstrated
in Appendix I.2.1 and I.2.2, particularly Table 11. Applying k-means to the initial connectivity leads the MultiSetMixer
model to achieve results like AllSetTransformer, AllDeepSets, and EDHNN on Zoo, improves a little bit the results on
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Pubmed, and mitigates the distribution shift on 20NewsGroups leading to poor performance. Furthermore, we noticed that
MultiSetMixer excels in processing Computer Vision/Graphics datasets (NTU2021 and ModelNet40). This is attributed to
the construction of the initial graph, which involved lifting the initial k-uniform graph by constructing hyperedges based on
the one-hop neighborhood of every node. On Cora and Citeseer, MultiSetMixer outperforms AllDeepSets and performs
on par with AllSetTransformer without requiring an attention mechanism. Conversely, AllSetTransformer outperforms
MultiSetMixer on CORA-CA, while MultiSetMixer achieves similar results as AllDeepSets. Finally, MultiSetMixer’s lower
scores on Pubmed and DBLP-CA can be attributed to mini-batching. This is due to the impossibility of processing the entire
hypergraph with one forward pass, given the memory constraints for storing all hyperedge-dependent node representations.

K. Analysis on Inductive Bias

Table 13: Difference in Accuracy between Model A and Model B; they represent, respectively, models with and without
inductive bias.

Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO
Model A Model B

AllDeepSets MLP 3.84 -1.40 1.91 8.96 6.57 0.05 6.79 1.39 0.26 3.97
MLP CB 3.05 -1.26 3.21 7.84 6.43 3.13 1.06 0.29 -4.94 7.49

AllSetTransformer MLP 6.27 0.45 1.61 11.16 6.84 0.04 8.52 2.69 0.66 5.90
MLP CB 5.48 0.59 2.91 10.04 6.70 3.12 2.79 1.59 -4.54 9.42

EDHNN MLP 7.47 1.15 1.99 11.90 7.17 0.03 8.34 2.39 0.71 4.36
MLP CB 6.68 1.29 3.29 10.78 7.03 0.01 2.61 1.29 -4.49 7.88

MultiSetMixer MLP 4.79 -0.22 0.06 9.47 5.91 -0.33 9.20 3.07 7.64 2.95
MLP CB 4.00 -0.08 1.36 8.35 5.77 -0.35 3.47 1.97 2.44 6.47

L. Sampling analysis
As it has been discussed in Section 4.3, the proposed mini-batching procedure consists of two steps. At step 1, it samples
B hyperedges from E . The hyperedge sampling over E can be either uniform or weighted (e.g. by taking into account
hyperedge cardinalities). Then in step 2 L nodes are in turn sampled from each sampled hyperedge e, padding the hyperedge
with L− |e| special padding tokens if |e| < L –consisting of 0 vectors that can be easily discarded in some computations.
Overall, the shape of the obtained mini-batch X has fixed size B × L.

Step 0 (hyperedge mini-batching) is particularly beneficial for large datasets; however, it can be skipped when the network
fits fully into memory. Empirically, we found step 1 (node mini-batching within a hyperedge) to be useful for two reasons:
(i) pooling operations over a large set may over-squash the signal, and (ii) node batching leads to the training distribution
shift, hence it can be useful to keep it even when the full hyperedge can be stored in memory.

When both step 1 and step 2 are employed, considering the hidden dimension size, the batch size required to be stored in
memory during the forward pass is B × L× d, where d represents the hidden dimension. If only step 2 is employed, the
batch size is |E| × L× d, where |E| is the number of hyperedges within the hypernetwork. Finally, when no mini-batching
steps are used, the batch size is |E| ×maxe∈E |e| × d, where maxe∈E |e| is the size of the longest hyperedge.

Theoretical analysis. In this Section, we provide an analysis regarding the uniform sampling of the hyperedges in Step 1.
We propose sampling X mini-batches of a certain size B at each iteration. At step 1, we sample B hyperedges from E ; in
step 2, for each hyperedge we sample a fixed number of nodes, that are randomly chosen among the ones belonging to that
specific hyperedge. If the hyperedge does not contain enough samples, we use padding so that the size of the set of sampled
nodes is increased to the desired value. By choosing to sample the nodes uniformly at random from the hyperedge, there
is no guarantee that we will eventually sample all the nodes of each hyperedge. Indeed, sampling uniformly at random c
items from a set of size n, the probability of not sampling our desired one is 1− c

n . The probability of having to wait for T
independent trials before finding node x among the sampled nodes is described by the geometric distribution.
Namely, let x ∈ e and |e| = n, and assume the size of the considered mini-batch is c:

P ( Sample node x from hyperedge e for the first time at epoch T ) =
(
1− c

n

)T−1 c

n
. (48)

It follows that
E [ # of epochs to wait before sampling node x] =

n

c
.
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Assume now that a node x belongs to k hypergraphs e1, . . . , ek of respective sizes n1, . . . , nk. The events
{Node x is sampled from hyperedge ei } and {Node x is sampled from hyperedge ej } are independent if i ̸= j. It fol-
lows that the random variable { # of epochs to wait until we sample node x from all the hyperedges e1, . . . , ek} is the
maximum of k independent non-identically distributed geometric distributions. Denote by Ti the random variable that
corresponds to the number of epochs we have to wait before sampling sample x from edge ei. The exact distribution for the
random variable T , that is, the number of epochs we have to wait until we sample node x from all hyperedges e1, . . . ek at
least once, is

P (T ≤ h) = P
(

max
i=1,...,k

Ti ≤ h

)
=

k∏
i=1

P (Ti ≤ h) =

k∏
i=1

(1− pi)
h

It follows that

E ( # of epochs to wait until we sample node x from all the hyperedges e1, . . . , ek) = (49)

E
(

max
i=1,...,k

Ti

)
=

k∑
i=0

(
1−

h∏
i=1

(
1− (1− pi)

k
))

(50)

This can’t be expressed in closed form: we can use the Moment Generating Function to bound the expected value of the
maximum. Alternatively, we can also try to use the inequality due to Aven (1985), so that

E
(

max
i=1,...,k

Ti

)
(51)

≤ max
i=1,...k

E (Ti) +

√√√√k − 1

k

k∑
i=1

V (Ti) = max
i=1,...k

n

c
+

√
k − 1

k
k
[n
c

(
1− n

c

)]
(52)

=
n

c
+

√
k − 1

[n
c

(
1− n

c

)]
(53)

Probability that a specific node is not sampled in one epoch. Let v be a node and let dv be its degree. In one epoch, we
“see” all hyperedges but, of course, not necessarily all their nodes. It holds that

P ( node v is sampled in epoch T ) = 1− P ( node v is not sampled in epoch T ) (54)

We can write the event

{ node v is not sampled in epoch T } = ∩e s.t.v∈e { node v is not sampled in e} .

It follows that

P ( node v is sampled in epoch T ) = max

{
1−

dv∏
i=1

c

|ei| − 1
,1mini=1,...,dv |ei|<c

}
(55)

Indeed, if any on the edges v belongs to has a size smaller than the batch size for nodes (c), the node is for sure seen in the
first epoch.

M. Node Homophily
In this Section, we report the node homophily plots for the datasets not illustrated in Figure 1. For each dataset, we choose to
illustrate 3 different levels of node homophily, respectively 0, 1 and 10− level homophily, using Equation 2 at t = 0, 1 and
10 (left, middle, and right plots respectively). Horizontal lines depict class mean homophily, with numbers above indicating
the number of visualized points per class.

M.1. Figure - node homophily
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Figure 7: Node Homophily Distribution Scores for Cora.

Figure 8: Node Homophily Distribution Scores for Citeseer.

Figure 9: Node Homophily Distribution Scores for CORA-CA.
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Figure 10: Node Homophily Distribution Scores for DBLP-CA.

Figure 11: Node Homophily Distribution Scores for NTU2012.

Figure 12: Node Homophily Distribution Scores for ModelNet40.
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Figure 13: Node Homophily Distribution Scores for Mushroom.

Figure 14: Node Homophily Distribution Scores for 20NewsW100.

Figure 15: Node Homophily Distribution Scores for ZOO.

N. Comparisons with others Homophily measure in literature
K-uniform homophily measure

Hyperedge homophily. Veldt et al. (2023) defines the group homophily measure for k-uniform hypergraphs as Gk =
(V, E). The type t-affinity score for each t ∈ {1, . . . , k}, indicates the likelihood of a node belonging to class c participating
in groups in which exactly t group members also belong to class c and defined as in equation 56. dt(v) is the number of
hyperedges that v belongs to with exactly t members from class c. The authors also consider a standard baseline score bt(c),
equation 57, that measures the probability that a class-c node is in the group where t members are from class c, given that
the other k − 1 nodes were chosen uniformly at random.

ηt(c) =

∑
v:yv=c dt(v)∑
v:yv=c dv

, (56) bt(c) =

(
nc−1
t−1

)(
n−nc

k−t

)(
n−1
k−1

) (57)

nc is the number of nodes in class c and n is the total number of nodes in the hypergraph. The k-uniform hypergraph
homophily measure can be expressed as a ratio of affinity and baseline scores, with a ratio value of 1 indicating that the
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group is formed uniformly at random, while any other number indicates that group interactions are either overexpressed or
underexpressed for class c.

They suggest three possible ways for extending the concept of homophily to the hypergraph context. The first one is the
simple homophily and it means that ηt(c) > bt(c) for t = k and check whether a class has a higher-than-baseline affinity for
group interactions that only involve members of their class. The second one is order-j majority homophily that is obtained
when the top j affinity scores for one class are higher than the baseline, i.e. ηk−j+1(c) > bk−j+1(c), . . . , ηk(c) > bk(c).
The last one they consider is order-j monotonic homophily, which corresponds to the case when top j ratio scores are
increasing monotonic, i.e. ηk(c)/bk(c) > ηk−1(c)/bk−1(c) > · · · > ηk−j+1(c) > bk−j+1(c).

Finally, considering that the value ηt(c) − bt(c) is the bias of class c for type t, they introduce a type-t normalized bias
score that normalizes the maximum possible bias, hence the obtained metric is bounded in [0, 1] and it is computed as:

ft(c) =

{
ηt(c)−bt(c)
1−bt(c)

if ηt(c) ≥ bt(c)
ηt(c)−bt(c)

bt(c)
if ηt(c) < bt(c)

(58)

Comparisons to our measure Unlike (Veldt et al., 2023) our measure of homophily does not assume a k-uniform hypergraph
structure and can be defined for any hypergraph. Furthermore, the proposed measure enables the definition of a score
for each node and hyperedge for any neighborhood resolution, i.e., the connectivity of the hypergraph can be explicitly
investigated. It gives a definition of homophily that puts more emphasis on the connections following the two-step message
passing mechanism starting from the hyperedges of the hypergraph.

Social equivalence

The social equivalence (Sun et al., 2023) is calculated through an expectation taken over pairs of users sampled from
probability distributions. Specifically, E(u, v ∼ P (Ep)) represents the expectation over positive user pairs sampled from the
distribution of the hyperedges of the hypergraph P (Ep). In contrast, E(u0, v0 ∼ P (V ×V \Ep)) represents the expectation
over negative user pairs sampled from P (V × V \Ep). The measure is a fraction between the numerator that involves the
expected Jaccard index of environments for positive user pairs and the denominator, which comprises a similar calculation
for negative user pairs. The Jaccard index is used to measure the similarity between two sets, and in this context, it assesses
the similarity of hyperedges associated with positive user pairs. If the expected Jaccard index for positive user pairs is higher
than that for negative pairs, the measure exceeds 1, indicating a significant level of observed social equivalence among users.

Comparisons to our measure The concept of Social Equivalence, as introduced by Sun et al. (2023), differs significantly
from our definition of homophily. In our approach, the measure is initially defined at both the node and hyperedge levels.
Our primary objective is to address the question: ‘How similar a node is to its neighbors?’ Following a message passing
scheme, our definition allows us to examine different time points, attempting to answer how similar a node is to the nodes
it can reach with t steps of message passing. This consideration also extends to edges, where we seek to understand the
coherence or uniformity of an edge within itself. The guiding notion of similarity in our work is belonging to the same class.
Specifically, in level-0 homophily, we evaluate whether a node is more connected with nodes of the same classes. We can
then aggregate the node-level/hyperedge-level homophily to provide a definition for hypergraph homophily. In contrast, in
the work of Sun et al. (2023), the concept of social equivalence yields a single result for the entire hypergraph. The approach
involves comparing the set of similar nodes that are connected with those that are not connected. The key question is whether
the set of non-connected nodes is, on average, more similar or if the set of connected pairs exhibits greater similarity. It’s
important to note that this definition makes sense only for the entire hypergraph and captures a different notion of similarity.

Social conformity

Social conformity, as described in (Sun et al., 2023), involves leveraging learned representations of users and hyperedges
within a model to understand and quantify the level of conformity among users in a social network.

Node homophily computed on the clique expansion of the hypergraph

Clique-expanded (CE) homophily, employed in Wang et al. (2023), is determined by calculating node homophily (Pei et al.,
2020) on the graph derived from the clique-expanded hypergraphs.
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Comparisons to our measure The node homophily for a graph computes the fraction of neighbors with the same class
for all nodes and then averages these values across the nodes. In contrast to our metric, CE homophily is not defined
directly on the hypergraph but necessitates an expanded clique representation. While sharing some similarities with our
node-wise measure h0, it lacks the dynamic aspect inherent in the MP homophily measure, consequently failing to capture
the dynamic information within connections. Our analysis in Section 3 underscores the significance of this dynamic element
in understanding the correlation between homophily measures and the observed patterns in Hypergraph Neural Networks
(HNNs).

Further consideration on the concepts of simulated social environment evolving and group entropy from Sun et al.
(2023)

Further exploration of the concepts of simulated social environment evolving and group entropy is presented by Sun et al.
(Sun et al., 2023). In their study, a dynamic analysis of specific hypergraph characteristics is conducted through message
passing. They specifically focus on the evolving proportion of ’significant nodes’ within the hyperedge relative to the
original nodes across different epochs. These ’significant nodes’ are identified as those with a probability of belonging to the
hyperedge greater than 0.5, initially determined by multiplying the representation of the node with that of the hyperedge
(averaged over its constituent nodes).

A noteworthy distinction from our methodology lies in their reliance on representations provided by a model, in contrast to
our representation-independent approach. Despite the shared use of message passing in both approaches, we underscore
these methodological differences.

It’s important to highlight that the concept of group entropy introduced by Sun et al. is also noteworthy, representing an
evolving model concept; however, its computation requires node representations provided by a model.

We posit that our measure and the metrics employed in Sun et al. (2023)’s paper can complement each other effectively.

O. Class Distribution Shift
We now report the results for the class distribution shift obtained by applying the mini-batch sampling procedure described
in Section C. For each dataset, we choose to illustrate 3 different distributions: the one corresponding to the original labels
(“Node”), the one obtained by applying both Step 1 and Step 2 described in the mini-batch paragraph of Section 4.2 and the
one obtained by only applying Step 2.

O.1. Figure - node homophily
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(a) Class distribution for Cora. (b) Class distribution for CORA-CA.

(c) Class distribution for 20Newsgroup. (d) Class distribution for DBLP-CA.

(e) Class distribution for Mushroom. (f) Class distribution for 20NewsW100.

Figure 16: Class distribution shifts.
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