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Abstract  

In clinical psychology, reinforcement learning is one of the many forms of 

conditional learning that focuses upon reinforcing behavior that yields 

beneficial results. Similar to any other structure, the process of 

reinforcement learning was adopted and implemented into models of 

machine learning with ever-evolving complexity. This chapter will attempt 

to outline the philosophy and terminology associated with reinforcement 

learning in machines while also describing basic models and their 

connection to vertebrate neuroanatomy. Specifically, machine learning 

borrows from the basal ganglia, a cluster of subcortical nuclei that are 

responsible for a host of tasks including procedural learning, cognition, 

and emotion. Within this chapter, the parallels between the basal ganglia 

and current machine learning will be clearly evaluated with thoughtful 

deliberation of their future relationship. 

Introduction	to	reinforcement	learning	



Reinforcement learning is an area of machine learning, inspired by 

behaviorist psychology, concerned with how agents ought to take actions 

in an environment so as to maximize some notion of cumulative reward. 

The task of reinforcement learning is to use observed rewards to learn an 

optimal policy for the environment. In many complex domains, 

reinforcement learning is the feasible way to train a program to perform at 

high levels. For example, in game playing, it is very hard for a human to 

provide accurate and consistent evaluations of large numbers of positions, 

which would be needed to train an evaluation function directly from 

examples.  Instead, the program can be told when it has won or lost, and it 

can use this information to learn an evaluation function that gives 

reasonably accurate estimates of the probability of winning from any 

given position. Figure 1 is widely used to describe how reinforcement 

learning works.  We can see that an Agent will take a certain action to 

receive the reward at the timestamp . There are many elements 

within reinforcement learning and it is important to know them: 

environment, agent, policy, 



 

Figure	1.	Reinforcement	Learning	Framework	

Environment: The environment's task is to define a world where an agent 

is able to interact with. It therefore has a basic loop that can be written like 

this: 

Produce state s and reward r 

Where our state �  represents the current situation in the environment 

and the reward �  represents the scalar value being returned by the 

environment after selecting an action � . 

 

Agent:Our agent needs to learn how to achieve goals by interacting with 

the environment. The basis to do this is by using a basic loop. 

1. Sense state �  and reward �  from the environment 

2. Select an action �  based on this state and reward 



We do note here though that the action that our agent can take can be 

defined under two specific categories: 

1. Discrete: 1 of N actions (for example, left or down) 

2. Continuous: An action as a scalar/vector of a real value (for 

example, the amount we need to bend our leg to be able to walk) 

Policy	𝜋: Policy 𝜋is used to map the actions to the states that agents have 

to take. The actions can be categorized in two specific categories: 

● Deterministic: Same action every time 

● Stochastic: There is a probability of taking different actions (for example, 

we take action 1 70% of the time, and action 2 30% of the time). 

Value	function	𝑉 :	Value function 𝑉 represents how good the state in the 

long run, which is calculated by our agents, in other words, what is the 

expected long term accumulation of reward. 

There are two commonly used value functions: 

1. State-Value Functions 𝑉గሺ𝑆ሻ: Value of state 𝑆 and following our 

policy 𝜋 

● It give the expected return when starting from states 𝑠  and following 

policy 𝜋forever. 

● 𝑉గሺ𝑠ሻ ൌ 𝐸గሾ𝑅௧||𝑠௧ ൌ 𝑠ሿ 

2. Action-Value Functions 𝑄గሺ𝑠,𝑎ሻ: Value of state 𝑠 ,taking action 

𝑎 ,and thereafter following policy 𝜋. 



● It gives the expected return of taking action 𝑎 in state 𝑠, given the policy 

𝜋 

● 𝑄గሺ𝑠, 𝑎ሻ ൌ 𝐸గሾ𝑅௧||𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሿ 

● This is also called Q-Function, which is the core of the Q-learning 

algorithm. 

There are two types of reinforcement learning: model-based learning vs 

model-free learning. In model-based learning, agents not only learn how to 

take actions but also learn how the environment responds to moves or 

actions. Model-free agents can estimate the optimal policy without using 

or estimating the dynamic (transaction and reward function) of the 

environment. Q-learning is a model-free reinforcement learning algorithm.  

Here we are using the game-Tic Tac Toe to explore reinforcement learning 

model (Q-learning): 

 



Figure2.	Tic	Tac	Toe	game	board	with	each	player	played	four	moves 

● States: States in Tic Tac Toe are the representation of the game board 

with moves of each player made. 

● Actions (available actions): Available spaces to make move on board 

● Reward: Winner will be rewarded by 100, Loser will be punished by 100 

and reward is 0 when game tied. 

● 𝛼Value function: Q(s,a), s is the state and a is the action (move) so that 

every state and action pair will have a q value from the value function. This 

requires a lot of game simulations. 

How do we calculate the q value based on the elements above? Let’s go 

ahead and derive Q learning by incorporating a few basic principles: 

● Reward prediction error: Reward prediction error (RPE) = Actual reward 

- predicted reward value. An “error signal” used to adjust your value 

function. RPE in reinforcement learning is also from neuroscience (Schultz, 

2016) - the prediction error theory. In this theory, dopamine neurons send 

a rapid signal that covers all three possible errors in prediction of a 

reward: that the reward was better than expected (a positive error); the 

reward was equal to expected (no error) or the reward was less than 

expected (a negative error). Humans can adjust their behaviors (actions) 

based on these three types of signal). In reinforcement learning, we use 

RPE and learning rate 𝛼 to update the q value: 

New Value = Old Value + α * RPE 



Now we know how to update the q value with leaning rate and RPE. We 

need to derive equation for predicted reward value,if 𝑄ሺ𝑠௧ ,𝑎௧ሻ is the sum 

of expected future rewards at time 𝑡 , 

and 𝑄ሺ𝑠௧ା1,𝑎௧ା1ሻis the same thing one step ahead in the future 

𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ 𝑟௧  𝑟௧ା1  𝑟௧ା2. .. (estimated rewards) 

𝑄ሺ𝑠௧ା1, 𝑎௧ା1ሻ ൌ 𝑟௧ା1  𝑟௧ା2. .. 

𝑄ሺ𝑠௧ ,𝑎௧ሻ ൌ 𝑟௧  𝑄ሺ𝑠௧ା1,𝑎௧ା1ሻassuming you take the best choice at time 𝑡 

1 so 

𝑄ሺ𝑠௧ , 𝑎௧ሻ ൌ 𝑟௧  𝑚𝑎𝑥ሺ𝑄ሺ𝑠௧ା1,𝑎ሻሻ 

So you can use 𝑄 to find the predicted reward value at time 𝑡: 

predicted reward value 𝑟௧ ൌ 𝑄ሺ𝑠௧ ,𝑎௧ሻ െ 𝑚𝑎𝑥ሺ𝑄ሺ𝑠௧ା1,𝑎ሻሻ  

● Learning rates: how to choose the right learning rate is also an important 

factor in Q learning. High learning rate leads to learning quickly to adapt to 

changing environments, lower learning rate learns slowly but remains 

stable enough to noise and stochastic rewards to avoid forgetting. The 

right value of learning rate depends upon how stable the environment is, a 

more unstable or critical  environment requires a higher learning rate. 

● Temporal discounting: Temporal discounting is the tendency of people to 

discount reward as they approach a temporal horizon in the future or the 

past. To put it another way, it is a tendency to give greater value to 

rewards as they move away from their temporal horizons and towards the 



“Now”. This concept is used in both neurobiology and neuroeconomics. Q 

learning models (and other reinforcement learning models) introduce a 

discount factor 𝑟 between 0 and 1 to reward value. When 𝑟 close to 1 

represents no discounting, a reward from future will have same weight as 

current reward, when 𝑟 close to 0 leads to “hedonistic behavior”, 

immediate reward has more weight than long-term reward. 

To sum up everything we had, we can derive Q-learning equation formula: 

𝑛𝑒𝑤 𝑄 ൌ 𝑜𝑙𝑑 𝑄  𝛼ሾ𝑟𝑒𝑤𝑎𝑟𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟ሿ 

𝑛𝑒𝑤 𝑄 ൌ 𝑜𝑙𝑑 𝑄  𝛼ሾ𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 െ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑ሿ 

𝑄௧ା1ሺ𝑠,𝑎ሻ ൌ 𝑄 ௧  𝛼ሾ𝑅௧ା1 െ ሾ𝑄௧ െ 𝛾 𝑚𝑎𝑥𝑄௧ሺ𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒,𝑎ሻሿ 

 

Basal	ganglia	and	reinforcement	learning	

Animals need to select the most appropriate behavior in a given 

environment in order to survive. An important role in this process of 

action selection is played in all vertebrates by a set of subcortical 

structures called the basal ganglia (Redgrave et al., 1999). The information 

processing in the basal ganglia is very strongly modulated by dopamine. 

The basal ganglia are critically involved both in the process of selecting 

actions, and in learning which actions are worth making in a given context, 

as demonstrated by impairments of both functions in Parkinson’s disease. 

Death of dopaminergic neurons in Parkinson’s disease leads to problems 



with movements (Blandini et al., 2000) as well as difficulties in learning 

from feedback (Knowlton et al., 1996). The basal ganglia is organized into 

two main pathways: Go and No-Go. The Go pathway is related to the 

initiation of movements. On the other hand, the No-Go pathway is possible 

to be related to the inhibition of movements (Kravitz et al., 2010). Two 

pathways and how they work are shown in Figure 2 (Frank, 2005).  

 

 

Figure	2:	Biology	of	the	basal	ganglia	system,	with	two	cases	shown:	a)	

Dopamine	burst	activity	that	drives	the	direct	"Go"	pathway	neurons	in	the	

striatum,	which	then	inhibit	the	tonic	activation	in	the	globus	pallidus	

internal	segment	(GPi),	which	releases	specific	nuclei	in	the	thalamus	from	

this	inhibition,	allowing	them	to	complete	a	bidirectional	excitatory	circuit	

with	the	frontal	cortex,	resulting	in	the	initiation	of	a	motor	action.	The	

increased	Go	activity	during	dopamine	bursts	results	in	potentiation	of	

corticostriatal	synapses,	and	hence	learning	to	select	actions	that	tend	to	



result	in	positive	outcomes.	b)	Dopamine	dip	(pause	in	tonic	dopamine	

neuron	firing),	leading	to	preferential	activity	of	indirect	"NoGo"	pathway	

neurons	in	the	striatum,	which	inhibit	the	external	segment	globus	pallidus	

neurons	(GPe),	which	are	otherwise	tonically	active,	and	inhibiting	the	GPi.	

Increased	NoGo	activity	thus	results	in	disinhibition	of	GPi,	making	it	more	

active	and	thus	inhibiting	the	thalamus,	preventing	initiation	of	the	

corresponding	motor	action.	The	dopamine	dip	results	in	potentiation	of	

corticostriatal	NoGo	synapses,	and	hence	learning	to	avoid	selection	actions	

that	tend	to	result	in	negative	outcomes.(Frank,	2005)	

The competition between Go and No-Go pathway during action selection 

and its dopaminergic modulation inspired have been described by many 

computational models (e.g. Gurney et al., 2001; Humphries et al., 2012), 

which also lay the ground for reinforcement learning in machine learning. 

Dopaminergic neurons act similarly as reward functions in reinforcement 

learning, which will change the balance between the two pathways and 

promote action initiation over inhibition. The output nuclei of the basal 

ganglia play a similar role as value functions which will provide either 

positive or negative value to thalamus for action selection. The 

comparison of basal ganglia and reinforcement learning was described in 

figure 3. 



 

Figure	3.	Comparison	of	basal	ganglia	and	reinforcement	learning	in	

machine	learning.	a)*	The	simplified	organization	of	the	basal	ganglia	

diagram,		components	like	globus	pallidus	internal	segment	(GPi)	and	globus	

pallidus	neurons	(GPe)	are	removed	for	better	comparison.	b)	The	

reinforcement	learning	in	machine	learning	model,	see	previous	chapter	for	

details	of	each	component.		

Although the differences between reinforcement learning in the human 

brain and machine learning are tiny, the understanding of the human brain 

are still limited. Based on what we understand about our brain so far, 



reinforcement learning seems to be a proper direction for us to take to 

create AI.  

Future	of	Reinforcement	learning	

Deep Learning is state of the art for many challenging machine learning 

problems. With enough data, Deep Learning can outperform Machine 

learning in most scenarios. Reinforcement learning, on the other hand, has 

its own advantage compared to supervised and unsupervised learning. It 

can solve complex problems and make high level decisions. So combining 

deep learning and reinforcement learning become necessary to solve more 

challenging problems. This combination, called Deep reinforcement 

learning, is most useful in problems with high dimensional state-space 

(Francois-Lavet et al., 2018) and can apply to many real world scenarios.  

 

Figure	4. 

Although reinforcement learning has shown its potential compared to 

other machine learning algorithms and techniques (Figure 5), there are 

still some limitations with it. For example, exploring the environment 



efficiently or being able to generalize a good behavior in a slightly different 

context are not straightforward. Thus, researchers are proposing a large 

array of algorithms each year and trying to overcome these limitations. 

 

Figure	5.	The	machine	learning	algorithms	and	techniques	with	complexity	

and	potential	application	in	AI 

 

Conclusion	



The future of reinforcement learning is bright with so many efforts have 

been invested on reinforcement learning. In the foreseeable future of 

reinforcement learning, we can expect to see deep RL algorithms going in 

the direction of meta-learning and lifelong learning where previous 

knowledge (e.g., in the form of pre-trained networks) can be embedded so 

as to increase performance and training time. Another key challenge is to 

improve current transfer learning abilities between simulations and real-

world cases. This would allow learning complex decision-making 

problems in simulations (with the possibility to gather samples in a 

flexible way), and then use the learned skills in real-world environments, 

with applications in robotics, self-driving cars, etc. 

Finally, we expect deep RL techniques to develop improved curiosity 

driven abilities to be able to better discover by themselves their 

environment. 
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