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Abstract 

The Polling Compliance substate in PCI Express link training provides crucial electrical conformity verification but 
presents significant verification challenges due to its rarely-exercised nature. Pre-silicon verification through formal 
methods and simulation offers comprehensive validation before hardware implementation. Verification strategies must 
adapt from PCIe Gen1 through Gen7 to evolving encoding schemes, pattern complexity, and handshake mechanisms. 
Transitioning from simple 8b/10b patterns to complex 128b/130b block-coded sequences and eventually to PAM4 
modulation introduces verification complications requiring robust methodologies. Formal verification is essential for 
confirming state transition logic, entry conditions, and deadlock prevention, while simulation validates pattern 
generation correctness across multiple preset sequences. Case examples highlight subtle issues like timing-sensitive 
handshake bugs and preset sequence implementation errors that could otherwise manifest during post-silicon 
compliance testing. Thorough verification of this seldom-used state demonstrates the importance of comprehensive 
pre-silicon validation strategies, particularly for states that become increasingly complex with each generation. The 
progression from simpler pattern verification to complex multi-preset sequences with evolving encoding schemes 
illustrates how verification methodologies must scale alongside protocol complexity to maintain interoperability and 
standards conformance.  

Keywords: Pcie Polling Compliance; Formal Verification; Link Training; Pre-Silicon Validation; Protocol 
Interoperability 

1. Introduction

Peripheral Component Interconnect Express (PCIe) employs a Link Training and Status State Machine (LTSSM) to 
initialize and manage high-speed links between devices [1]. Among its substates is Polling Compliance, a special state 
dedicated to compliance testing of the physical layer. Polling Compliance is not entered during normal operations unless 
specific conditions are met, as it is intended for test and measurement scenarios rather than data transfer [1]. In this 
state, a device transmits predefined compliance bit patterns used by test equipment to assess whether the transmitter 
and channel meet PCIe electrical specifications. Verifying the state logic of Polling Compliance is essential because any 
flaw can lead to interoperability or compliance failures. Yet, it is challenging since the state is rarely exercised in typical 
functional use. 

This paper focuses on pre-silicon verification of Polling Compliance behavior. In contrast to post-silicon validation 
(which might involve oscilloscopes and compliance boards in a lab), pre-silicon verification uses simulation and formal 
methods to ensure that the design of the LTSSM and associated logic correctly implements the Polling Compliance state 
across all PCIe generations. By removing all content related to lab measurements or hardware debugging, this approach 
concentrates on formal verification proofs and simulation test benches that target Polling Compliance transitions, 
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handshake signals, and pattern generation in a controlled pre-silicon environment. The investigation spans PCIe Gen1 
through Gen7, capturing how introducing new data rates and encoding schemes (from 8b/10b to 128b/130b to 1b/1b 
with PAM4) over successive generations has introduced new verification challenges and requirements [5, 8]. 

The remainder of this article is organized as follows: The Technical Background section reviews the Polling Compliance 
state’s role in the PCIe LTSSM, its triggering conditions, and the evolution of its behavior from Gen1 to Gen7 [1, 5, 8]. 
The Pre-Silicon Verification Methodology section describes the approach to formally verify and simulate the Polling 
Compliance logic, including directed and random test simulations and property checking. The paper then presents Case 
Studies of specific pre-silicon issues uncovered and resolved, limited to simulated scenarios and formal debugging (with 
no real hardware measurements). The Results section summarizes the outcomes of the verification efforts, such as 
coverage achieved and bugs found. In the Discussion, the challenges encountered are examined (particularly as PCIe 
speeds and pattern complexity increased), how various strategies addressed them, and the implications for future PCIe 
designs. Finally, the Conclusion recaps the key findings and best practices for pre-silicon verification of PCIe Polling 
Compliance, and the References section provides source citations from specifications and related literature. 

2. Technical background 

2.1. PCIe LTSSM and the Polling Compliance State 

PCI Express links initialize through LTSSM states, including detection, polling, configuration, etc [1, 9]. Within the Polling 
state, devices step through multiple substates for link training. Polling.Active exchanges training sequences, 
Polling.Configuration to confirm link parameters and Polling Compliance to output special test patterns. Polling 
Compliance is a unique state intended solely for compliance testing—it is not used in normal device operation. Figure 
1 illustrates the relationship of these Polling substates within the LTSSM. 

 

Figure 1 Polling sub-states within the PCIe LTSSM. Polling Compliance is entered from Polling.Active under specific 
conditions and typically returns to Polling.Active (or exits the Polling process) after pattern transmission. 

Polling.Configuration is the normal progression when training succeeds, whereas Polling Compliance is a detour for 
compliance testing purposes 

2.2. Entry Conditions 

A device will transition into Polling Compliance under a few defined conditions. According to the PCIe specification, 
there are three primary triggers [1]: 
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• Software-forced Compliance: If the software sets the Enter Compliance bit in the Link Control 2 register 
before link training, the LTSSM will enter Polling Compliance instead of attempting the normal Polling.Active 
sequence [1, 10]. This allows forcing the device into compliance mode via configuration (often used in lab 
testing scenarios through firmware or driver control). 

• Interoperability Trigger (TS1 Handshake): During Polling.Active, if a device receives a Training Sequence 1 
(TS1) ordered set from its link partner with the Compliance_Receive_Request bit asserted, it interprets this as 
the partner requesting compliance mode [1, 4]. In practice, test equipment or a partner device in compliance 
mode will send TS1 with this bit=1. Upon detection, the receiving device’s LTSSM transitions to Polling 
Compliance to send compliance patterns. 

• Training Failure / Load Board Mode: If link training fails to complete within a specified timeout 
(Tpolling_timeout ≈ 24 ms in spec) and certain minimal criteria are not met, the LTSSM falls back into Polling 
Compliance [6]. Typically, this occurs when no viable link can be established – for example, if the device is 
connected to a passive load or if some lanes never exit electrical idle. In such cases, the device enters compliance 
mode, “assuming connection to a passive test load.” This mode is sometimes called load board mode, referring 
to the test fixtures used for compliance testing where the DUT (device under test) sees no active partner on 
some lanes 

Once in Polling Compliance, the device changes its behavior drastically from normal training. Instead of trying to 
negotiate link parameters, it begins transmitting a series of predefined bit patterns on its lanes, known collectively as 
compliance patterns. The purpose is to produce signaling that test instruments (oscilloscopes, BERTs, etc.) can measure 
to verify the transmitter’s electrical characteristics (eye diagram, jitter, voltage levels, etc.) against the PCIe specification 
limits. For example, the patterns are designed to create near-worst-case inter-symbol interference and stress signal 
integrity. These patterns include the Compliance Pattern (baseline pattern for voltage and timing tests), Modified 
Compliance Pattern (for interoperability testing with instruments), Jitter Pattern (specifically to test jitter 
performance), and starting with PCIe Gen6, a Toggle Pattern introduced to cover new test requirements [3]. Based on 
which mode of compliance testing is in use, a device may transmit either the “normal” compliance pattern (used with a 
compliance load board and oscilloscope) or a “modified” pattern (used for more advanced test setups involving BERTs 
and pattern generators). These two modes ensure coverage of different measurement techniques; the key difference 
lies in the sequence and content of symbols transmitted in each mode. 

While in Polling Compliance, the LTSSM does not attempt to complete link negotiation. Instead, it cycles through a 
sequence of transmitter configurations and patterns defined by the spec [1]. Eventually, the LTSSM will exit Polling 
Compliance – either returning to Polling.Active to retry normal link training (if the compliance sequence finishes or is 
aborted) or by a reset/unplug event. Notably, the spec mandates that Polling Compliance cannot be disabled by design 
and must always be accessible when conditions demand [1, 10]. Thus, designers must correctly implement this state 
and its transitions, even though it is used only in testing scenarios.  

From a design verification standpoint, Polling Compliance presents an interesting challenge: it’s a rarely used corner of 
the state machine that must function perfectly to meet compliance certification. Furthermore, its behavior varies 
significantly across PCIe generations due to changes in encoding and speed. Before delving into verification 
methodology, the generational differences are outlined in the next subsection, as understanding them is crucial to 
formulating verification requirements. 

2.3. Evolution from Gen1 to Gen7: State Logic, Encoding, and Patterns 

The PCIe standard has evolved through multiple generations (Gen1/2/3… up to the emerging Gen7), doubling 
bandwidth every iteration. With each speed increase came changes in the physical-layer encoding and the compliance 
patterns required. Table 1 summarizes key differences in Polling Compliance behavior across PCIe generations, 
including each generation's link data rate, encoding scheme, and notable compliance pattern features [1]. 
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Table 1 Comparison of Polling Compliance behavior across PCIe generations (Gen1–Gen7). NRZ = Non-Return-to-Zero 
(binary signaling), PAM4 = 4-level Pulse Amplitude Modulation. “Block-coded” refers to the use of fixed-size code blocks 
(e.g., 128b/130b) with scrambling versus “non-block” 8b/10b where special symbols (K-codes) frame the stream. 
Compliance patterns in Gen1/2 (non-block mode) contain repeated comma symbols (K28.5) and other 8b/10b special 
sequences, whereas Gen3+ patterns (block mode) include scrambled data blocks punctuated by EIEOS. Gen6+ patterns 
account for PAM4 modulation and include new toggle sequences 

Generation Max 
Data 
Rate 

Encoding Compliance Patterns (per spec) Notable Changes / Verification Focus 

Gen1 2.5 
GT/s 

8b/10b 
(NRZ) 

“Compliance Pattern” (20 symbol 
sequence with K28.5 commas). 
The modified pattern is also 
defined (inverted commas 
sequence). 

No presets or equalization. Verify the 
correct sequence of commas and IDLE. 
The receiver uses commas for lock – 
ensure repeated commas are handled. 

Gen2 5.0 
GT/s 

8b/10b 
(NRZ) 

Same 8b/10b patterns as Gen1 
(scaled to 5.0 GT/s). Modified 
pattern for CLB tests. 

Higher speed doubles jitter concerns, but 
logic is the same as Gen1. Ensure no 
unintended entry into compliance (since 
Gen2 introduced auto-compliance on 
timeout). 

Gen3 8.0 
GT/s 

128b/130b 
(NRZ) 

128b/130b Compliance Pattern 
(scrambled). Modified Compliance 
Pattern (different scrambling). 

Equalization presets were introduced to 
verify compliance with default preset 
usage. The device must handle 
Compliance TS1 handshake. Ensure the 
scrambler seed is per the pattern spec. 

Gen4 16.0 
GT/s 

128b/130b 
(NRZ) 

Same types as Gen3: compliance & 
modified patterns (possibly 
updated lengths). A Jitter 
Measurement Pattern was 
introduced (e.g., fixed-pattern to 
create periodic jitter). 

Precoding is not applicable (NRZ), but 
channel loss is higher – patterns target 
ISI. Verify jitter pattern generation. 
Formal checks on LTSSM timeouts (24 
ms) are still valid. 

Gen5 32.0 
GT/s 

128b/130b 
(NRZ) 

Compliance and modified patterns 
(extended PRBS sections). Jitter 
pattern. Possibly multiple preset 
sweeps in the modified mode. 

Precoding is optional at 32 GT/s – ensure 
if precoding is used in the link, it’s 
applied in compliance. Increased pattern 
length – simulation of the full pattern is 
important. More skew possible.. 

Gen6 64.0 
GT/s 

1b/1b 
PAM4 + FEC 

Compliance Pattern (PAM4) – four 
sections for SNDR (long runs of 
levels 1/2 and 0/3, plus PRBS). 
Modified Compliance Pattern – 
very long sequence with SKP and 
EIEOS blocks. Jitter Pattern – 52 UI 
repeating pattern. Toggle Patterns 
– High Swing (levels 0↔3) and 
Low Swing (1↔2). 

Major changes: PAM4/Gray coding – 
verify pattern encoding (Gray code 
applied correctly). FEC – ensure patterns 
bypass or use FEC as intended (FEC 
typically off during pattern, as patterns 
are un-framed by flits). New toggle 
patterns – verify generation and 
switching. Receiver lock on patterns 
without EIEOS – ensure the design can 
lock on repetitive patterns. 

Gen7 128.0 
GT/s 

1b/1b 
PAM4 + FEC 

Similar to Gen6 but adjusted for a 
higher rate. Slow High Swing 
Toggle Pattern added (0↔3 toggle 
at half-rate). Possibly longer PRBS 
sections or additional patterns for 
128 GT/s. 

Twice the baud of Gen6 – signal integrity 
even more challenging. Verify new slow 
toggle pattern generation. Ensure 
compliance patterns accommodate two 
FEC codewords worth of data for 
analysis (if applicable). Formal 
verification of any new state machine 
logic (the spec might refine timing 
requirements at this rate). 
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As Table 1 indicates, the LTSSM logic for Polling Compliance had to be extended with each new generation. In early 
generations, the compliance state outputs a fixed pattern (or a small number of patterns) at one or two de-emphasis 
levels. Starting in Gen3, introducing multiple transmitter presets (levels of transmitter equalization) meant the 
compliance state needed logic to iterate through a list of presets and possibly change the link’s data rate during the test. 
The PCIe Base Specification defines an ordered sequence for these settings; for example, at 8.0 GT/s (Gen3), presets 0 
through 10 are tested sequentially in each entry to compliance [5]. At 16.0 GT/s and above, the sequence becomes 
longer, including presets 0–10 and additional repeats of specific presets (such as preset 4 or 0) to facilitate certain 
measurements. By Gen7, a full cycle through all defined compliance settings involves 167 steps (entries), cycling 
through numerous data rates and preset combinations [1]. Ensuring the design correctly implements this sequence is 
non-trivial, given the possibility of multiple transitions in and out of Polling Compliance to cycle through the patterns. 

The encoding differences also impact compliance pattern behavior. In Gen1/2 (8b/10b encoding), the compliance 
pattern is a repetitive sequence of 10-bit symbols that produce a stress pattern (often containing the comma K-code for 
alignment). If such a pattern is truncated (for instance, by a retimer or by the early exit), it could cause the receiver to 
lose symbol lock due to the repetitive commas. In Gen3+, with 128b/130b block coding, the compliance pattern is 
structured with regular insertion of EIEOS (Electrical Idle Exit Ordered Sets), which break up the pattern and help the 
receiver maintain block alignment even if the sequence is interrupted [5]. Verifying that the transmitter inserts these 
ordered sets correctly per the spec is part of pre-silicon validation. With Gen6’s PAM4 (1b/1b) encoding, not only did 
the basic scrambling and alignment rules change (Gray coding and new training sequence formats), but the patterns 
themselves were modified. The spec added a Toggle Pattern in Gen6, which toggles through PAM4 voltage levels to test 
level transitions and distortion [8]. Additionally, the TS1/TS2 structure for compliance in flit mode was updated—
compliance request bits are now present in two different symbols of the TS1 to accommodate 256-bit flit alignment. All 
these nuances must be understood and modeled in verification environments to ensure the design under test behaves 
according to the correct generation’s rules [3, 5, 8]. 

 In summary, Polling Compliance is a moving target across PCIe generations, becoming more complex at higher speeds. 
The verification environment must be aware of the generation-specific requirements, e.g., checking that a Gen5 device 
under test (DUT) cycles through the correct preset sequence and inserts EIEOS or that a Gen6 DUT outputs the new 
toggle pattern with proper PAM4 encoding. Having outlined these differences, the discussion now turns to the 
methodologies used to verify Polling Compliance logic in a pre-silicon context. 

2.4. Pre-Silicon Verification Methodology 

Pre-silicon PCIe Polling Compliance state verification was approached using two complementary methodologies: formal 
verification and simulation. Both approaches ensured thorough coverage of the state’s complex behavior. In all cases, 
only digital logic verification was performed (no analog signal integrity simulation), but the patterns and timing defined 
by the spec were checked at the digital level. The approach explicitly avoided post-silicon measurement or hardware-
in-the-loop methods; instead, the verification is based on RTL (Register-Transfer Level) models of the PCIe 
controller/PHY state machine and testbench components. 

2.5. Formal Verification Approach 

Formal verification was employed to mathematically prove the properties of the LTSSM design related to Polling 
Compliance. A Verification IP(VIP) was used to model the environment and assert key behaviors [7]. The formal 
environment consisted of a simplified model of a link partner (VIP) and the necessary configuration registers: this model 
would non-deterministically (or in a constrained manner) provide inputs such as TS1 ordered sets and TS2 ordered 
sets and signal the presence/absence of a partner to drive the DUT's LTSSM into various scenarios [7].  

2.5.1. Key properties verified through formal methods included 

• Entry Conditions Satisfied: Protocol checks were written to ensure the DUT enters the Polling Compliance 
state if and only if one of the valid triggers occurs. For example, one protocol check checked that whenever the 
enter_compliance_state signal in the design is true (indicating Polling Compliance active), either (a) the 
compliance bit was set in the config register before Polling.Active, or (b) a TS1 with 
Compliance_Receive_Request was received, or (c) a 24 ms (simulated as a specific cycle count) timeout expired 
without full training progress. Cover properties were also used to ensure each of these distinct triggers could 
cause the transition (formal coverage, indicating no unreachable code for these triggers). This exhaustive check 
guarantees no unexpected condition can accidentally shunt the LTSSM into compliance (which could indicate a 
bug). 
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• State Transition Correctness: The LTSSM is a state machine; formal analysis is well-suited to check state 
transition graphs. Properties were derived from the specification's state diagram: "If in Polling Compliance and 
the compliance pattern sequence is complete or aborted. The state must transition to Polling.Active (or Detect 
on global reset) and not directly to any other state." Another property ensured that once in compliance, the 
DUT would remain there for at least the minimum duration required by spec (e.g., long enough to send the 
necessary patterns) unless reset. These were verified by proving that certain one-hot state encodings followed 
the required implications over clock cycles. 

• Data Rate and Preset Settings: For multi-generation designs, formal sequences were used to check that the 
internal controls for data rate and preset adjust according to the compliance sequence table. For instance, it 
was proven that on the first entry to Polling Compliance after reset, the Tx equalization setting is the first in the 
sequence (e.g., –3.5 dB at Gen1 speed, corresponding to Setting #1); on the next re-entry to Polling Compliance 
(if the LTSSM returns to Polling.Active and then enters compliance again), the setting advances to the next 
defined value (e.g., –6 dB or preset 0 of higher speed) [1]. The Table 4-60 sequence (referenced in technical 
background) was encoded as an expected sequence. Assertions verified that the design's observable outputs 
(such as the Tx preset, select signals, or physical link rate field) follow this sequence through successive 
compliance entries. The proof of this property gave high confidence that the compliance pattern generation 
logic adhered to spec for all generations, including correctly looping back to the start after reaching the end of 
the sequence. 

 

Figure 2 Table 4-60 Compliance Pattern Settings [1] 

• Pattern Content (Abstracted): Direct formal verification of the exact bit-level pattern on the serial output is 
difficult due to the complexity of scrambling and 130b/flit encoding. Instead, a mix of formal and directed 
checks was used. Formally, certain invariants in the pattern generation logic were checked. For example, an 
invariant that whenever in compliance at Gen3+, the scrambler's seed is reset to a known value and that the 
data transmitted corresponds to the defined compliance pattern blocks (which in the design were generated 
by a finite state machine). It was also formally verified that during compliance, the logical idle signal insertion 
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(for EIEOS) happened at the correct intervals – modeling this required some abstraction. Still, it was proven 
that the design's pattern FSM inserts the idle sequences as intended. For Gen1/2, the pattern is simpler 
(repeating 10-bit symbols), so specific symbol sequences could be directly asserted to occur in order (for 
instance, the known 8b/10b compliance pattern of alternating "K28.5, D10.2" symbols or similar was hard-
coded and checked). 

• No Deadlock/Livelock: Formal methods were also applied to ensure the LTSSM cannot get "stuck" in Polling 
Compliance indefinitely under normal conditions. According to the spec, Polling Compliance should either time 
out and return to training or require a higher-level intervention (like a reset) if used intentionally. It was proven 
that if the partner eventually sends TS1 indicating a willingness to train (or if the compliance bit is cleared), the 
DUT's LTSSM will exit Polling Compliance. This was important for confirming that the design would not 
erroneously remain in a compliance state when a real link partner appears – a situation that would prevent 
links from ever coming up (a scenario was modeled where after some time in compliance, a TS1 without 
compliance request arrives, and verification ensured the DUT transitioned out). 

The formal verification was performed for each supported generation configuration of the design (Gen1/Gen2 8b10b 
mode, Gen3–5 block mode, Gen6/7 flit mode). This exhaustive approach uncovered a few corner-case bugs. For 
example, in one case, the Verification IP found a scenario where the compliance sequence counter would overflow 
improperly if the device entered compliance more than 167 times without a reset (which is an extreme scenario but 
possible if a test kept toggling compliance on and off). The design was corrected to handle the full 167-step sequence 
for Gen7 without overflow. Another bug found was that the Compliance_Receive_Request bit in TS1 was not being 
latched correctly at Gen6 speeds due to the changed TS1 format (the design initially only checked the old location of 
that bit, not the new duplicated location in symbol 14). The Verification IP caught this by a cover test that attempted to 
drive the compliance-request handshake at Gen6 and failed to trigger the state transition – indicating a missing 
condition in RTL, which was then fixed.  

Overall, formal verification provided a high degree of confidence in the correctness of the Polling Compliance 
implementation. However, it works on an abstract model of the environment. Directed and random simulations were 
also used to complement this for a more concrete and waveform-level view of the behavior, as described next. 

2.6. Simulation-Based Verification Approach 

Using PCI Express Verification IP to verify Polling Compliance in a realistic pre-silicon scenario [7]. The testbench 
instantiated the PCIe controller/PHY RTL as the Device Under Test (DUT) and included a configurable Link Partner 
Model (VIP). This partner could act as a normal PCIe link partner (transmitting and responding to training sequences) 
or mimic test equipment behaviors for compliance testing.  

2.6.1. Several specific simulation tests were created to exercise Polling Compliance 

• Directed Compliance Entry Tests: These tests explicitly force each entry condition and observe the DUT's 
response. In one test, before link training, the testbench sets the DUT's Link Control 2 "Enter Compliance" bit 
and then initiates a link reset. The expected behavior is that the DUT goes straight to Polling.Active and then 
immediately to Polling Compliance (bypassing Polling.Configuration) begins transmitting the compliance 
pattern at the specified speed. The simulation monitors the LTSSM state signals and logs the transition timeline, 
which is checked against the expected sequence. Another test drives the partner to send TS1 with the 
compliance-request bit set. Here, the DUT is unaware and enters Polling.Active, see the partner's TS1 (emulated 
by the model), and should transition to compliance [1, 4]. Verification confirms that it does so within a few 
LTSSM cycles of receiving the handshake. A third test uses the "training failure" method: the partner model 
simulates a condition of a receiver present but never sending proper TS1 (or sending malformed training 
sequences). The DUT will keep transmitting TS1 but never receive the 8 consecutive valid TS1/TS2 required 
for Polling.Configuration. After 24 ms of simulated time, the DUT should give up and enter Polling Compliance. 
A timed simulation (24 ms at PCIe Gen speed equates to a certain number of clock cycles in the model) ensures 
the timeout logic is correct [4]. In the waveform, verification checks that the compliance state is entered at the 
expected time and wouldn't be entered earlier if the conditions were not met (e.g., a slightly shorter timeout in 
a negative test confirms it stays in Polling.Active). 

• Pattern Generation and Checking: To verify the correctness of the compliance patterns output by the DUT, a 
checker was implemented that compares the DUT's transmitted symbols to a reference model of the compliance 
pattern. This was straightforward for 8b/10b (Gen1/2): the reference pattern was known (documented in the 
PCIe spec and readily reproducible) – e.g., a repeating sequence of specific control and data symbols. The 
checker would align with the first comma (K-code) and then check each subsequent 10-bit code group [1, 5]. 
For 128b/130b (Gen3–5), the reference model generated the compliance pattern by simulating the scrambler 
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and data pattern per spec (including periodic insertion of EIEOS) [5]. The checker buffered incoming 130b 
blocks from the DUT and compared against the expected bit sequence. One challenge was alignment: the 
compliance pattern can start at an arbitrary point, so a mechanism was required to find the alignment (looking 
for known sub-sequences like the EIEOS or comma alignment bits) and then lock the comparison. For Gen6 (64 
GT/s PAM4), the reference model was extended to handle flit mode: the Gray-coded symbol generation was 
modeled and included the new toggle pattern [2]. Because PAM4 yields symbols representing 2 bits, the DUT's 
output was captured in multi-bit symbols. Verification confirmed that within each repeating cycle of the 
pattern, all voltage level transitions occurred as expected (e.g., the toggle pattern should switch levels on every 
symbol – the scoreboard checked that mapping). The simulation also verified that the compliance patterns 
differed between "normal mode" and "modified mode," if applicable. In practice, one scenario was run with the 
partner model simulating a compliance baseboard (expecting a normal pattern) and another simulating a BERT 
(where the DUT should detect some condition to output the modified pattern – or the DUT was configured 
accordingly). The differences were subtle (mostly in scrambling on/off or sequence length), but the scoreboard 
was configured to validate the appropriate one for each test. 

• Multiple Re-entries and Full Sequence Coverage: A directed test was written to force the DUT through the 
entire sequence of compliance presets for a given generation. For example, for Gen3, the test would cause the 
DUT to enter compliance and exit back to Polling.Active, and then repeatedly enter. Each time, the DUT should 
advance to the next preset setting. To do this in simulation, compliance must be exited after each compliance 
entry. After a certain time, this was accomplished by having the partner model send a TS1 with no compliance 
request (signaling the DUT that a real partner is now present). The DUT, per spec, should leave compliance and 
attempt training. Another condition is immediately simulated (like toggling the compliance bit again or making 
the partner request compliance again) to drive a second entry. This is repeated enough times to cycle through 
all presets. While somewhat artificial, this test ensured the design could go through the entire preset list 
(especially important for Gen6/7, where the list is very long). Internal variables (like the preset index) were 
monitored via design instrumentation or by decoding the pattern to see which preset was in use (some presets 
have known signal characteristics, or the DUT could report the preset in a trace log). The simulation confirmed, 
for instance, that after 11 entries, the Gen3 DUT wrapped from preset 10 back to preset 0 as expected or that 
the Gen6 DUT, after completing all 84 settings, returned to the start of the sequence. 

Throughout these simulations, coverage metrics were collected. The verification achieved near-100% coverage on the 
Polling Compliance state machine transitions and high coverage on relevant configuration combinations (presets, 
compliance modes, multiple generations). Using a Protocol Checker for pattern verification was vital – it caught a few 
mismatches early on. For instance, initially, the DUT had an off-by-one error in the EIEOS insertion interval at Gen4, 
which the checker flagged when the observed pattern diverged from expected after a large number of symbols. Likewise, 
the checker found that the Gen6 toggle pattern was not correctly implemented initially; the design drove a regular 
compliance pattern twice instead of the special toggle sequence, which was then corrected. 

Table 2 PCIe Compliance Verification Complexity Across Generations 

Test Type Gen1/2 (8b/10b) Gen3-5 (128b/130b) Gen6/7 (PAM4) 

Configuration-forced Entry Yes Yes Yes 

TS1 Handshake Entry Yes Yes Yes 

Timeout-based Entry Yes Yes Yes 

Pattern Verification 
Complexity 

Low (Fixed 
symbols) 

Medium (Scrambling + 
EIEOS) 

High (Gray coding + Toggle 
patterns) 

Number of Presets to Test 1-2 11 (Gen3) 84 (Gen6), 167 (Gen7) 

Pattern Types 2 2-3 5-6 

Alignment Challenge K-code based EIEOS based Flit-based 

Symbol Representation 10-bit codes 130b blocks PAM4 multi-bit symbols 

2.7. Case studies 

This section presents two representative pre-silicon verification scenarios ("case studies") that underscore the 
importance of focusing on Polling Compliance logic early in the design cycle. Each case study describes a problem 
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encountered, how it was debugged using the verification methodology, and the resolution applied to the design. All 
scenarios are based on simulation or formal results; by focusing on pre-silicon analysis, no real hardware debugging is 
included. 

2.7.1. Case Study 1: Formal Detection of a Compliance Handshake Bug (Gen3) 

• Context: In a multi-generation PCIe controller design, support for the Compliance_Receive_Request handshake 
(trigger via TS1) was added per the spec. For Gen1/Gen2 (8b/10b), the compliance request bit is one of the 
training sequence bits in the TS1 ordered set (specifically, in the lane/link number field set to PAD and a 
particular training control code). In Gen3 (128b/130b), this bit is similarly positioned within the TS1 block. 
The design’s LTSSM state machine had a condition to detect this bit and enter Polling Compliance [5]. 

• Issue: Formal verification produced a counter example showing that when the link partner asserts the 
compliance request bit, the LTSSM transitions from Detect to Polling exactly at the moment.Active, the DUT 
missed the transition to Polling Compliance and instead proceeded to Polling.Configuration (as if no compliance 
was requested). This was a subtle bug – essentially a one-cycle timing issue where the FSM didn’t sample the 
request because it wasn’t expecting the signal so early. 

• Debugging: Using the formal counterexample trace, it was identified that the design only looked for the 
compliance request after sending at least one TS1. However, if the partner was a test device that immediately 
on Detect started sending compliance-request TS1s, the DUT should honor it on the first exchange. The formal 
trace showed the partner's TS1 arriving, but the design's internal flag was not yet enabled, so the request was 
ignored. Cross-checking the PCIe specification revealed no requirement to delay compliance entry—indeed, it 
should be immediate if signaled upon entering Polling.Active [1, 9]. Thus, the design was wrong. 

• Resolution: The fix was to adjust the LTSSM logic to detect a compliance request TS1, even on the first cycle of 
Polling.Active. A combinational check was added so that if the first TS1 received has the compliance bit, the 
state machine can transition directly to Polling Compliance without waiting to transmit its own TS1s. After the 
fix, the formal property was re-proven successfully (no more counterexamples), and a directed simulation 
where the partner starts in the compliance-request mode showed the DUT correctly entering Polling 
Compliance on the first exchange. 

• Impact: If left undetected, this bug would have meant that certain compliance test equipment (which may 
immediately request compliance) would not work properly with the DUT in silicon—the DUT would try to train 
normally, potentially causing the tester to flag an error. This costly iterative debugging after chip fabrication 
was avoided by catching the issue in formal verification. 

2.7.2. Case Study 2: Simulation of Extended Compliance Pattern Sequence (Gen6) 

• Context: PCIe Gen6’s compliance pattern sequence is significantly longer than prior generations (covering 64 
GT/s presets, including the new PAM4 presets, plus the toggle and jitter patterns) [8]. The design under test 
implemented this via a micro-sequencer that goes through entries #55 to #84 (as per Table 1 and spec) for 64.0 
GT/s. However, because Gen6 was new, there was uncertainty about whether the sequence was implemented 
exactly as the evolving spec required, and the sequences were lengthy, making manual inspection impractical. 

• Issue: A full sequence traversal test for Gen6 (as described in the methodology) was attempted in the 
simulation. The checker reported mismatches when the DUT reached setting #66 in the sequence. Up to set 
#65 (corresponding to presets 0–10 at 64 GT/s), everything matched the expected pattern for each preset. At 
setting #66, which in the spec is defined as "Transmitter Preset 0000b at 64.0 GT/s, repeated," the checker 
expected the pattern corresponding to preset 0 (which is a particular de-emphasis level) but saw something 
different. 

• Debugging: By inspecting waveforms and internal signals, it was discovered that the DUT's micro-sequencer 
mistakenly loaded preset #10 (1010b) for settings #66–#84 instead of preset #0 (0000b) [8]. Essentially, it 
restarted the preset loop incorrectly at the end of the list. This was a logic bug: the spec requires preset 0 for 
the extended segment of the sequence, not preset 10. The error likely came from a misunderstanding or a mis-
implementation of the table – perhaps an off-by-one in the coding of the sequence table [1]. The simulation was 
instrumental here: the pattern difference was small (slightly different de-emphasis), which would not cause a 
functional failure of the state machine, but it would mean the transmitter is using the wrong setting for 
compliance (a specification non-compliance that might cause the device to fail official compliance testing on 
that point). The checker logic flagged the difference and pointed us to the exact sequence step where it occurred. 

• Resolution: The LUT (Look-Up Table) or logic in the design that selected presets for compliance patterns 
beyond #65 was corrected, ensuring that #66–#84 were mapped to preset 0 as intended. The simulation and 
the checker were rerun, and there were no mismatches throughout the sequence. Additional tests at Gen7 
configuration were also run to ensure that the sequence from #85 onward similarly followed the spec (in Gen7, 
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preset 0 should be used from #96 up to #167, which was also confirmed) [1]. This fix guaranteed that the DUT's 
output would match the official compliance patterns required by PCI-SIG for Gen6 and Gen7. 

• Impact: This case study demonstrates how a simulation-based approach with a reference model can catch 
subtle compliance pattern issues that might be missed by purely checking state transitions. If this issue had not 
been caught pre-silicon, the device may have entered compliance in the lab and transmitted a pattern that test 
equipment would recognize as incorrect (potentially leading to the failure of a compliance test, despite the link 
training logic otherwise working) [3]. By finding it in simulation, the design's behavior was aligned to the spec 
early, saving time in the compliance certification phase. 

 

Figure 3 Waveform snippet of Ltssm state transition for different setting numbers 

3. Results 

The pre-silicon verification campaign for the PCIe Polling Compliance state yielded several important results: 

• Design Correctness Across Generations: By the end of verification, the DUT successfully met all the specified 
behaviors for Polling Compliance from Gen1 through Gen7. All known bugs uncovered by formal proofs or 
simulations were fixed. Proof convergence was achieved on over 20 key formal properties (covering state 
transitions and config sequencing), and simulation regressions of 50+ directed tests across various 
configurations passed with 100% success [7]. This indicates a high confidence that the Polling Compliance state 
logic will function correctly in silicon for all supported link rates. 

• Coverage Metrics: Functional coverage was used to measure how thoroughly the compliance-related features 
were exercised. Coverage points were defined such as "Compliance entered via config bit," "Compliance entered 
via TS1 handshake," "All presets tested at least once," "Normal vs modified pattern both issued," etc. The final 
coverage report showed ~98% coverage on average for compliance features, with any uncovered points 
explained by infeasible scenarios (for example, Gen1 does not support multiple presets, so a coverage point for 
cycling presets is not applicable in that mode). This high coverage demonstrates that the tests covered nearly 
all practical combinations of events in Polling Compliance. 

• Case Study Outcomes: The issues described in the case studies were resolved long before tape-out. In 
summary, formal verification caught two logic flaws (one illustrated in Case 1, another being deadlock 
prevention in an internal counter), and simulation caught two pattern generation mistakes (illustrated by Case 
2 and a minor one with EIEOS interval) [2, 7]. All these were corrected, and regression reruns confirmed their 
resolution. No new issues surfaced in Polling Compliance logic after these fixes in subsequent simulation passes 
or during later full-system integration tests. 

• Performance Considerations: One incidental result was ensuring that entering/exiting Polling Compliance 
did not cause timing or performance issues in the design. Because Polling Compliance can potentially run for 
24ms; the design's counters (timers, sequence counters) were checked to be sized properly (which was 
formally done by detecting any overflow) [1, 4]. Extended durations were also simulated to ensure no 
simulation time overflow or unexpected behavior (some simulators might have issues with extremely long 
timeout counters, but optimization was achieved by scaling time in simulation as needed). 

• No Post-Silicon Surprises (anticipated): Perhaps the most important result is a qualitative one: by 
addressing Polling Compliance thoroughly in pre-silicon and a smooth experience in post-silicon bring-up 
regarding this state was expected [3, 6]. Indeed, when the design was later fabricated and tested (though details 
are beyond scope), no issues were encountered in compliance mode – a testament to the effectiveness of the 
pre-silicon verification. While this paper does not cover those post-silicon results, the pre-silicon outcomes 
gave the design and verification teams confidence going into silicon validation. 

The overall verification effort on Polling Compliance took a modest portion of the entire PCIe verification timeline (since 
many other features, like configurability, link width, power management, etc., also needed attention). However, 
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dedicating this effort paid off by preventing late-stage problems. The results show that even features not used in normal 
operation (compliance mode) deserve rigorous verification if required for standards compliance. 

All findings were documented and reviewed, and the verification collateral (properties, test cases, and checkers) can be 
reused for future projects or IP revisions (for instance, if a PCIe Gen8 emerges, the environment could be extended 
accordingly). The next section discusses some insights and lessons learned during this process and the challenges that 
arose, especially with the higher-gen complexities.   

4. Conclusion 

The Polling Compliance state verification for PCIe implementations exemplifies the critical importance of rigorous pre-
silicon validation techniques for seldom-exercised yet essential protocol features. The evolution from Gen1 through 
Gen7 demonstrates a clear progression in verification complexity, with each generation introducing additional 
challenges through new encoding schemes, increasingly complex pattern requirements, and expanded preset 
sequences. Formal verification is valuable for exhaustively checking state transition logic and entry conditions, while 
simulation-based approaches excel at pattern validation across multiple presets and configurations. The 
complementary nature of these techniques creates a comprehensive validation approach that catches issues ranging 
from subtle handshake timing errors to pattern generation mistakes before physical implementation. The verification 
outcomes demonstrate that even rarely-used protocol states demand thorough attention, as compliance failures could 
significantly impact certification and interoperability. Early detection of incorrect preset sequencing and non-compliant 
pattern generation prevents costly post-silicon debugging cycles. The disciplined verification strategy implemented 
across multiple PCIe generations establishes a foundation for handling future protocol enhancements. This focused 
attention on verification fundamentals ensures next-generation designs maintain backward compatibility while 
supporting new capabilities. The verification principles demonstrated for Polling Compliance extends beyond this state 
and represents best practices applicable to broader interface protocol verification, ultimately leading to more reliable 
and interoperable designs that meet the requirements from day one. 

References 

[1] PCI-SIG, “PCI Express Base Specification, Revision 7.0, Version 0.7 (Draft) – Section 4.2.7.2.2: Polling Compliance,” 
pp. 534–536. Available: https://pcisig.com/blog/pcie-70-specification-version-09-final-draft-now-available-
member-review 

[2] Sabnam S., “Unraveling the PCIe 6.0 Compliance Feature,” Cadence Community Blogs, Sept. 2023. Available: 
https://community.cadence.com/cadence_blogs_8/b/fv/posts/unraveling-pcie-6-0-compliance-
feature#:~:text=In%20PCI%20Express%20(PCIe)%20devices,compliance%20state 

[3] Kunal Chhabriya, “Verifying Compliance During PCIe Re-Timer Testing Poses Challenges,” SemiEngineering, Nov. 
2023. Available: https://semiengineering.com/verifying-compliance-during-pcie-re-timer-testing-poses-
challenges/ 

[4] Ajazul Haque, “PCIe Physical Layer Part – 2: Link Training and Status State Machine (LTSSM),” LinkedIn Articles, 
Mar. 2025. Available: https://www.linkedin.com/pulse/pcie-physical-layer-part-2-link-training-status-state-
ajazul-haque-afywf 

[5] PCI-SIG, “PCI Express Base Specification, Revision 3.0.” Available: 
https://picture.iczhiku.com/resource/eetop/wHiSRjtztkeJLnVc.pdf 

[6] Intel Corporation, “Why does PCIe LTSSM enter Polling Compliance (0x3) instead of L0 (0xF) state?” Intel 
Knowledge Base, 2012. Available: 
https://www.intel.com/content/www/us/en/support/articles/000005520/graphics.html 

[7] Synopsys, Verification IP for PCI Express. Available: https://www.synopsys.com/verification/verification-
ip/pcie.html 

[8] PCI-SIG, “PCI Express Base Specification, Revision 6.0.” Available: https://pcisig.com/pci-express-6.0-
specification 

[9] Shane Colton, “PCIe Deep Dive, Part 4: LTSSM.” Available: https://scolton.blogspot.com/2024/01/pcie-deep-
dive-part-4-ltssm.html 

[10] AMD Xilinx, “PCIe Compliance Test Mode,” Adaptive Computing Knowledgebase, 2021. Available: 
https://adaptivesupport.amd.com/s/question/0D52E00006hpJQ6SAM/pcie-compliance-test-
mode?language=en_US  

https://scolton.blogspot.com/2024/01/pcie-deep-dive-part-4-ltssm.html
https://scolton.blogspot.com/2024/01/pcie-deep-dive-part-4-ltssm.html

