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ABSTRACT Sleep apnea (SA) is one of the most prevalent sleep-related problems, impacting more than
100 million people worldwide. A full-night Polysomnography (PSG) is an effective SA diagnosis strategy.
However, it requires multiple wearable devices and the patient staying overnight to collect the findings,
rendering it both a time-consuming and costly option. Research attempts to develop non-invasive, sensor-
based, or automated solutions for diagnosing SA are also made in recent years. In this study, we analyzed
a total of 85 papers, shortlisted from an initial collection of 954 articles published in reputable scientific
repositories, e.g., IEEE Xplore, PubMed Central (PMC), Springer, Elsevier etc., where each chosen study
was thoroughly examined to determine its contribution and performance. A detailed analysis of data
preprocessing, feature extraction and classification algorithm is also addressed. It is found that most of
the studies are based on signal analysis for identifying sleep apnea, which yields results with substantial
reliability, while contemporary research emphases have been on heart rate variability and pulse oximetry
outcomes.

INDEX TERMS Sleep apnea, electrocardiogram (ECG), deep learning, machine learning, pulse oximetry,
cloud computing, Internet of Things (IoT), smartphone, wearable devices.

I. INTRODUCTION
Sleep apnea (SA) is a ubiquitous illness that can develop with
or without symptoms and has significant cardiovascular and
neurological consequences. SA is more common in men [1],
[2] and is seen to grow in prevalence up to age 55 before
levelling off. Moreover, SA is milder in the elderly compared
to the young [3]. Despite significant progress in elucidating
the pathophysiology and clinical effects of the condition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

the vast majority of persons who suffer from it remain
untreated [4]. Diagnoses are challenging because the early
indicators of SA are not detected by the patient himself but
rather by others since symptoms may include snoring, daily
sleepiness, night sweats, dry mouth, disturbances in mood,
or cognitive impairments [5]. In fact, daytime sleepiness
has been closely associated with a variety of contradictory
outcomes, including low academic performance, relationship
or marital issues, job loss, and auto accidents. Indeed,
drowsiness during the day is strongly associated with several
unfavourable outcomes [6]. Numerous health issues might
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FIGURE 1. The number of studies, articles, and journals on Sleep Apnea
published per year is increasing continuously. The data for 2023 have only
been collected through June. Therefore there will be more publications by
the end of the year.

develop if SA is left untreated. It is seen that when total
sleep time is less than five hours, there remains an 80%
risk of having Hypertension (HTN) [7], [8]. Some potential
risk factors for stroke are linked to SA as reported by
[9] and [10]. It is thought that SA may also contribute to
the cause and disperse of cardiac failure [11], [12], [13].
SA also had a twice higher risk of Flavored Disorder (FD)
following propensity score screening [14]. In a nutshell,
SA is associated with a greater probability of cardiovascular
problems, both fatal and non-fatal, and may raise the chance
of sudden cardiac death [4], [15]. It can be loosely classified
into three categories:

• Central Sleep Apnea (CSA), which happens due to an
absence of central nervous system input after a stroke,
or in people with neuro-muscular illnesses, heart failure,
lung problems and others.

• Obstructive Sleep Apnea (OSA) happens due to the
upper airway collapse, which occurs when soft tissues in
the back of the throat compress while sleeping, followed
by hypopnea.

• Hypopneas can be described as partial obstruction or
narrowing of the upper airway during sleep, leading to
reduced airflow, whereas OSA denotes the cessation of
breathing entirely for over 10 seconds.

Additionally, another classification of sleep apnea exists,
known as Mixed Sleep Apnea (MSA). Mixed apneas (MA)
are identified by the initial absence of both respiratory effort
and airflow, succeeded by respiratory effort unaccompanied
by airflow. The pathophysiological basis is rooted in con-
current instability in ventilatory control and collapsibility
of the upper airway. There is a metric used to quantify the
severity of sleep apnea known as the Apnea-Hypopnea Index
(AHI). AHI represents the average number of sleep apnea and
hypopnea events per hour. AHI categorizes sleep disturbances
as follows: 1. Healthy group: AHI < 5 events/h 2. Apneic
group: AHI > 5 events/h. As per the American Academy
of Sleep Medicine (AASM), it is classified into mild (5-15
events per hour), moderate (15-30 events per hour), and
severe (more than 30 events per hour) [16].
The AASM hypopnea criteria mandate either a 30%

decrease in airflow paired with a 4% oxygen desaturation or a

50% reduction in airflow alongside a 3% oxygen desaturation
or arousal. However, the previous standard for scoring
hypopneas, which required a ≥4% oxygen desaturation from
the pre-event baseline, has been updated to an optional
criterion in the AASM Manual Scoring 3.0.

Not surprisingly, 75% of cases of disrupted sleeping go
undiagnosed. Between 2% and 5% of females and between
3% and 7% of males are reported to have SA, indicating that
the occurrence of SA is twice as common in males compared
to females [17]. Even though 20% of children snore, only 1%
to 8% of kids between the ages of 2 and 8 suffer obstructive
sleep apnea, which affects about 26% of adults aged 30 to 70
[18]. The studies on this topic are increasing daily, which can
be seen in Fig. 1.

Polysomnography (PSG) is a frequent approach to detect
SA, which involves measuring about sixteen signals, includ-
ing Electrocardiogram (ECG), blood oxygen saturation
(SpO2), Electroencephalogram (EEG), Electroocoulogram
(EOG), chest-abdominal breathing movements, Electromyo-
graphy (EMG), and so on. At the same time, the patient
is monitored in the clinic for the entire night [19], [20].
OSA is diagnosed when a patient reports the symptoms and
the incidence of no fewer than five obstructed respiratory
episodes during an hour of sleep as recorded by PSG. Patients
must wear many cables and electrodes, and a specialist must
monitor them for manual scoring [21]. In uncomplicated
individuals with signs and symptoms of OSA, Home Sleep
Apnea Tests (HSAT) can be used instead of PSG to diagnose
OSA [22]. Since numerous facilities are needed and the
patient must be monitored overnight in the hospital for an
OSA diagnosis using PSG or HSAT, the cost is higher, and the
diagnostic scope is significantly reduced globally. Because of
this, implementing this public health policy is challenging.
Another non-invasive and easy-to-use method for diagnosing
SA is Pulse-oximetry (SpO2). Desaturation (i.e., a drop in
oxygen saturation level) and subsequent reoxygenation (O2)
are hallmarks of apnea and hypopnea [23], which makes it
widely used for screening SA.Snoring is one of the earliest
indicators of SA, specifically OSA, and since snoring sounds
differently in healthy and suspicious individuals, analyzing
the frequencies of snoring can distinguish patients based on
the severity of Obstructive Sleep Apnea Syndrome (OSAS),
which is another promising way for diagnosing SA in
general [24]. The lack or diminution of sound during apnea
or hypopnea is easily detectable in audio recordings [25].
Smartphones have been increasingly ubiquitous over the
past few years. Several initiatives have been to employ
smartphone apps to keep track of health and sleep disruptions,
but most of them just serve as a monitoring and alerting
system.

Sleep apnea presents differently in each age group, with
adults and children having different needs. It is largely
caused by obesity, aging, and anatomical predispositions
in adults. It frequently manifests as symptoms like loud
snoring and exhaustion during the day, and if ignored,
it increases the risk of cardiovascular problems. On the other
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hand, larger tonsils and adenoids can contribute to upper
airway obstruction during sleep, leading to symptoms such
as sleep fragmentation. This sleep fragmentation can result
in non-restorative sleep, which may cause excessive daytime
sleepiness and cognitive impairment in younger populations.

Recently, significant advancements have been made
in devising learning-based (ML) approaches, which are
based on feature engineering and the use of signals like
ECG, Airflow (AF), SpO2, Heart Rate Variability (HRV),
or respiratory signals. These include modelling algorithms
like neural networks (NN), decision trees (DT), ensemble
learning, regression, and so on [26] and [27]. As a result of
the constraints in feature engineering, deep learning models
(DL) are currently being given a greater emphasis, and
approaches that are primarily CNN-based (Convolutional
Neural Networks) are being deployed extensively [28],
[29]. Most publications combine classifiers to create hybrid
models to obtain high accuracy. Recent studies have shown
that SA, a type of sleeping condition, is a serious issue as
the amount of research is increasing day by day. A careful
examination of current research reveals that most of them
heavily rely on ECG signal analysis, SpO2 and respiratory
data.ManyMLorDLmodels have been proposedwith public
or custom-made private datasets, and the results have been
substantially promising.

This review conducts an analysis based on the SA detection
techniques researchers have employed using various data
sources. Some research uses signal-based analysis, others use
wearable devices to collect data, and some use smartphone
technology to find SA. This evaluation also includes a
performance analysis that identifies the best approaches for
detection. This article also gives a list of commonly used
datasets and a description of each one. The descriptions
include information about the population or other factors
considered when collecting participant data.

II. METHODOLOGY
This article analyzes SA detection-related research works
published between 2017 and 2023. This paper’s protocols
and searching criteria follow PRISMA guidelines [30].
Several publications, journals, and conference proceedings
from publishers, including IEEE, Springer and Elsevier. are
included in the study. The search was conducted using the
terms ‘‘apnea detection and ML,’’ ‘‘apnea and DL,’’ ‘‘sleep
apnea detection,’’ ‘‘ECG-based Sleep apnea detection,’’
‘‘ECG and SA,’’ ‘‘respiration analysis and SA,’’ ‘‘smartphone
application and SA,’’ and ‘‘pulse oximetry and SA’’. The
search terms adopted a streamlined approach to focus on the
core concepts of deep learning (DL) and machine learning
(ML). The acronyms ‘‘DL’’ and ‘‘ML’’ were utilized instead
of their full forms, given their extensive familiarity within the
research community. This ensured relevance and precision in
the search results, allowing for a comprehensive overview
of the current state-of-the-art in deep and shallow learning
models. This approach aimed to capture relevant studies
across various facets of sleep apnea detection. The focus of

FIGURE 2. Distribution of reviewed articles included in this study
according to their publication year (from 2017 till 2023).

FIGURE 3. Effective article search strategy using PRISMA technique:
inclusion and exclusion criteria.

this study could be articulated as any alternative methods for
detecting SA to the conventional PSG technique, including
hardware and software analysis. Fig. 2. depicts the division of
the reviewed papers or articles according to their publication
year.

The presentation of different algorithms that had not
only been validated by one inquiry (minimum) but also
concentrated on the performance of SA identification with
data retrieved from polysomnography done in hospitals or
readily accessible in databases was the inclusion requirement
of the articles for this review. 954 articles were found after
searching literature databases, as shown in Fig. 3. Due to
linguistic variations in papers, review papers, or conference
papers, duplicates were eliminated, resulting in the deletion
of around 650 articles. The next phase of exclusion involved
looking at the remaining 215 papers, which were not
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directly connected to sleep apnea and interventional studies.
Consequently, they were omitted since they did not align
with our purpose. 120 publications were identified as being
eligible for evaluation after a study of abstracts and their
full-text accessibility. However, 40 works were excluded that
could potentially be adapted for detecting sleep apnea but
were not initially intended for that purpose. These papers
lacked rigorous testing or validation specifically for sleep
apnea detection, so they were excluded to ensure the integrity
and relevance of our findings. Moreover, three papers were
included to address the necessity of mentioning respiratory
signals, alongside the incorporation of two recent papers.
Finally, 85 papers were chosen for this study, while recent
publications were added to focus on cutting-edge research
techniques.

Depending on the source data and the signals, technolo-
gies, or gadgets utilized, the studied articles are categorized
into different groups, such as ECG, SpO2, EEG, respiration,
and mixed techniques. Here the classifiers used for screening
SA in different papers were also observed. Section III
explains the general framework for identifying SA, including
dataset management, data preparation techniques, obtain-
ing and selecting features, and classification algorithms.
Section IV includes an extensive review of the approaches
used in the 85 publications that were selected.

III. GENERAL FRAMEWORK FOR SLEEP APNEA
DETECTION
The overall architecture for SA detection is covered in this
section alongside dataset management, feature extraction, the
method used to choose them, and classification techniques.
The analysis steps are depicted in Fig. 4 based on the studied
articles.

Out of the 85 studies that were selected, 72.5% of
articles used open-access public datasets, and the remaining
27.5% used private datasets obtained from various sources,
including hospitals or simulation-based data generated using
their system. Physionet’s Apnea ECG (PAE), University
College Dublin (UCD), ECG-ID, Sleep EDF, and other
datasets were applied in 72.5% of the papers that used public
datasets. Features were incorporated in different domains,
such as time, frequency, and nonlinearity. Temporal features
were further categorised into short-term, long-term, and
statistical features. Many papers use only one feature, but
both features are occasionally used. Some authors didn’t fully
specify or use simplistic calculations. Lastly, 47.5% of the
authors used DL methods, 37.5% used ML methods, and the
remaining 15% of them used other methods as their classifier.
Among 47.5% DL methods, CNN, ANN, LSTM, and MLP
were mostly used. And for 37.5% ML methods, SVM, RF,
KNN, DT, and Regression were used. The study of these
percentages is roughly shown in Fig. 5 using a pie chart.

A. DATASET MANAGEMENT
The descriptions of the most prominent datasets for detecting
apnea are presented in this section. Table 1 compiles data

acquisition sources alongside key attributes such as age
range, number of recordings, utilized signals or sensors,
detectable categories of sleep apnea, and the assessment
method employed.

Table 1 has been carefully revised to encompass a
comprehensive array of datasets that may potentially be
incorporated into the studies reviewed thus far. The inclusion
criteria for papers listed in this table are those featuring
unique databases intended to showcase the breadth of
available datasets for researchers interested in sleep apnea
detection. By highlighting a diverse range of databases,
this table serves to inform researchers about the variety of
resources at their disposal for conducting studies in this field.

Here, it is observed that among all the public datasets, PAE
database [31], [32], [33], [34], [35] and UCD database [36],
[37], [38], [39], [40] are the two most well-known public
datasets. In addition to this, the Sleep Heart Health Study
(SHHS) obtained from National Sleep Research Resource
(NSSR) [41], [42] and Childhood Adenotonsillectomy Trial
(CHAT) database [43], [44] are also extensively used. Other
datasets were gathered from several hospitals [45], [46] or
created by the researcher using the sensors utilized in the
developed system [47], [48], [49], [50], [51]. Moreover, the
ratio of types of databases implemented is widely represented
in Fig. 5. Also, the datasets used for identifying sleep apnea
(SA) in children and adults are distinct. While most datasets
diagnose SA in adults aged from 18 to 80, with a median
age of around 50, the CHAT and UofC databases focus
specifically on detecting SA in children aged from 0 to 18.
However, the NSSR database encompasses both adults and
children aged from 1 to 81. Overall, most databases are
tailored for adults, reflecting the greater relevance of SA
in this demographic This section includes a few available
dataset sources for SA detection. Nevertheless, the databases
most commonly discussed are elaborated upon in detail
below.

1) MIT-BIH POLYSOMNOGRAPHIC DATABASE (MBP
DATABASE)
The MBP Database [52], [53] is a group of recordings
made while people slept of various physiological signs.
The database contains over 80 hours of polysomnographic
recordings, consisting of four, six, and seven channels.
Every recording contains a beat-by-beat analyzed ECG
signal, breathing signals, EEG signals, and annotations for
various sleep stages and apnea. The database comprises
18 records.

Taran and Bajaj [54], Mahmud et al. [55], Vimala et al.
[56], Bhattacharjee et al. [57], some other researchers used
this dataset in their studies.

2) PHYSIONET APNEA-ECG DATABASE (PAE DATASET)
There are 70 records total in the data [53], [58], out of which
35 were allocated to the learning set, while the remaining
35 were assigned to the test set.
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FIGURE 4. Step by step Sleep Apnea Detection procedure. Every step is further broken down into examples or applicable methods. Combinations of
colours represent options that are frequently and rarely used.

3) UNIVERSITY COLLEGE DUBLIN SLEEP APNEA DATABASE
(UCD DATASET)
UCD [53], [91] dataset contains 25 complete
overnight polysomnograms from adult participants

with suspected sleep-disordered breathing, together with
simultaneous three-channel Holter ECG recordings. Over
six months, subjects were chosen at random from
sleep-disordered patients from the clinic at St. Vincent’s
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TABLE 1. Databases used in several recent researches demonstrate the diversity of dataset gathering, including those acquired through hospitals and
private and public databases.
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TABLE 1. (Continued.) Databases used in several recent researches demonstrate the diversity of dataset gathering, including those acquired through
hospitals and private and public databases.

University Hospital in Dublin. The following signals were
captured: ECG, EEG, EMG, oxygen saturation, body

positions, etc. Due to its inclusion in several publica-
tions (included in this study), it can be claimed that
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the UCD Dataset is the second most commonly used
dataset.

4) SLEEP-EDF DATABASE EXPANDED
The Sleep-EDF dataset [69], [92] consists of 197 whole-
night sleep recordings obtained through PSG. Furthermore,
occasional measurements of respiration and temperature
were recorded. Additionally, it is possible to access corre-
sponding sleeping patterns that were individually assessed
using the Rechtschaffen and Kales manual [93]. Some of
the researchers used this dataset. This dataset is suitable for
EEG-based analysis. Besides these, many other datasets were
used for evaluation purposes, many of which were privately
gathered from hospitals or created by the researchers
themselves. In Fig. 5, we see the breakdown of how many
people use public versus private databases.

B. PREPROCESSING TECHNIQUES
Data preprocessing prepares the raw data to be used in
another format that is simple to use for further procedures.
The authors used a variety of preprocessing approaches,
which are discussed in this section.

1) FILTERING
Filtering signals for diagnosing sleep apnea is a complex
process that requires expertise in signal processing, biomed-
ical engineering, and sleep medicine to ensure accurate and
reliable results for diagnosis and treatment planning. Filters
are applied to data after sampling on the studies that employ
raw signals like ECG, EEG, and SpO2. Filtering removes
noise, artefacts, or other contaminants in the signal to acquire
an accurate result. Some common approaches for filtering
data are listed below:

• Bandpass Filtering: Bandpass filtering isolates fre-
quency components within a specific range, allowing
researchers to focus on respiratory-related signals and
discard noise and artefacts. This was implemented
by [21], [44]

• Wavelet Transform: Wavelet transform decomposes
signals into different frequency components at var-
ious scales, enabling the identification of tran-
sient events and subtle changes in physiological
signals [42], [76].

• Empirical Mode Decomposition (EMD): EMD decom-
poses signals into intrinsic mode functions (IMFs)
representing different oscillatory modes, allowing for
the separation of physiological components and noise as
used in [64].

Also, [77], [94] used a Median filter to remove unin-
terpretable data points. Butterworth filters [56], [81] and
Savitizky-golay filters have also been implemented in some
of the works. Moreover, authors in a study [64] have used a
Chebyshev Type II bandpass filter. These approaches offer
various ways to preprocess and extract relevant information
from physiological signals to aid in diagnosing and managing
sleep apnea.

2) SEGMENTATION
Segmentation involves dividing continuous physiological
signals recorded during sleep into smaller, discrete segments
or epochs. This process facilitates further analysis and
improve the accuracy of apnea detection algorithms. These
segments typically correspond to specific time intervals,
allowing for the analysis of localized physiological patterns
and events. Some common approaches of segmentation
may be:

• Fixed-length segmentation: Divide the continuous signal
into fixed-length segments or epochs of equal duration.
Example may include dividing a continuous EEG signal
into 30-second epochs. In some studies segmentations
were done in 5-s epochs, 60-s epoch, into 1-min
segments or in 10-min segments [44], [64], [77], [85]

• Event-based segmentation: Segment the signal based
on specific events or annotations, such as respiratory
events, apnea/hypopnea events, or arousal events. Seg-
menting an ECG signal based on detected heartbeats or
R-wave peaks is an example.

• Adaptive segmentation: Dynamically adjust segment
boundaries based on signal characteristics or fea-
tures, such as amplitude, frequency, or variability. For
instance, segmenting a respiratory effort signal based on
changes in amplitude or frequency.

3) HEART RATE (R-R PEAKS)
Heart rates from ECG signals are often calculated from RR
intervals, which represent the time duration between succes-
sive R-peaks in the ECG signal. Common methods include
calculating R-R intervals from ECG signals, using peak
detection algorithms for automatic peak identification, apply-
ing Fourier transform or time-frequency analysis to extract
frequency components, measuring heart rate indirectly via
pulse oximetry (PPG), and employing machine learning
models for prediction. Among the reviewed works, one
study [94] detected R peaks using Hamilton Algorithm [95].
Another study [59] calculated the RR interval for HRV
analysis using the RRI sensor. Authors in a study [47] used
pulseoximeter for obtaining heart rate and SpO2 signals,
while some studies [83], [85] extracted HRV signals as well.

C. FEATURE EXTRACTIONS AND SELECTIONS
In this study, feature extraction and selection are two vital
techniques within the ML and DL models of SA detection.
While feature selection chooses a subset of the most crucial
features to enhance the performance of machine learning
algorithms, feature extraction turns raw data into a set of
features that are more meaningful and practical for analysis.
These methods can enhance interoperability, decrease over-
fitting, and increase model efficiency and accuracy, leading
to more accurate predictions and trustworthy data analysis
insights.

Table 2 summarises a few features and the accompanying
feature extraction and selection methods based on SA
detection. The selection of papers featured in this table was
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TABLE 2. Features extraction and features selection techniques of SA detection or classification.

guided by their utilization of various features and methods
of feature extraction. To maintain conciseness, specifically
few papers were chosen that employ commonly used feature
extraction and selection methods frequently adopted by
researchers in the field. This approach ensures that the table
remains manageable while still providing valuable insights
into prevalent techniques employed in sleep apnea detection
studies.

Extracting features can be challenging for sleep apnea
(SA) diagnosis. Features are extracted from input data like
ECG, EEG, Photoplethysmography (PPG). For instance,
in the case of ECG signals, common features of interest
include R-R intervals, which provide insights into heart rate
variability (HRV), and morphological characteristics such as
QRS complex duration and amplitude.

These features are crucial for assessing cardiac function
and identifying abnormalities associated with sleep apnea.
Similarly, PPG signals offer unique features such as pulse
amplitude and pulse transit time, which can indicate changes
in peripheral vascular resistance and arterial stiffness, which
may be relevant to sleep apnea diagnosis. Furthermore,
EEG signals provide valuable information regarding brain
activity during sleep, with features such as delta, theta,
alpha, beta, and gamma power spectral densities of particular
interest. These features help characterize sleep stages and
detect abnormalities in sleep architecture associated with
sleep apnea. Features can be typically categorized into the
time domain, frequency domain [101], and time-frequency
domain, each briefly outlined below.

1) TIME DOMAIN FEATURES
Time domain features are statistical characteristics computed
directly from the time-domain representation of a signal,

providing insights into its behaviour over time across differ-
ent physiological signals. These features capture attributes
such as mean, standard deviation, and variance, which are
fundamental measures applicable to various physiological
signals. For instance, in electrocardiography (ECG), time
domain features can describe properties of the cardiac cycle
intervals, while in respiratory signals, they may characterize
breathing patterns. Similarly, in electroencephalography
(EEG), time domain features can describe characteristics
of brain activity patterns, and in pulse oximetry (SpO2),
they may reflect oxygen saturation levels over time. Statis-
tical methods involve more complex calculations based on
instantaneous values or cycle intervals recorded over longer
periods, typically 24 hours. Geometric methods, on the other
hand, convert signal data into geometric patterns, enabling
measures such as HRV triangular index and Triangular
Interpolation of NN interval histogram (TINN), which can be
applied across different physiological signals to assess their
variability and dynamics. Some of the studies [33], [39], [96],
[102] etc. included these features along with other feature
sets.

2) FREQUENCY DOMAIN FEATURES
Frequency domain features analyze the distribution of signal
power across different frequencies. They provide insights
into periodic patterns and rhythmic components present in
the signal. These features are valuable for understanding
physiological processes such as heart rate variability, respi-
ratory patterns, and other oscillatory phenomena observed in
signals like ECG, EEG, SpO2, and airflow recordings. Power
spectral density (PSD) analysis reveals how power (variance)
distributes across different frequencies. PSD calculation
methods can be classified as nonparametric or parametric,
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FIGURE 5. A percentage breakdown of accessibility-based dataset categories and frequently utilized classification
algorithms in 80 analyzed articles.

offering comparable results. Short-term recordings typically
reveal three main spectral components: very low frequency
(VLF), low frequency (LF), and high frequency (HF). The
measurement of these components can be in absolute values
or normalized units. Long-term recordings additionally
include an ultra-low frequency (ULF) component. These
features were utilized by some of the authors in their
research [86], [99].

3) TIME-FREQUENCY DOMAIN FEATURES
Time-frequency domain features analyze how signal charac-
teristics evolve over time and across different frequencies.
These provide insights into dynamic changes and transient
events in non-stationary signals such as EEG or HRV.
The wavelet transform has gained significant popularity
as an effective method of analysis, demonstrating strong
performance in both the time and frequency domains, which
can be seen to be used in the research in [46], [49], and [87].

4) NON-LINEAR FEATURES
Advanced diagnostic algorithms are greatly aided by non-
linear characteristics, which capture complex relationships
and patterns in the data. Approximate Entropy (ApEn) and
Sample Entropy (SampEn), which measure the regularity and
complexity of signals, are two frequently utilised nonlinear
characteristics. Recurrence plot analysis shows recurrent
patterns throughout time, whereas Detrended Fluctuation
Analysis (DFA) evaluates long-range correlations in the data.
Signals’ self-similarity is measured by the fractal dimension,
and their long-term memory is described by the Hurst
exponent. Entropy measurements such as Shannon entropy
also shed light on the uncertainty and information content of
signals. Some works such as [56] and [102] included such
features in their studies.

For the feature selection procedure, Principal com-
ponent analysis (PCA), Linear Discriminant Analysis
(LDA), Wavelet Transform (WT), Discrete Wavelet Trans-
form (DWT), Discriminant Relevance (DR) and different
correlation-based techniques are used.

D. CLASSIFICATION METHODS
This section contains some of the classifiers most frequently
used in this study’s articles, papers, or journals. Fig. 6

presents a visual representation of the study’s research
schematic emphasizing commonly utilized classification
algorithms. ML-based methods encompass traditional
machine learning techniques, including linear and logistic
regression for regression-based and binary classification-
based approaches, respectively. In this category, linear
regression serves as an example of regression-based
methods, while logistic regression represents binary
classification. DL-based methods utilize deep neural
networks for advanced feature learning and pattern
recognition.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN, or Convolutional Neural Network, is a DL algorithm
designed for processing and analyzing visual data such as
images and videos. It is inspired by the organization of the
animal visual cortex, which consists of interconnected layers
of neurons that detect and respond to different visual patterns.
CNNs are widely used in various applications, including
computer vision, image recognition, object detection etc.
During training, a CNN learns to recognize patterns and
objects by iteratively adjusting the weights and biases of
its layers. This is typically done through a process called
back-propagation. This training process allows CNN to
automatically learn hierarchical representations of the input
data, making it highly effective in tasks involving visual
information.

In the field of biomedical signals, CNNs are a type of
deep learning model that excels at learning hierarchical
representations from sequential data, such as time-series
biomedical signals. They employ convolutional layers to
automatically extract relevant features from the input signals,
enabling them to effectively capture complex patterns and
relationships within the data. This makes CNNs particularly
well-suited for tasks such as signal classification, anomaly
detection, and feature extraction in biomedical applications,
including sleep apnea detection.

Most researchers have used CNN as their classification
model [29], [33], [41], [96], [103], [104] etc. Additionally,
modified CNN models including SCNN [64], LeNet5
[94], FCNN [105], and DCNN [34] were also employed.
John et al. [106] used 1D CNN in their research.
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FIGURE 6. The categorization of broad approaches for classifying sleep
apnea. ML-based methods include traditional techniques whereas
DL-based methods utilize deep neural networks for advanced feature
learning and pattern recognition.

2) ARTIFICIAL NEURAL NETWORKS (ANN)
An Artificial Neural Network (ANN) is a computational
model inspired by the structure and functioning of the human
brain. It is a versatile approach that can operate within
both ML and DL paradigms for feature learning and pattern
recognition. In our classification, ANN is grouped under the
DL-based category due to its capacity as a complex model.
The basic building block of an ANN is the artificial neuron,
also known as a node or perceptron. Each neuron receives
input signals, applies weights to those signals, performs a
mathematical operation, and produces an output signal.

One advantage of ANNs is their ability to learn and
generalize from large amounts of data, extracting meaningful
features and relationships. They can handle complex and
nonlinear relationships between inputs and outputs, making
them suitable for tasks that involve intricate patterns.
However, ANNs can also suffer from overfitting if not
properly regularized or if the training data is insufficient or
noisy.

Moridani et al. [36], Wang et al. [21], Yacchirema et al.
[107], Pombo et al. [32] andmany other researchers [35], [62]
etc. implemented ANN in their research for SA detection.

3) DEEP NEURAL NETWORKS (DNN)
In general, a DNN is an ANN with several hidden layers,
including hundreds or even thousands of hidden layers,
intending to mimic how the brain functions to perform
sophisticated calculations. It learns new skills through
practice using a variety of samples. They excel in image

recognition, natural language processing, and recommender
systems. DNNs accurately classify objects in image recog-
nition, aiding autonomous vehicles and surveillance systems.
In NLP, they enable speech recognition, language translation,
and chatbots. DNNs also power recommender systems,
providing personalized suggestions.

This classifier is utilized in [108], where in their models,
they have used DNN and SVM to create a hidden Markov
model (HMM).

4) RECURRENT NEURAL NETWORK (RNN)
Recurrent neural networks (RNNs), a specific type of ANN,
are created to be used with data from time series or data
that includes sequences. Feed-forward neural networks are
generally only appropriate for independent datasets. If the
data are arranged in a series so that each data point varies
based on the one before it, it is necessary to modify the
neural network to account for the interconnections between
these data points. RNNs possess a unique capability called
‘‘memory’’, which enables them to retain information or
details from previous inputs. This memory feature allows
RNNs to utilize past context when generating subsequent
outputs within a sequence.

Among the reviewed articles, Iwasaki et al. [59] imple-
mented RNN in their study combined with LSTM.

5) LONG SHORT TERM MEMORY (LSTM)
LSTM networks are a type of RNN that can learn order
dependency in sequence prediction challenges. By default,
LSTM may retain information for an elongated amount of
time. It is employed in processing time series data, prediction,
and categorization. The unique design of LSTM allows it
to mitigate the vanishing or exploding gradient problem
commonly encountered in traditional RNNs, enabling more
effective learning and modelling of sequential data. LSTM
has proven particularly effective in speech recognition,
language modelling, sentiment analysis, and generating
textual content.

LSTM is seen to be used in various works. The models of
[59], [68], [103], and [109] etc. were implemented using this
classifier. Also, the use of BiLSTM is observed in [105]. The
researchers utilized a hybrid model using CNN and biLSTM.

6) BIDIRECTIONAL LONG SHORT TERM MEMORY (BILSTM)
A Bidirectional LSTM, or biLSTM, differs from a standard
LSTM by processing input in both forward and backward
directions. It comprises two LSTM layers, each handling
input in one direction. This model enhances the network’s
access to information, enhancing contextual understanding,
such as knowing the surrounding words in a sentence.
BiLSTM is seen to be used in combination with CNN as a
hybrid model in [55] and [110]. Also, in [86] this classifier
is used alongside Support Vector Machine (SVM) and
Time-based Convolutional Network (TCN) but the highest
accuracy was obtained using BiLSTM.
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7) SUPPORT VECTOR MACHINE (SVM)
SVM, or Support Vector Machine, is a popular super-
vised ML algorithm for classification and regression tasks.
It operates by finding an optimal hyperplane that separates
data points into different classes or predicts continuous
values. In SVM, data points are represented as feature
vectors in a high-dimensional space, and the algorithm aims
to find a hyperplane that maximizes the margin between
the support vectors—data points closest to the decision
boundary. This margin represents the confidence in the
classification/regression decision and helps achieve better
generalization. SVMs are utilized in the sciences and for text,
image, and handwriting classification.

Among all the reviewed articles included in this study, [98],
[108], [111] employed this classifier directly in their models,
whereas [54] used a slightly modified approach called Least
Square SVM. It was also noted that themajority of the authors
used SVM to compare their contributions.

8) MULTILAYER PERCEPTRON (MLP)
AMultilayer Perceptron (MLP) is a type of ANN that consists
of multiple layers of interconnected artificial neurons. It is a
feed-forward neural network, meaning the information flows
in one direction, from the input layer through the hidden
layers to the output layer. The MLP neural network is also
used in a variety of medical specialities, such as oncology,
cardiology, and haematology, as well as in special care,
biometrics, dentistry, surgery, and other fields, to address the
issues of clinical detections, analyzing medical images and
signals, and survival prediction.

Many researchers, including Wang et al. [21], Qatmh et al.
[62], and Pombo et al. [32], etc used MLP along with ANN
in their studies.

9) GAUSSIAN NAIVE BAYES (GNB)
Gaussian Naive Bayes (GNB) is a simple and widely used
probabilistic machine learning algorithm based on Bayes’
theorem and feature independence assumption. It is primarily
used for classification tasks. GNB assumes that features
are continuous and follow a Gaussian (normal) distribution.
During training, GNB estimates the mean and variance of
each feature for each class.

In this review, Tang and Liu [102] has used GNB in their
proposed study.

10) K-NEAREST NEIGHBOR (KNN)
The k-nearest neighbours algorithm (KNN) is a variational,
supervised learning classifier that employs proximity to
classify or forecast data point groupings. It works because
similar points are close together and can be utilised for
regression/classification tasks.

In this review, KNN is used by Rajesh et al. [60],
Vimala et al. [56], Bhattacharjee et al. [57], Onargan et al. [71],
Channa et al. [84], Haoyu et al. [85], Jeon et al. [47],
Baty et al. [87], Wang et al. [99] and Tang and Liu [102]

FIGURE 7. Different types of Input data from the reviewed papers.

IV. VARIOUS SIGNALS, SENSORS, AND DEVICES
Several algorithms have been proposed to detect SA.
In certain scenarios, this is likely because the complexity of
the utilised algorithms makes it difficult for them to run on
systems with constrained resources effectively. However, this
study focuses on various algorithms and methodologies for
screening SA based on input signals like ECG, EEG, IoT-
based signals, etc. The literature reviews in this paper are
systematically organized by the types of signals or sensors
used, rather than strictly by ML or DL approaches. This
strategic choice was made to offer a more comprehensive and
nuanced representation of studies across various modalities,
ensuring a thorough and insightful overview of the field.
This approach aims to highlight the diverse methodologies
researchers are employing to detect, diagnose, or monitor
sleep apnea. Some studies focus on signals or relevant data
to identify the disease, others on sleep staging to aid in
detection, and yet others on sleep positions to monitor the
health of affected individuals. This underscores the wide
range of sleep apnea research being conducted globally. Fig. 7
exemplifies the range of inputs, whether data or technology.

A. ECG SIGNALS-BASED
Iwasaki et al. [59] proposed an ECG signals-based study for
developing a SA detection approach by using LSTM and
HRV. The raw RR Intervals from ECG are used to separate
the subjects who have or don’t have sleep apnea syndrome
(SAS) to obtain better sensitivity and specificity. A robust
algorithm for SA is proposed by Moridani et al. [36] utilizing
a Multilayer Perceptron (MLP) classifier. The algorithm
combines EEG, ECG, and EMG data to improve the
screening process’s accuracy. This study gives an accuracy of
98.09 ± 2.15, a specificity of 96.87 ± 1.78 and a sensitivity
of 97.14 ± 2.24.
Jayanthy et al. [31] suggested a study to analyze OSA

utilizing ECG data. This paper aspires to simplify the tools
used to analyze sleep apnea using parameters like Power
Spectral Density, Correlation, and R-R peak interval. It is
observed that the spectrogram estimation method produces
the best possible results yielding an accuracy of over 90%.
Urtnasan et al. [61] suggested a novel CNN-based method for
determining SA severity autonomously. The model yielded a
98% test set F1-score. Using this approach, it is possible to
identify mild and moderate SA with a 99.0% accuracy rate.

Qatmh et al. [62] presented a model using an Artifi-
cial Neural Network (ANN). Before acquiring level one
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TABLE 3. An overview of studies conducted based on the ECG signals.
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TABLE 3. (Continued.) An overview of studies conducted based on the ECG signals.

decomposition characteristics, continuous wavelet transform
(CWT) broke down the ECG signal. The final results revealed
a 92.3% accuracy rate. Bahrami and Forouzanfar et al. [96]
introduced a model after thoroughly comparing various
ML and DL algorithms to detect sleep apnea within a
unified framework using a single-lead ECG. DL models
outperformed conventional ML methods.

Hybrid models have the optimal detection accuracy, with
the highest accuracy of 88.13%, 84.26% sensitivity, and
specificity of 92.27%. Ivanko et al. [111] proposed an
approach to use ML to detect instances of SA in ECG data.
Spectral-temporal, wavelet and single-lead ECG data were
used to detect OSA in time and frequency domains. The

9 predictor model had the maximum classification accuracy,
with a total accuracy of 98.7% and a sensitivity of 100.0%.
Pombo et al. [32] presented the study, which illustrates
a comparison of different classifier’s accuracy rates and
presents a study of the efficacy of classifier implementation
to identify sleep apnea moments utilizing per-min of ECG
signals. This study showed that the ANN with 20 features,
which had an 82.12% accuracy rate, 88.41% sensitivity and
72.29% specificity, was the most accurate model.

Singh and Majumder [33] put forward an OSA classifi-
cation method based on DL that has already been trained
(Alexnet) in this paper. CNN model classified OSA based
on time-frequency characteristics using scalogram images
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from per-minute ECG data. The proposed method yielded
86.22% accuracy and 90% sensitivity. To identify OSA using
single-lead ECG signals, a novel scalogram-based convo-
lutional neural network (SCNN) is proposed by Mashrur
et. al. [64]. Their goal is to categorize normal and apneic
people using ECG time-frequency analysis automatically.
They removed signal noise via filtering, segmentation, and
noise epoch removal. Conventional and hybrid scalograms
created time-frequency images for each epoch. They created a
time- and space-efficient model with a segment classification
accuracy of 94.30%.

A modified LeNet-5 CNN architecture for SA identifica-
tion that has adjacent segments is suggested by Wang et al.
[94] by extracting features from RR intervals. The modified
LeNet-5 was created to address the character recognition
issue with one-dimensional data, and they utilized the Hamil-
ton algorithm and cubic interpolation for preprocessing.
In per-segment analysis, their modified CNN model had
a prediction accuracy of 87.6% for SA. A proposes a
novel approach for detecting apnea using ECG data utilizing
wearable devices. John et. al. [106] The authors used network
pruning techniques and binarization to reduce complexity
and primarily created a 1D CNN to reduce the number
of feature extraction stages. They created a patient-specific
model which led to an accuracy of 99.56%. Li et al. [108]
proposed employing single-lead ECG readings with a sparse
auto-encoder to train a DNN and Hidden-Markov model
(HMM) to diagnose OSA. They employed decision fusion
to improve accuracy and overcome the limitation of a single
classifier. Their model yielded 84.7% accuracy.

Wang et al. [21] created a quick and portable detection
strategy employing single-lead ECG data and proposed a
temporal window ANN method for SA detection. They
employed a 1-minute slice to detect SA with 12 RR
interval-derived features and 6 R-peak amplitude-derived
features,

achieving 87.3% accuracy when the time window size
was 7. Shen et al. [34] presented a study where a weighted-
loss time-dependent (WLTD) model of classification and
a multiscale dilation attention 1D CNN (MSDA-1DCNN)-
based OSA detection technique is proposed. The network’s
final classification section used the loss function andHMM to
correct data imbalance and improve classifier accuracy. Here,
the accuracy, true positive rate, and specificity are 89.40%,
89.80%, and 89.10%, respectively, for segment identification.
Sheta et al. [103] proposed a study to detect OSA from
ECG data employing ML and DL classifiers. CNN-LSTM
combination outperformed other OSA diagnosis methods in
this research yielding 86.25% accuracy.

Pinho et al. [35] suggested a study to identify SA more
accurately employing ECG signals. This study modelled
ECG signals to calculate HRV and respiration signals as
input in classifiers like ANN and SVM. This model achieves
an 82.12% accuracy rate, 88.41% sensitivity and specificity
of 72.29%. Wang et al. [66] recommended an ML-based
effective model for the identification of apnea and hypopnea

instances utilizing ECG data. 25 subjects were used for
the research purpose. The categorization among hypopnea
instances and any apnea instances, according to the model’s
results, has an accuracy rate of more than 90%.

Zarei and Asl [98] proposed a study that extracts nonlinear
features from ECG signal decomposition Wavelet Transform
(WT) coefficients to detect OSA automatically. For minute-
to-minute and subject-to-subject classifications, an SVM
classifier with an RBF kernel achieves an accuracy of
94.63% and 95.71%, respectively. A DL model for the
automatic recognition of OSA episodes by combining
CNN-LSTM networks is presented by Zhang et al. [109]. The
algorithm was trained on a large polysomnography dataset
and outperformed existing approaches in recognizing apnea
occurrences. Another study proposed by Faust et al. [112]
also proposed an LSTM-based process to detect SA using
RRI signals.

Rajesh et al. [60] used discrete wavelet transform statistical
features to detect obstructive sleep apnea. It aims to test and
compare its accuracy and efficiency to existing methods and
explore its potential for clinical use [60]. Feng et al. [113]
proposed a study that introduced a method for detecting
SA using a classification model that combines Frequential
Stacked Sparse Auto-Encoder (FSSAE) and Time-Dependent
Cost-Sensitive (TDCS) techniques.

An approach for extracting features automatically was
proposed in the work of Zarei et. al. [65]. The authors
combined two DL algorithms, i.e. 2D CNN and LSTM
architectures, to obtain diverse features for better classifi-
cation. Additionally, to reduce computational complexities,
they combined algorithms to achieve the best result. Their
proposed model achieved the highest accuracy rate of
97.21%, outperforming other detection methodologies.

Table 3 summarizes the studies on ECG signals, highlight-
ing the aim of the study, employed classifiers and results of
the studied works.

B. EEG SIGNALS-BASED
A precise DL-based automated approach for classifying sleep
phases in patients who are suspected of having OSA was
developed by Korkalainen et al. [68]. They used EEG and
EOG signals from a large clinical dataset of patients with
potential OSA and a database of healthy individuals made
available to the general public.

Their automation has produced encouraging outcomes
for sleep staging with a single channel. A single-channel
approach could facilitate cost-effective, straightforward, and
precise sleep staging. with an accuracy range of 84.5 to
76.5% in OSA diagnostics. Mahmud et al. proposed an SA
event diagnosis technique from a variation of Sub-frame
features using EEG-based data and DCNN [105]. This study
uses an algorithm for Fully Convolutional (FCNN) DL
architecture to identify apnea episodes. This study develops
a system for categorizing online apnea events automatically.
To determine whether the entire frame has apnea, a dense
classifier is trained to look at each local feature obtained from
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TABLE 4. Brief summary of studies using EEG signals.

a subframe. Traditional techniques analyze the global features
of the frame. This paper’s sub-frame-based methodology can
assist in better retaining the local variation patterns. Finally,
an innovative post-processing method is used to increase
accuracy greatly.

An automatic apnea frame detection method for the
cross-subject evaluation using a hybrid CNN-BiLSTM net-
work from EEG signals was proposed byMahmud et al. [55].
In the subject-independent cross-validation scheme, three
publicly available datasets used by the model give average
accuracy of 93.25%, 93.22%, and 89.41%.

Gupta et al. [40] proposed an effective approach where
the EEG signal was filtered and classified based on
subbands to detect sleep apnea syndrome. When compared
to recently published publications, the suggested strategy
gives superior outcomes. The suggested approach provides
a maximum accuracy of 95.10%. The recommended method
is a great strategy for automatically detecting SA that could
be widely applied in clinical settings because here, the

subject-independent accuracy and subject-specific accuracy
are calculated.

A study on SA detection utilizing Artificial Bee colonies
to enhance Hermite Basis Functions specifically for EEG
signals was proposed by Taran and Bajaj [54]. In this
study, an adaptive decomposition technique is introduced
for identifying apnea events by analyzing EEG signals. The
decomposition parameters for the proposed partitioning are
chosen by comparing ETs. The performance metrics of
the recommended approach are 99.47% sensitivity, 99.58%
specificity, and 99.53% accuracy.

Thorey et al. proposed cutting-edge DL methods to detect
SA and compared the output from an AI model and a sleep
expert [70]. The automatic approach provides an accuracy of
81% with an F1-score of 0.57, which is more accurate than
prediction accuracy by a sleep expert. Moreover, the average
accuracy and F1 scores are 75% and 0.55, respectively, for
sleep experts detecting sleep apnea severity. Vimala et al. [56]
suggested a model where EEG signals are decomposed into
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5 bands to classify OSA. The authors used two filters to fit the
EEGdata and split the data into different frequency sub-bands
passed to ML models to classify sleep apnea. They extracted
features like entropy, variance etc., for processing in several
algorithms. They used SVM, KNN and ANN, compared the
performance, and obtained the best performance for SVM
with an accuracy of 99%

Bhattacharjee et al. [57] proposed a novel method for
detecting SA by analyzing the variation of features in
multi-band EEG signals using a Rician modelling approach.
The method is tested on a dataset of 50 subjects and
accurately identifies SA. Onargan et al. proposed a work
employing EEG signals and ML algorithms to predict SA,
achieving high accuracy in identifying patients with the
disorder [71]. Moussa et al. [72] proposed a model to classify
OSA and depression patients having OSA. The result shows
that among 118 patients, 40 are with OSA and depression,
and 40 are not with depression but suffering from OSA.

Table 4 summarizes the studies covered within this section
where the objectives, results and classifiers or technologies
are used for detection or classification purpose.

C. RESPIRATORY SIGNALS BASED
In Elmoaqet et al., a single-channel respiratory signal was
used to identify apneic occurrences using deep RNN models
automatically [114]. Nasal pressure signals consistently
produced the best detection results when the framework
was evaluated across three distinct respiration signals:
oronasal thermal airflow, nasal pressure, and abdominal
area respiratory inductance plethysmography sensors. In par-
ticular, the nasal pressure signal with a deep BiLSTM
model yielded 90.3%sensitivity, 83.7% specificity, and
92.4% AUC.

In a separate study by the same author [115] a proba-
bilistic approach was introduced using a Gaussian mixture
probability model to detect sleep apnea. This model analyzes
the posterior probabilities of events based on single oronasal
airflow records obtained through an oronasal thermal sensor.
The framework achieved an overall performance summary of
88.5% sensitivity, 82.5% specificity, and an AUC of 86.7%.

Kim et al. [116] proposed a new algorithm for detecting
sleep apnea using a single-channel oronasal airflow signal.
The algorithm dynamically adjusts thresholds to characterize
baseline changes and identifies apneic events by analyzing
respiration amplitudes and intervals. This approach achieved
80.0% sensitivity, 88.7% specificity, and an AUC of 0.844.

D. INTERNET OF THINGS (IOT)-BASED
Table 5 highlights the works on the Internet of Things
(IoT), mentioning the study purpose and the outcomes of the
research as well as the technologies used.

In this table, John et. al. [106] proposes a unique method
for detecting apnea using ECG data employing wearable
technology. The authors primarily created a 1D CNN to
reduce complexity and used network pruning techniques and

binarization. This reduced the number of feature extraction
stages. An accuracy of 99.56% was achieved because they
could develop models that were particular to each patient.

Yacchirema et al. [107] built an IoT-based monitoring
system and predictive analysis for services like remote
monitoring, in-the-moment warning notifications, informa-
tion visualization, and data processing. They employed a
three-layered architecture with integrated cloud and fog
computing and used an IoT gateway to enable compatibility
between various networks and communication protocols.
They additionally used an analyzer built on big data to
extract and process the real-time data obtained from open
data sources and cloud technology. A GUI has also been
developed to help medical professionals monitor patients
easily.

John et al. [39] using a 1D-CNN model, put forward
a framework for integrating multisensor and multimodal
data using a data-driven approach. The authors performed
a complexity analysis for their fusion model and used
pruning techniques to cut down on computational costs. They
achieved an accuracy of 99.72% by focusing on detecting
sleep apnea without resampling the signals.

Dhruba et al. [83] proposed the study to track and alert
patients about their health status. Using a microcontroller
and different sensors including a pulse sensor, galvanic skin
response (GRS) sensor, ECG sensors, etc., the authors created
a sleep surveillance system utilizing IoT that reads multiple
parameters, including heart rate, SpO2, ECG, sound intensity
level, etc.

Cay and Mankodiya [48] proposed the Smart Mattress,
a wireless sleep monitoring system that uses textile pressure
sensors to track breathing rates and sleeping patterns in
real-time in the bed. To show updates, the author connected
an embedded system via Bluetooth. The biggest problem they
face is connecting the sensors to the electronics, and they
also have a hard time getting the sensors to be repeatable and
linear.

Anu et al. [82] suggested a three-tier architecture of a
framework for OSA observation based on IOT and DL that
enables both OSA identification and therapy. The authors
created amonitoring system using IoT and numerous sensors,
such as a temperature sensor, a heart or pulse rate sensor,
and an ECG sensor to collect data. Messages are sent to
users based on the parameter threshold values. These data
are then fed into a CNN model for feature extraction before
being fed into a deep-learning model for data preparation.
These technological advances enabled the writers to reach an
accuracy of 97%.

A methodology for detecting sleep apnea utilizing IoT
technology and an SVM classifier is presented in the study
proposed by Ma et. al. [37]. They used SpO2 signals
divided into per-minute intervals and preprocessed theMatlab
data fed into SVM architecture. IoT was used to build a
connection between ML and smartphone, finally achieving
94.1% specificity with a sensitivity of 87.6% and an accuracy
rate of 90.2%
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TABLE 5. Findings involving internet of things (IoT).

Channa et. al. [84] discovered that supine sleepers are more
likely to experience breathing problems. In order to address
this challenge, the authors developed a sleep position tracking
system utilizing pressure mats based on IoT technology. They
used supervised ML models to identify sleeping posture and
obtained the best results with the KNN algorithm yielding
a 71.1% accuracy rate. In the study by Haoyu et al. [85],
the authors developed an IoMT-based monitoring system
utilizing SpO2 connecting with HRV signals. At first, heart
rate was collected using a SpO2 sensor and SpO2 signals to
detect OSA, and cloud architecture was used for real-time
data analysis and alerts about patients’ condition. Combined
features were classified using SVM, KNN, and ANN, and the
best result was obtained using SVM.

E. PULSE-OXIMETRY (SPO2) SIGNALS-BASED
Mostafa et al. proposed a study [104] utilizing SpO2 signals
only to recognize OSA events. This approach is developed to
automatically select the structure and optimize hyperparame-
ters of a one-dimensional CNN. The optimal model obtained
94% average accuracy, specificity and sensitivity of 96% and
92% sequentially. Sharma et al. [41] suggested an algorithm
that offers a reliable and sensitive method for detecting sleep

apnea events utilizing a pulse oximeter sensor and gives high
sensitivity for different types of apnea.

Deviaene et al. [97] presented a work for automatic
diagnosis of SA. The model suggests that an algorithm based
on simple SpO2 desaturation characteristics outperforms
more complex techniques in detecting apneic occurrences
and detecting SAHS patients. Vaquerizo-Villar et al. [43]
proposed a study where the objective is to create a CNN
model and assess how effective deep learning is at enhancing
the evaluative accuracy of oximetry in identifying pediatric
OSA through automated ways.

Mostafa et al. presented a study [118] that successfully
optimized sleep apnea detection and demonstrated that the
combination of ANN with GA yielded good accuracy. Most
of the selected features by GA were time-frequency signals,
indicating that apnea events contain crucial information in
this domain. This approach outperformed previous works and
can be tested on databases and classifiers.

Sharma et al. [42] suggests a wavelet decomposition-based
approach for individuals aged 60 and above that makes
use of respiratory signals and pulse-oximetry (SpO2). With
the aid of big datasets, they classified apneic and healthy
participants using two algorithms: RUSBoosted Tree and
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TABLE 6. Summary of studies utilizing pulse-oximetry (SpO2) signals.

GentleBoost. For an unbalanced dataset, the RUSBoosted
algorithm outperformed all others with 89.39% accuracy.

In another study of the same author [76], a study is
proposed to diagnose OSA utilizing SpO2 signals. The
authors worked with optimal duration-frequency concen-
trated (ODFC) wavelet filter bank (WFB) and SpO2 signals
in this paper. They extracted the Shannon entropy attributes
from the sub-bands and fed those to ML algorithms like DT,
ensemble algorithm etc. The highest CAC was obtained for
the SAE dataset with 95.97% accuracy.

ACNN-basedmodel is proposed by J Jiménez-García et al.
to diagnose OSA for neonatology. The authors combined
airflow (AF) and pulse-oximetry (SpO2) signals to evaluate
their suggested model. They also estimated the total AHI
using these two signals together. Their model is unique
because it combines these two types of signals for OSA

identification in children. With the help of AHI standards and
the CHAT dataset, they achieved accuracy within 84.64% to
94.44% [44].

Leino et al. [77] created a model using CNN architecture
to determine the severity of OSA in individuals who had
recent strokes or transient ischemic episodes (TIA). Only
signals from pulse oximetry (SpO2) were used for this
study’s diagnosis. This was done so that the results could
be referred to various types of evaluations to validate the
discovery of OSA. Their model obtained a 90.9% sensitivity
rate along with an accuracy of 88.3%. Lazazzera et al. [78]
presented a study exploring how PPG and SpO2 data
can identify and categorize SA and hypopnea. In this
research, the authors studied how the previous occurrences
of sleep apnea can be identified by studying the change in
respiratory and SpO2 data. Their approach obtained 87.5%
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accuracy on average using polysomnographic data containing
15 recordings.

Yoon et al. [45] proposed a study that demonstrates the
potential for accurately detecting apneic events in sleep apnea
patients using only SpO2 dynamics without the need for
additional data sources. Using the regression method, they
utilized per-min segments of SpO2 data to detect OSA. Their
model achieved an accuracy rate of 87.58%.

Table 6 includes some recent studies utilising SpO2 signals
that include the objective, classifiers or technology, and a
description of the results.

F. SMARTPHONE OR DEVICE APPLICATION-BASED
Lyon et al. [80] proposed a paper where the effectiveness
of a sonar-based non-contact sensing system as a screening
tool for Sleep Disordered Breathing (SDB) is evaluated.
A subject in bed can have their breathing and motions
monitored using a smartphone placed on a nightstand with
a personalized tray app. To recognize stages of sleep and
find SDB patterns, this app uses cutting-edge proprietary
algorithms. The model shows how well Drive technology
works when compared with PSG, consistently and accurately
detecting clinically notable SDB and calculating the AHI.
The drive is a technology that can be easily adopted at scale
for population monitoring and screening because it doesn’t
require any specialized hardware besides the ubiquitous
smartphone.

Without external sensors, Jeon et al. [47]. described a
process for real-time SA detection using a wearable smart
device. The model proposes a system capable of forecasting
SA at any instant. A wearable device was used to monitor
the breathing, heart rate, 3-ACC signals and SpO2 in patients
with SA. Patients’ breathing and SpO2 levels aremonitored to
determine how severe their sleep apnea is. The heart or pulse
rate and 3-ACC data are measured using machine learning
techniques like GNB, ANN, and KNN to see if sleep apnea
correlates with the measurement. The study here includes
5 apneic patients and 3 healthy volunteers, both tracked for
7 days. The dataset for apnea used in this study consists of
data sets evaluated by SpO2 and respiration. When the three
algorithms are compared, this model provides the highest
accuracy for KNN with an accuracy of approximately 95%.

A fully integrated hardware set for ML-based SA detection
in Neo-natal Intensive Care Units (NICU) is represented by
Hassan et al. [79]. It is suggested to use anML-based compact
feedforward architecture for hardware system design. This
system benefits from the proposed model’s accuracy rate of
over 85%. This machine learning-based wearable biomedical
device will offer a substantial improvement compared to
existing approaches for identifying SA in newborns in
NICUs. The customary, hefty, high-power equipment used in
NICUs and ICUs will be replaced in the future byMLmodels
that are extremely accurate and use low-power methods. The
automatic alarm guide of this technology would also reduce
the heavy workloads of doctors and caregivers during long
shifts.

Hoppenbrouwer et al. [46] proposed a study that revealed
how to screen individuals for OSA utilizing multivariate
random forest (RF) models that use SpO2 and airflow inputs
and a new nasal pulse oximeter. The airflow signal performs
better when screening adults for OSA when using AHI
5 and AHI 10 as the detection cutoff, with AUC values
of 89.0% and 80.0%, respectively, compared to 78.0% and
77.0% with SpO2 analysis. Including airflow signals in the
analysis enhances the potential of using nasal pulse-oximetry
for improved screening of OSA at home, surpassing the
capabilities of traditional finger pulse-oximetry.

Castillo-Escario et al. [81] propose a mHealth system,
utilizing the integrated microphone of a smartphone to
capture and analyze breathing signals overnight, aiming
to conduct OSA screening [81]. They mainly developed
an algorithm to detect silent events, classify them into
apnea & hypopnea, and compare their performance with
other commercial portable devices. Their developed device
detected apnea with an accuracy of 89%, whereas hypopnea
was detected with an accuracy of 61%. Due to a lack of mouth
airflow data, they misidentified oral breathing as apneas at
some point.

A study is presented by Ferrer-Lluis et al. [49] to detect
the sleeping posture angle of people with OSA. They studied
the effectiveness of smartphones to be used as a sleep
position tracker. In this paper, the authors mainly detected the
sleep position of the patients by using triaxial accelerometry
from smartphones and compared it with the traditional sleep
postures attained by video-authenticated PSG records to
obtain high-resolution sleeping positions. Their developed
algorithm obtained an accuracy of 95.6% to identify the
sleeping position inclination of OSA patients.

Table 7 summarizes the works discussed in this section,
including the study purpose, result analysis and classifiers
utilized.

G. BASED ON WEARABLE OR PORTABLE DEVICES
The studies included in this section are summarised in
Table 8, highlighting the objectives, classifiers or technology
used and results.

Azimi et al. [86] proposed a study for recognizing CSA
utilizing Pressure-sensitive mats (PSM). Here, a BiLSTM
network and a Time-based Convolutional Network (TCN)
are two deep learning techniques used to detect CSA events
automatically. The top-performing BiLSTMmodel attains an
accuracy rate of 95.1%. For the experiment, 9 elderly patients
worked as volunteers for testing and training purposes.
A device for detecting OSA is developed by Yüzer et al.
The authors designed an OSA screening and detection
method using an accelerator sensor in this paper [50]. The
sensor continuously records the patient’s diaphragm, which
is then utilized to detect the subject’s sleeping posture. Their
device also sends alert notifications to users regarding their
sleeping position. Their system measures crucial sleep apnea
characteristics with a maximum breathless time of 42 sec.
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TABLE 7. Works relating to smartphones or other smart gadgets.

TABLE 8. Researches related to wearable or portable devices.

Baty et al. [87] analysed the intensity of SA. In this
work, the authors developed an ECG chest belt and recorded
signals using both the ECG belt and patched ECG during

PSG recordings. They used recordings from 241 patients
to assess their devices. The study found that the ECG belt
produced signals similar to those obtained from patched
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TABLE 9. Additional studies based on different sensors and signals.

ECGs and could be utilized for evaluating the severity of SA,
particularly in follow-up assessments.

The authors developed a wearable device, MORFEA
with 9h lasting battery backup which can detect sleep
apnea, distinguish between OSA and CSA, and iden-
tify the sleeping position of the patient in the study
proposed by Manoni et al. [88]. The wearable gad-
get can detect sleep apnea with 88.6% sensitivity and
identify the user’s sleeping posture. Baboli et al. [89]
proposes a wireless SA recognition system employing
continuous-wave quadrature Doppler radar. The system
achieves high accuracy and specificity, making it a promising
alternative to traditional polysomnography for sleep disorder
diagnosis.

In another study, Surrel et al. [120] developed a
patient-specific online OSA detection technique that is
energy efficient and gives a battery backup of continuous
monitoring for 46 days and shows great accuracy as well
using single channel ECG signal. Van Steenkiste et al. [90]
introduced a novel technique for identifying sleep apnea
and hypopnea events via a portable device that measures
bio-impedance of the chest [90]. This method uses deep
learning algorithms to analyze the data and accurately detect
these events. Zancanella et al. [51] experimented with the
performance accuracy of SA for home diagnosis using Type 2
portable polysomnography, which can record 11 polygraph
signs and compared the results with laboratory testing
accuracy.
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H. ADDITIONAL STUDIES ON DIFFERENT TYPES OF
SIGNALS AND SENSORS
Adha and Igasaki [38] suggested a study where a 3-stage
breathing effort quantification method for detecting OSA
has been developed based on signals from the thorax and
abdomen. It gives a high accuracy of 99.83 ± 0.71%.
Kwon et al. [110] showed a model with hybrid CNN-LSTM
for the live AH diagnosis collecting the data from IR-UWB
radar.

Uddin et al. presented a study saying that patients with
obstructive Sleep Apnea (OSA), the most prevalent sleep
disorder, suffers from inadequate at-home monitoring [127].
Doppler radar is emerging as a promising solution as the
previous radar-based systems faced challenges in accurately
distinguishing apnea and hypopnea. This study introduces a
heart rate variability (HRV) method claiming a 97% accuracy
in discerning various OSA events, surpassing previous
methodologies. Martín-Montero et al. [128] proposed a
study that examines heart rate variability (HRV) in pediatric
obstructive sleep apnea (OSA), integrating sleep stages and
apneic events. NREMS showed significant HRV changes
with increasing apneic events, less pronounced in REMS.
Specific HRV parameters distinguished sleep stages and
events, aiding OSA assessment.

The suggested study gives an accuracy, specificity,
Cohens’s kappa and sensitivity of 93.0%, 95.6%, 72.8%
and 78.1% respectively. A work where the HRV nonlinear
analysis technique Emma-fApEn was proposed for the
identification of OSA is presented by Weng et al. [121]. Van
Steenkiste et al. proposed a new approach for detecting SA
utilizing LSTM networks on raw respiratory signals [122].
The study tested the accuracy of the proposed method
using data from the SHHS and found that it outper-
formed traditional machine learning methods. This method
holds promise in enhancing the precision and effective-
ness of SA diagnosis, which can lead to better treatment
outcomes.

Ye et al. [123] introduce a new method called the
FENet, which is capable of retrieving features or charac-
teristics from various frequency ranges of theRR-intervals
(RRI) as input. FENet can generate uninterrupted detec-
tion outcomes even with non-continuous and downsam-
pled RRI signals. Another study introduces a new sleep
apnea detection technique that uses an ultra-wideband
(UWB) artificial intelligence mattress [99]. The method
demonstrated high accuracy in detecting sleep apnea
events and provides a non-invasive approach to sleep
monitoring.

Padovano et al. [100] presented an article that discusses
the limitations of using HRV and ML for SA recognition and
emphasizes the necessity of larger andmore diverse databases
for reliable clinical use. Lin et al. [124] suggested a new AI
framework called RAPIDEST that utilizes the sequence of
sleep stages to identify and detect OSA [124]. A novelty score
to measure the atypicality of the sleep stage sequence was
introduced in this study.

FIGURE 8. Average Accuracy using different input.

Tang and Liu [102] proposed a study based on heart-rate
variability utilizing ECG signals [102]. The authors sug-
gested a method for the analysis of time dependency
complexity. They introduced the CgSampEn2Dmodel, where
the conversion of a single scale to a multi-scale series of time
is done, then converted to GASF image files, and at last,
the complexity of the images is studied. This method was
evaluated through simulation while optimizing the testing
parameters. This model obtained 93.3% accuracy for OSA
screening.

Tripathy et al. [125] proposed a study that suggests an
autonomous approach to identify SA utilizing CP signals
through a combination of bivariate fast and adaptive EMD,
along with cross-time-frequency analysis. They aimed to
detect SA using bivariate CP signals that obtained an average
sensitivity of 82.27% along with 78.67% specificity.

Zhivolupova et al. [126] presents an algorithm that aims to
detect Cheyne-Stokes breathing and determine sleep apnea
and hypopnea episodes together within a single framework.

V. DISCUSSION
Diverse methodologies have been employed to attempt
and detect SA. In this paper, some of the effective sleep
apnea detection techniques, which can be further studied for
implementation as a parallel procedure of polysomnography
or HSAT are summed up briefly. This study places significant
emphasis on the procedure of collecting and utilizing data,
as well as the methodologies employed for detecting or
categorising SA. The paper also highlights the performance
evaluations of the proposed models, underscoring their
significance in the research.

Many researchers also reviewed SA detection strate-
gies [96], [129], [130], [131]. In [129], the authors high-
lighted the focus on utilizing ML techniques, specifically
with ECG data, to detect SA. Here, the authors carefully
examined the chosen works and went into detail about
the performance indicators; however, the focus was only
on ECG signals. In the comprehensive study of [96], the
reviewers compared and contrasted ML methodologies and
DL approaches, but preprocessing steps were elaborated
for ECG signals only. In [130], a systematic review was
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FIGURE 9. A comparative analysis of accuracy performance of different ML and DL classifiers.

conducted on SA detection using DL approaches only. The
authors analysed SA detection approaches in [131], but there
is a lack of information about preprocessing techniques or
feature extraction processes. However, only current studies
were included in this review, along with ML and DL
techniques, various detection categories, and a thorough
examination of the generic SA detection strategy.

The performance, approaches, and strategies related to
SA detection are outlined in this study, emphasising various
ways based on sensors, signals, or technology. According
to recent statistics, the greater focus is given to detecting
SA categories implementing ECG signals using DL algo-
rithms [29], [33], [34], [64], [94], [98], [108], [109]. Most of
the researchers implemented CNN architecture or modified
algorithms like DCNN [34], SCNN [64], CNN-LSTM [109]
or CNN-DRNN [96] combination. Apart from ECG signals,
authors implementing EEG signal or SpO2, AF signals or
IoT technology also used DL approaches like CNN [39],
[68], [82], [106], ANN [32], [35], [62], [107], ANN-MLP
combination [21], [36], FCNN [105]. Table 3 - 9 shows that
DL algorithms are often utilised for SA detection because
they are more suited for precise and patient-specific feature
extractions. However, the works based on IoT technology
have superior average accuracy, as illustrated in Fig. 8. Few
authors also implemented ML algorithms like SVM, KNN,
DT, RF etc. but yielded the best accuracy for SVM [37], [56],
[85], [98], [111]. Fig. 9 represents some of the accuracies
found using different DL and shallow ML-based classifiers
within the studied papers. Table 3 summarizes the works
where ECG signals are used for SA detection. Their typical
working method involves extracting HRV characteristics,
R-R intervals [35], [59], [94], [111] or statistical data [60],
or time-dependent features [21], [113], which are then fed
intoML or DL algorithms for classification. Few authors also
used wavelet transform techniques [62], [64].
Table 4 lists the studies employing EEG signals for SA

identification. Generally, EEG signals are decomposed into
sub-bands of different frequencies or EMD (Empirical Mode
Decomposition), which are then used for extracting features
and then put into ML [40], [54], [56], [57], [71], [72]
or DL algorithms [55], [68], [105]. Works employing the
Internet of Things are included in Table 5. Most studies in

this category follow a standard methodology in which the
authors develop a real-time monitoring and warning system
for SA that also benefits healthcare professionals. Here, fog
computing offers better protection for instantaneous sensitive
data and operates more quickly owing to its short latency.
A few authors have also used machine learning [37], [84],
[85] or deep learning [39], [82], [106] methods in addition
to cloud computing. Even though a few authors utilised data
they generated themselves [82], [83], the accuracy seems
greater due to their population being too small. In light of this,
it is rather uncertain if their system will function with more
data. A few trending works with a combination of oxygen
saturation, chest movement or airflow signals are summarized
in Table 6. Since SpO2 readings andAF signals may precisely
identify apnea episodes, this combination has recently gained
prominence and shows promising outcomes.

The average model accuracy for the categories included in
this review work is highlighted in Fig. 8. A few IoT-based
studies used simulated models instead of actual ones, which
would have provided greater accuracy [48]. However, ECG-
related studies produced inconsistent findings, resulting in
an average accuracy of about 91% on average. In Table 7
and 8, works utilizing smartphones, wearable devices like
ECG belt [87], smartwatch [47] or portable devices [88],
[89], [90] are listed out. Some of the works detected sleeping
posture [49] or some detected SA intensity [87] or some
detected or classified SA utilizing different sensors like
accelerometer [50] or EEG sensors [51]. Still, most of them
worked with self-generated or private data. Some additional
studies are also included in Table 9. Here, different works
are presented where authors used thoracic and abdominal
movement [38], radar-based model [110], AI mattress [99],
HRV features [100] or a single algorithm to detect multiple
diseases [126]. These works also utilized ML or DL
algorithms for classification, such as CNN, LSTM, KNN,
SVM, and GNB.

VI. CONCLUSION
In this research, we thoroughly analysed the models,
data, and performance of existing approaches for various
data sources. It has been discovered that approaches for
identifying OSA that use classifiers like CNN, SVM,
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and ANN generally perform better than other methods.
Other methods may encompass techniques such as logistic
regression, decision trees, and k-nearest neighbors, which
typically rely on handcrafted features and simplistic models.
In contrast, contemporary approaches like CNN, SVM,
and ANN leverage more sophisticated architectures and
automated feature learning, allowing them to capture intricate
patterns and relationships within the data. Wearable devices
are also anticipated to be crucial in diagnosing SA and
aiding doctors in providing care. The studies based on
wearable technologymostly utilized IoT, BigData, andCloud
computing technologies.

The utilization of classifier-based models facilitates
precise feature extraction and selection, offering a more
refined preprocessing approach compared to manual signal
scoring conducted by laboratory experts. This automated
methodology enhances the accuracy and efficiency of data
preprocessing, ensuring that relevant signal characteristics
are systematically extracted and optimized for subsequent
analysis. By leveraging ML and DL based approaches,
researchers can streamline the preprocessing workflow,
minimizing subjective biases inherent in manual scor-
ing processes. Consequently, this automated preprocessing
strategy surpasses conventional manual scoring methods,
demonstrating superior efficacy in signal preprocessing for
obstructive sleep apnea detection.

A comprehensive analysis of existing studies reveals that
using Convolutional Neural Network (CNN) in conjunction
with other models improves accuracy. Additionally, SVM
and ANN algorithms provide notable accuracy. Most studies
used the easily accessible ECG dataset from the Physionet
bank to develop their algorithms. The University College
Dublin (UCD) database is also commonly used. IoT-based
efforts, however, put a strong emphasis on notification or
treatment systems in addition to detection. Wearable devices
as well as pulse oximetry, are useful today for identifying
SA. Several authors also used hybrid models in the study.
Numerous studies have shown that when multiple features
are offered, different classifiers solve the same problem
differently depending on the significance of the individual
features to the system performance. In brief, this review
emphasizes the critical role of precise sleep apnea detection
techniques in enhancing patient health and scientific inquiry.
Future research should focus on integrating advanced sensor
technologies, developing more robust hybrid models, and
improving the interpretability of machine learning algo-
rithms. By prioritizing these areas, researchers can enhance
diagnosis accuracy and ultimately improve the quality of life
for individuals suffering from this pervasive sleep condition.
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