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 

Abstract: The yield management in semiconductor 

manufacturing is one of the interesting areas that data mining 

approaches to find useful applications. The abundant steps 

and complex workflows during wafer manufacturing 

automatically generate large volumes of data and, hence, 

engineers who rely on personal domain knowledge cannot find 

possible root causes of defects quickly and effectively. 

The complexities involved in semiconductor manufacturing 

have always delayed the dream of creating a reliable process to 

produce 100% yield. Although the manufacturing recipes are 

carefully designed and revised to maximize yield, yield is still 

affected by errors that are reported by systematic factors (e.g., 

defective tools or interactions between tools) or random 

factors (e.g., dust particles). Furthermore, experiments have 

shown that most insidious and dangerous defects come from 

the interactions between components of a complex system - 

that cannot be detected by human diagnostic at an individual 

developer level. Although, generally, selecting the process tool, 

chamber set and recipe name, eventuate based on a series of 

previous experience, however, these practical intuitions don’t 

have any seat in computerized process mining for defect 

detection. 

This study aims to develop a framework for data mining 

and knowledge discovery from a database that consists of 

three phases: data preparation, data dimension reduction and 

the model construction and evaluation based on Bayesian 

Variable Selection (BVS) to figure the effect of practical 

intuitions and investigate the huge amount of semiconductor 

manufacturing data and infer possible causes of faults and 

manufacturing process variations. The proposed approach has 

been validated by an empirical study, eventually replicated 

Cross-validation has emerged as the preferred method to 

estimate the accuracy of the proposed approach on a 

particular data set and the results have shown its practical 

viability. 

 

Keywords: Bayesian Variable Selection (BVS), Data 

Mining, Yield Enhancement. 

I. INTRODUCTION 

In the age of digital information, Big Data, mining, and 
analytics are the principal components of strategic 
decision-making. Investments in data management and 
analytics are growing whereby helping companies to predict 
process behavior, to identify and detach defective tools and 
recipes to help improve yield. 

Semiconductor manufacturing is among the most 
demanding businesses, which has one of the complex 
production processes, this complexity heightens the allure 
of data mining analytics, which it can sieve through complex 
data and improve efficiency, yield and decision making. 

The yield learning curve of semiconductor 
manufacturing [1], [2], have demonstrated that in addition 
to data analytics, cumulative engineering training and 
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experience significantly enhanced yield improvement, 
hence the integrated yield management methods [3], [4], 
[5], supported by historical experience and statistical data 
management are widely applicable in industry. 

Although during wafer fabrication, yield engineers for 
selecting the machinery tools or chambers, trust to their 
cumulative skills and analytic methods simultaneously, 
however, this integration makes a lack of convenience to 
embrace the independence condition among the operation 
variables for statistical test. 

Additionally, typically the chip industry batch 
production process, brings affiliation among the process 
variables. Statisticians entitle this issue as Multicollinearity.  

The points of Multicollinearity and empirical variable 
selection behavior plus the high volume of variables 
persuade us to reflect on the prior distribution for 
semiconductor manufacturing data frame and the purpose of 
mining production data to extract discovery knowledge of 
defect diagnosis and eventually yield improvement. 

This work is organized as follows. Section 2 presents the 
fundamental material for our application to semiconductor 
manufacturing. Section 3 proposes a research framework 
with detail procedures. Section 4 validate the framework 
with empirical study. Section 5 summarizes the main results, 
gives the conclusion, and describe some areas for further 
research. 

II. FUNDAMENTAL BASIS 

Consider that the window of the production cycle of 
wafer divided into segments or steps. These steps represent 
processes applied to all wafers. Fig. 1 illustrates a fragment 
of the life cycle of a wafer. The wafer would complete 
sequentially by the passing couple of hundred steps, at each 
step the wafer passes by a particular process tool. Many 
alternative tools and chambers may be qualified for 
performing the same action on a single step, however, only 
one of the many similar tools-chambers is applied to a 
wafer. 

In this study for simplification, we are used to denoting 
the compound of tools and chambers processed with 
singular nominal factors, where even the probability of 
random clipping, depends on the other factors at each step.   

A. Categorical Distribution for Nominal Data 

In probability theory and statistics, a categorical 
distribution, also called “Multinomial distribution”, is a 
probability distribution that describes the possible results of 
a random event that can take on one of k possible outcomes, 
with the probability of each outcome separately specified 
[6]. 

Let  
k

YY ,...,
1

Y , where 
i

Y is the number of n 

independent trials that result in the category i, ki ,1 . 
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Figure 1.  Schematic of batch production of a wafer  

The probability distribution function of this multinomial 

distribution is: 
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B. Bayesian Models for Multinomial Data 

Bayesian models can represent the dependency between 

variables. In the Bayesian paradigm, current knowledge 

about the model parameters is expressed by placing a 

probability distribution on the parameters, called the prior 

distribution, often written as  xP , when new data   

become available, the information they contain regarding 

the model parameters is expressed in the likelihood, which 

is proportional to the distribution of the observed data given 

the model parameters, written as  xP | . This information 

is then combined with the prior to producing an updated 

probability distribution called the posterior distribution. 

In Bayesian statistics, if the posterior distributions  xP |  

are in the same family as the prior probability 

distribution  xP , the prior and posterior are then called 

conjugate distributions and the prior is called a conjugate 

prior for the likelihood function, the Dirichlet distribution 

[7] is the conjugate prior for the multinomial distribution, 

consider the (1), then the corresponding likelihood function 

can be expressed using the gamma function as:  
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which is the form of probability density function of Dirichlet 
distribution. 

C. Approximate Inference for Bayesian Model with Gibbs 

Sampling 

 

The aim of Bayesian inference is to impound the 
posterior probability distribution over a set of random 
variables. However, using this distribution often needs 
intractable computing. Gibbs sampling [8] is one Monte 
Carlo Markov Chain (MCMC) technique suitable for this 
task. The idea in Gibbs sampling is to generate posterior 
samples by eliminating each variable to sample from its 
conditional distribution with the remaining variables fixed 
to their current values. For instance, consider the random 

variables
1

Y ,
2

Y  and
3

Y , we proceed as follows: 

1: start by setting the initial values for each 

variables
 0

1
y , 

 0

2
y and 

 0

3
y  

2: at iteration i, sample 

 
      1

33

1
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,|~   iii yYyYyYPy  
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2211333

,|~   

3: iterate the above step until the sample values have the 
same distribution as if they were sampled from the true 
posterior joint distribution. 

The most common reason of Gibbs sampling popularity, 
it works well in the presence of Multicollinearity and high 
dimensionality. 

D. Cohen's Kappa Coefficient 

Cohen's kappa [9] is a statistic which measures levels of 
agreement between two raters which each classifies into 
several exclusive categories.  

The value of Kappa is defined as: 

,
1

0

e

e

P

PP




  (3) 

when 
0

P is the relative observed agreement among raters 

and  
e

P  is the expected probability of chance agreement. 

Kappa measures the percentage of data values in the 
main diagonal of the contingency table and then adjusts 
these values for the amount of agreement that could be 
expected due to chance alone.  

A brief overview of nonparametric techniques discerns 
that kappa is most generally applied to predictive models 
build from unbalanced data. In this study, we utilize kappa 
coefficient for the purpose of data clearance and 
classification. 

E. Repeated Random Sub-sampling Validation 

To estimate how accurately our predictive model will 
perform in practice, we employed the repeated random 
sub-sampling validation (repeated-cv) technique. This 
method involves the following steps:  

1: Randomly assign each observation into one of two 
groups: training and validation. 

2: Fit the model to the observations in the training set. 

3: Use the observations from the validation set to test the 
model’s performance.  
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The method will repeat number of times and the ultimate 
results are then averaged over the slots. 

III. PROPOSED FRAMEWORK 

In this study, we constructed a data mining framework to 
explore large volumes of semiconductor manufacturing data 
for prognosticating defective tools and chambers at a 
determined production time. This framework includes four 
major steps: problem definition, data preparation, data 
mining and key factor screening and model construction, 
evaluation and interpretation as shown in Fig. 2. 

 

Figure 2.  Research Framework  

A.  Problem Definition: 

In practice, both results from knowledge-based and 
data-driven inference serve on diagnosing the yield-loss 
factors [10] where the rule-based expert system based on 
knowledge-based inference generates a priority chance for 
selecting the appropriate tools-chambers. This research is to 
identify the extraordinary process variables regards to their 
prior probability.      

B. Data Preparation 

As illustrated in Table 1, for our diagnosis objective, a 

simplified and comprehensive spreadsheet for the massive 

amount of information utilized to address the pairs of 

step-tool-chamber feature, the actual value will be binary, 

true (1) or false (0), indicating whether that tool-chamber 

was used in that step. This approach is able to dominate with 

the technical problem of missing information. 

TABLE I.   TRANSFORMED SAMPLE DATA 

C. Data Mining & Key Factor Screening 

This study employed various types of statistical tools to 
wrap the associated variables, filter the unimportant factors 
and key factor screening via the following technique: 

Cohen’s Kappa Statistics for each pair of input 
variables: we use Cohen's Kappa as a measure of agreement 
between the two individuals (true (1) or false (0)) for each 
pair of binary predicted variables. 

Wrap the associated variables: as a result of the kappa’s 
interpretation, variables with high level of agreement 
(0.6~1) wrap with their peers in the same group where it is 
possible that a variable appears in more than one group. 

Assign cutting point and bad, middle or good wafers: 
create a new dummy variable as an indicator of wafers level 

Cohen’s Kappa Statistics for each pair of X & Y: once 
again employ the Cohen’s Kappa to remove insignificant 
variables, albeit this time for each set of response and 
predictor variables. 

Data Clearance: follow the last step, predictor variables 
with the low level of agreement (0~0.2) will eliminate. 

Bayesian Variable Selection via Gibbs Sampler: to 
determining which variables are included in the generalized 
linear model, we consider Bayesian strategies for 
performing this election. In particular, we focus on 
approaches based on the Gibbs sampler. 

D. Model Construction, Evaluation & Interpretation 

At the last step, firstly the generalized linear model 
(GLM) algorithm with Gaussian distribution is employed to 
construct the proper model via the selected key factors, 
henceforth, to evaluate the efficiency of model repeated 
random sub-sampling validation is adopted.  

Secondly, recall factors associated to achieve the 
impressionable group factors.  
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Finally, we construct a time series graph to analyze the 
outputs of the tool-chamber machines at each process step. 
This phase is to explore the extensive process information to 
identify the possible root causes for specifying time cycle in 
the semiconductor manufacturing process.  

IV. VALIDATION 

Following the process framework, we implemented an 
empirical study and tested its performance in the task of the 
root causes detection of high and low yield. This yielded to 
reducing the cost and time caused by trial and error method. 

A.  Problem Definition: 

The present problem involved 500 wafers of 20 lots with 
one CP yield as response variable and 100 process stages as 
predictor variables, which each lot passes through all the 
stages. As shown in Fig. 3 this problem induce the both high 
and low productivity in fab, engineers had to recall the 
related fabrication data with large varieties and complexity, 
find the root causes and replace the inadequate tools or 
chambers with lucrative ones.  

 

Figure 3.  Scatter and histogram plot of sorted CP Yield  

B. Data Preparation 

To conform the framework and deal with nominal 
factors, information regards to 100 stage transfer to dummy 
variables, the transformed data include 1988 factors which 
each factor consists of the history of stages, tools, and 
chambers. 

Since the raw data contained a lot of missing elements, 
data preparation was performed including imputation of 
missing elements, there were 1460 factors remained. 

C. Data Mining & Key Factor Screening  

After problem definition and data preparation, we use 
Cohen’s Kappa statistics and Gibbs sampler to help us 
identify abnormal process stages and machines and provide 
this useful information to engineers as a reference for 
troubleshooting and defect diagnosis.  

Phase 1: Totally 1,065,070 Cohen’s Kappa Statistics 
computed for each pair of input variables, the distribution of 
the Kappa attribute is listed in Table 2. 

Phase 2: The 25th and 75th quantiles of CP yield exploited 
as cutting points to classify the good, middle and bad yield. 
There were 250 wafers in the middle group, 125 wafers in 

the bad group and others were good groups. For analysis 
convenience, create a new variable containing the yield 
groups, the wafers in the middle group were marked as 2, in 
bad group as 1, and others (good group) were marked as 0.  
Cutting points are shown in Fig. 3. The cutting points were 
at 53.12% and 57.51% of yield rate. These marks assist us to 
distinguish more clearly if the bad or good wafers were 
fabricated from the same process stage. The descriptive 
statistics of the three groups are summarized in Table 3. 

TABLE II.  THE CLASS DISTRIBUTION FOR THE KAPPA TEST FOR 

EACH PAIR OF INPUT VARIABLES 

Almost perfect 

agreement 

Substantial 

agreement 
Moderate agreement 

3a 109 1,764 

Fair agreement Slight agreement No agreement 

24,539 280,081 758,574 

a. Number of pairs at each level of agreement 

TABLE III.  BASIC STATISTICS OF CP YIELD GROUPS 

Group Mean (%) 
Standard deviation 

(%) 

Good wafers 59.33 1.41 

Middle wafers 55.38 1.25 

Bad wafers 50.88 1.58 

 

Phase 3: Because there were too many process factors, we 

used Kappa statistics at this step to narrow the number of 

factors. The Kappa was applied to find out possible process 

factors with an appropriate measure of reliability. Similar to 

phase 1, Kappa statistic was used to compare the rating of 

the grouped yield with each individual dummy variable, to 

eliminate the influence of root cause factors, observations 

with mid-range value were removed. We wiped out process 

variables with no level of agreement  2.0 . Indeed, 

after this phase, 411 predictor variables were identified as 

input for the next step. 

Phase 4: To apply Bayesian inference using Gibbs 

sampler, we used the well-crafted “BayesVarSel” R 

package. Then, prior probabilities are estimated from the 

sample frequencies for each variable as follow: 

,eth variabl-jfor y probabilitprior 1

n

I
n

i V j   (4) 

when 
jV

I is the j-th indicator variable and n denotes the 

sample size. Implementing a Gibbs sampler, reduces the 

number of important factors to 33. 

D. Model Construction, Evaluation & Interpretation 

The general linear model for finding the best linear 

relationship between the predictors and response variable 

was employed where the Gaussian family accepted to 

identify the response variable. To evaluate the effectiveness 

and practical viability of the proposed approach, two other 

conventional approaches, generalized boosted regression 

model (GBM) and random forest (RF), were selected for 

comparison. Through the adopted repeated-cv method, 

residual mean square error (RMSE) and adjusted R-squared 

were dedicated as evaluation criteria. The results are 
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summarized in Table 4, in which the importance of 

repetition and sample size nested with the result of 

cross-validation. From comparing the sampling 

distributions for the four models, it is apparent that, in this 

case, the GLM combined with Bayesian variable selection 

technique has an advantage. 

TABLE IV.  SUMMARIZING RESULTS FROM THE DISTRIBUTIONS OF 

EACH MODEL 

Modela 
RMSE Adjusted R-squared 

Min Median Max Min Median Max 

Gibbs + 

GLM 
2.709 2.806 2.845 0.292 0.297 0.332 

GBM + 

GLM 
2.900 3.032 3.164 0.1782 0.181 0.183 

RF + 

GLM 
3.058 3.067 3.076 0.142 0.177 0.221 

GLM 150.4 186.9 218 0.004 0.008 0.011 

a. Number of resamples 2, Number of iterations 1 

 

Modela 
RMSE Adjusted R-squared 

Min Median Max Min Median Max 

Gibbs + 

GLM 
1.842 2.653 2.841 0.046 0.371 0.711 

GBM + 

GLM 
2.534 3.051 3.332 0.000 0.053 0.337 

RF + 

GLM 
2.268 2.838 3.660 0.016 0.293 0.507 

GLM 7.951 34.60 139.8 0.000 0.029 0.214 

a. Number of resamples 20, Number of iterations 2 

Seeking the validation and advantage of our framework, 

to evaluating the reliability of selected variables, reverted to 

the associated predictor variables by Cohen’s kappa, 

comparison is shown 3 pairs of substantial agreement, 74 

pairs of moderate agreement, 500 pairs of fair agreement 

and 6528 pairs of slight agreement between the selected and 

other predictor variables. We consider all factors with 

moderate and higher levels of kappa as the potential critical 

factors which can influence the growth of the yield 

enhancement. 

The final stage of the framework is to mine the critical 

time spots. Fig. 4, illustrates the supporting time series for 

the selected rules by Gibbs sampler and critical factors 

selected by Cohen’s kappa. The problem or perfection 

would be detected at a certain cycle time when a relatively 

large number of wafers deviate significantly at the high or 

low yield scope. 

 

Figure 4.  Scatter boxplot of selected factor’s CP yield over the time 

To promote the use and exploitation of the proposed 

framework, a part of final critical rules as a core structure 

for decision making summarized in Table 5. 

V. CONCLUSION 

The huge volume of data recorded on the line during the 

manufacture of chips makes it a natural application for data 

mining. Many studies have reported on their efforts to data 

mining. There have been notable successes in these efforts, 

mostly in the detective work for finding the cause of an 

unresolved problem in the fab. There, some specialized 

samples are collected to find root causes [11], [12], [13], 

[14] and [15]. 

Besides the data preparation, data clearance and variable 

selection are important works in the data mining process 

although, this part is very time-consuming, it cannot be 

ignored and needs much patience.  

The proposed framework combines the Bayesian 

approach with traditional statistical methods and data 

mining viewpoint to explore huge semiconductor 

manufacturing data. Based on the empirical results, we 

validate that the proposed approach has practical viability, 

which means adding the efficacy of domain knowledge and 

experience to the system could improve results. 

Furthermore, using the domain knowledge might be to 

restrict conjunctions in rules to tools, chambers and steps 

that are related or occur within a reasonable time frame. 

The data are not sampled from a stationary population, 

hence, over the time, the results may change significantly, 

and in addition some empirical answers might be reject 

based on engineer domain knowledge, which doesn’t mean 

that the result is incorrect. Rather, the result may be a proxy 

for one or more events that are occurring elsewhere or at the 

other periods of the time, hence, the simulation study is an 

essential tool for evaluating the accuracy of our proposed 

method. Also, as a part of the simulation study future study 

can be done to develop the effect of prior probability to 

consider the performance of the Gibbs sampler. 

TABLE V.  TELIC DECISION TABLE CORE STRUCTURE 

Factors 
Date 

Bad Good 

Stage10 - Tool2 - 

Chamber3 
befor 8/29/2014 2:32 after 8/29/2014 12:50 

Stage12 - Tool2 - 

Chamber1 

between 8/30/2014 

3:26 & 8/30/2014 

3:43 

before 8/29/2014 

10:55 

Stage12 - Tool2 - 

Chamber4 

after 8/29/2014 7:36 

till 8/30/2014 3:44 

before 8/29/2014 

7:36 

Stage13 - Tool5 - 

Chamber2 
- 

generally effected the 

high yield 

Stage17 - Tool2 - 

Chamber2 
after 8/30/2014 12:21 

befor 8/30/2014 

10:37 

Stage23-Tool3-Cham

ber2 
- 

generally effected the 

high yield 

Stage44 - Tool7.- 

Chamber2 and 

Chamber3 

at 9/3/2014 at 9/1/2014 

Stage49 - Tool1.- 

Chamber4 
at 9/3/2014 at 9/2/2014 

Stage57 - Tool1.- 

Chamber3 
- 

generally effected the 

high yield 

High Yield 

Middle Yield 

Low Yield 
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