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Bayesian Inference Technique for Data Mining for Yield
Enhancement in Semiconductor Manufacturing Data

Marzieh Khakifirooz, Chen-Fu Chien and Ying-Jen Chen

Abstract: The vyield management in semiconductor
manufacturing is one of the interesting areas that data mining
approaches to find useful applications. The abundant steps
and complex workflows during wafer manufacturing
automatically generate large volumes of data and, hence,
engineers who rely on personal domain knowledge cannot find
possible root causes of defects quickly and effectively.

The complexities involved in semiconductor manufacturing
have always delayed the dream of creating a reliable process to
produce 100% yield. Although the manufacturing recipes are
carefully designed and revised to maximize yield, yield is still
affected by errors that are reported by systematic factors (e.g.,
defective tools or interactions between tools) or random
factors (e.g., dust particles). Furthermore, experiments have
shown that most insidious and dangerous defects come from
the interactions between components of a complex system -
that cannot be detected by human diagnostic at an individual
developer level. Although, generally, selecting the process tool,
chamber set and recipe name, eventuate based on a series of
previous experience, however, these practical intuitions don’t
have any seat in computerized process mining for defect
detection.

This study aims to develop a framework for data mining
and knowledge discovery from a database that consists of
three phases: data preparation, data dimension reduction and
the model construction and evaluation based on Bayesian
Variable Selection (BVS) to figure the effect of practical
intuitions and investigate the huge amount of semiconductor
manufacturing data and infer possible causes of faults and
manufacturing process variations. The proposed approach has
been validated by an empirical study, eventually replicated
Cross-validation has emerged as the preferred method to
estimate the accuracy of the proposed approach on a
particular data set and the results have shown its practical
viability.

Keywords: Bayesian Variable Selection (BVS), Data
Mining, Yield Enhancement.

. INTRODUCTION

In the age of digital information, Big Data, mining, and
analytics are the principal components of strategic
decision-making. Investments in data management and
analytics are growing whereby helping companies to predict
process behavior, to identify and detach defective tools and
recipes to help improve yield.

Semiconductor manufacturing is among the most
demanding businesses, which has one of the complex
production processes, this complexity heightens the allure
of data mining analytics, which it can sieve through complex
data and improve efficiency, yield and decision making.

The yield learning curve of semiconductor
manufacturing [1], [2], have demonstrated that in addition
to data analytics, cumulative engineering training and
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experience significantly enhanced yield improvement,
hence the integrated yield management methods [3], [4],
[5], supported by historical experience and statistical data
management are widely applicable in industry.

Although during wafer fabrication, yield engineers for
selecting the machinery tools or chambers, trust to their
cumulative skills and analytic methods simultaneously,
however, this integration makes a lack of convenience to
embrace the independence condition among the operation
variables for statistical test.

Additionally, typically the chip industry batch
production process, brings affiliation among the process
variables. Statisticians entitle this issue as Multicollinearity.

The points of Multicollinearity and empirical variable
selection behavior plus the high volume of variables
persuade us to reflect on the prior distribution for
semiconductor manufacturing data frame and the purpose of
mining production data to extract discovery knowledge of
defect diagnosis and eventually yield improvement.

This work is organized as follows. Section 2 presents the
fundamental material for our application to semiconductor
manufacturing. Section 3 proposes a research framework
with detail procedures. Section 4 validate the framework
with empirical study. Section 5 summarizes the main results,
gives the conclusion, and describe some areas for further
research.

Il. FUNDAMENTAL BASIS

Consider that the window of the production cycle of
wafer divided into segments or steps. These steps represent
processes applied to all wafers. Fig. 1 illustrates a fragment
of the life cycle of a wafer. The wafer would complete
sequentially by the passing couple of hundred steps, at each
step the wafer passes by a particular process tool. Many
alternative tools and chambers may be qualified for
performing the same action on a single step, however, only
one of the many similar tools-chambers is applied to a
wafer.

In this study for simplification, we are used to denoting
the compound of tools and chambers processed with
singular nominal factors, where even the probability of
random clipping, depends on the other factors at each step.

A. Categorical Distribution for Nominal Data

In probability theory and statistics, a categorical
distribution, also called “Multinomial distribution”, is a
probability distribution that describes the possible results of
arandom event that can take on one of k possible outcomes,
with the probability of each outcome separately specified

[6].
Let Y=(Yl,...,Yk), where Y; is the number of n
independent trials that result in the category i,i =1,...K .
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Figure 1. Schematic of batch production of a wafer

The probability distribution function of this multinomial
distribution is:

F(Y,0ee ¥ Proees B)=PHY, =y, Y = Y,)
n! K
_ )Rl when D> Y=n
=<yl.y!
0 otherwise,

)

B. Bayesian Models for Multinomial Data

Bayesian models can represent the dependency between
variables. In the Bayesian paradigm, current knowledge
about the model parameters is expressed by placing a
probability distribution on the parameters, called the prior
distribution, often written as P(x), when new data 6
become available, the information they contain regarding
the model parameters is expressed in the likelihood, which
is proportional to the distribution of the observed data given
the model parameters, written as P(6| x) . This information
is then combined with the prior to producing an updated
probability distribution called the posterior distribution.

In Bayesian statistics, if the posterior distributions P(¢| x)

are in the same family as the prior probability
distribution P(x), the prior and posterior are then called
conjugate distributions and the prior is called a conjugate
prior for the likelihood function, the Dirichlet distribution
[7] is the conjugate prior for the multinomial distribution,
consider the (1), then the corresponding likelihood function
can be expressed using the gamma function as:

f(y11""yk1p11""pk)=mT (2)

which is the form of probability density function of Dirichlet
distribution.

C. Approximate Inference for Bayesian Model with Gibbs
Sampling

The aim of Bayesian inference is to impound the
posterior probability distribution over a set of random
variables. However, using this distribution often needs
intractable computing. Gibbs sampling [8] is one Monte
Carlo Markov Chain (MCMC) technique suitable for this
task. The idea in Gibbs sampling is to generate posterior
samples by eliminating each variable to sample from its
conditional distribution with the remaining variables fixed
to their current values. For instance, consider the random

variablesY,,Y, andY,, we proceed as follows:

1. start by setting the initial values for each

variables y*, y®and y{®
2: at iteration i, sample
Y =Pl =y, Y, =y Y, =y )
Y, =P, =y, 1Y, =y, Y, = )
Vo = Py =y, 1Y, =YY, =)

3: iterate the above step until the sample values have the
same distribution as if they were sampled from the true
posterior joint distribution.

The most common reason of Gibbs sampling popularity,
it works well in the presence of Multicollinearity and high
dimensionality.

D. Cohen's Kappa Coefficient
Cohen's kappa [9] is a statistic which measures levels of

agreement between two raters which each classifies into
several exclusive categories.

The value of Kappa is defined as:

K._PO_Pe 3
Th (3)

when P is the relative observed agreement among raters
and P, is the expected probability of chance agreement.

Kappa measures the percentage of data values in the
main diagonal of the contingency table and then adjusts
these values for the amount of agreement that could be
expected due to chance alone.

A brief overview of nonparametric techniques discerns
that kappa is most generally applied to predictive models
build from unbalanced data. In this study, we utilize kappa
coefficient for the purpose of data clearance and
classification.

E. Repeated Random Sub-sampling Validation

To estimate how accurately our predictive model will
perform in practice, we employed the repeated random
sub-sampling validation (repeated-cv) technique. This
method involves the following steps:

1: Randomly assign each observation into one of two
groups: training and validation.

2: Fit the model to the observations in the training set.

3: Use the observations from the validation set to test the
model’s performance.
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The method will repeat number of times and the ultimate
results are then averaged over the slots.

I1l. PROPOSED FRAMEWORK

In this study, we constructed a data mining framework to
explore large volumes of semiconductor manufacturing data
for prognosticating defective tools and chambers at a
determined production time. This framework includes four
major steps: problem definition, data preparation, data
mining and key factor screening and model construction,
evaluation and interpretation as shown in Fig. 2.
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Figure 2. Research Framework

A. Problem Definition:

In practice, both results from knowledge-based and
data-driven inference serve on diagnosing the yield-loss
factors [10] where the rule-based expert system based on
knowledge-based inference generates a priority chance for
selecting the appropriate tools-chambers. This research is to
identify the extraordinary process variables regards to their
prior probability.

B. Data Preparation

As illustrated in Table 1, for our diagnosis objective, a
simplified and comprehensive spreadsheet for the massive
amount of information utilized to address the pairs of
step-tool-chamber feature, the actual value will be binary,
true (1) or false (0), indicating whether that tool-chamber
was used in that step. This approach is able to dominate with
the technical problem of missing information.

TABLE I. TRANSFORMED SAMPLE DATA
Wafer Stepi- Steps- Stepy-
1D tool;-chamber;  tool;-chamber; toolj-chamber;
w1 0 1 1
Wh 1 0 1

C. Data Mining & Key Factor Screening

This study employed various types of statistical tools to
wrap the associated variables, filter the unimportant factors
and key factor screening via the following technique:

Cohen’s Kappa Statistics for each pair of input
variables: we use Cohen's Kappa as a measure of agreement
between the two individuals (true (1) or false (0)) for each
pair of binary predicted variables.

Wrap the associated variables: as a result of the kappa’s
interpretation, variables with high level of agreement
(0.6~1) wrap with their peers in the same group where it is
possible that a variable appears in more than one group.

Assign cutting point and bad, middle or good wafers:
create a new dummy variable as an indicator of wafers level

Cohen’s Kappa Statistics for each pair of X & Y: once
again employ the Cohen’s Kappa to remove insignificant
variables, albeit this time for each set of response and
predictor variables.

Data Clearance: follow the last step, predictor variables
with the low level of agreement (0~0.2) will eliminate.

Bayesian Variable Selection via Gibbs Sampler: to
determining which variables are included in the generalized
linear model, we consider Bayesian strategies for
performing this election. In particular, we focus on
approaches based on the Gibbs sampler.

D. Model Construction, Evaluation & Interpretation

At the last step, firstly the generalized linear model
(GLM) algorithm with Gaussian distribution is employed to
construct the proper model via the selected key factors,
henceforth, to evaluate the efficiency of model repeated
random sub-sampling validation is adopted.

Secondly, recall factors associated to achieve the
impressionable group factors.
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Finally, we construct a time series graph to analyze the
outputs of the tool-chamber machines at each process step.
This phase is to explore the extensive process information to
identify the possible root causes for specifying time cycle in
the semiconductor manufacturing process.

IV. VALIDATION

Following the process framework, we implemented an
empirical study and tested its performance in the task of the
root causes detection of high and low yield. This yielded to
reducing the cost and time caused by trial and error method.

A. Problem Definition:

The present problem involved 500 wafers of 20 lots with
one CP yield as response variable and 100 process stages as
predictor variables, which each lot passes through all the
stages. As shown in Fig. 3 this problem induce the both high
and low productivity in fab, engineers had to recall the
related fabrication data with large varieties and complexity,
find the root causes and replace the inadequate tools or
chambers with lucrative ones.

CPYield

Figure 3. Scatter and histogram plot of sorted CP Yield

B. Data Preparation

To conform the framework and deal with nominal
factors, information regards to 100 stage transfer to dummy
variables, the transformed data include 1988 factors which
each factor consists of the history of stages, tools, and
chambers.

Since the raw data contained a lot of missing elements,
data preparation was performed including imputation of
missing elements, there were 1460 factors remained.

C. Data Mining & Key Factor Screening

After problem definition and data preparation, we use
Cohen’s Kappa statistics and Gibbs sampler to help us
identify abnormal process stages and machines and provide
this useful information to engineers as a reference for
troubleshooting and defect diagnosis.

Phase 1: Totally 1,065,070 Cohen’s Kappa Statistics
computed for each pair of input variables, the distribution of
the Kappa attribute is listed in Table 2.

Phase 2: The 25™ and 75" quantiles of CP yield exploited
as cutting points to classify the good, middle and bad yield.
There were 250 wafers in the middle group, 125 wafers in

the bad group and others were good groups. For analysis
convenience, create a new variable containing the yield
groups, the wafers in the middle group were marked as 2, in
bad group as 1, and others (good group) were marked as O.
Cutting points are shown in Fig. 3. The cutting points were
at53.12% and 57.51% of yield rate. These marks assist us to
distinguish more clearly if the bad or good wafers were
fabricated from the same process stage. The descriptive
statistics of the three groups are summarized in Table 3.

TABLE I1. THE CLASS DISTRIBUTION FOR THE KAPPA TEST FOR

EACH PAIR OF INPUT VARIABLES

Almost perfect Substantial
Moderate agreement
agreement agreement
3 109 1,764

Fair agreement Slight agreement No agreement

24,539 280,081 758,574
a. Number of pairs at each level of agreement
TABLE Il BASIC STATISTICS OF CP YIELD GROUPS
Standard deviation
0,
Group Mean (%0) (%)
Good wafers 59.33 141
Middle wafers 55.38 1.25
Bad wafers 50.88 1.58

Phase 3: Because there were too many process factors, we
used Kappa statistics at this step to narrow the number of
factors. The Kappa was applied to find out possible process
factors with an appropriate measure of reliability. Similar to
phase 1, Kappa statistic was used to compare the rating of
the grouped yield with each individual dummy variable, to
eliminate the influence of root cause factors, observations
with mid-range value were removed. We wiped out process
variables with no level of agreement (x <0.2). Indeed,

after this phase, 411 predictor variables were identified as
input for the next step.

Phase 4: To apply Bayesian inference using Gibbs
sampler, we used the well-crafted “BayesVarSel” R
package. Then, prior probabilities are estimated from the
sample frequencies for each variable as follow:

o
priorprobability for j-th variabh=L, (4)
n

when |, is the j-th indicator variable and n denotes the

sample size. Implementing a Gibbs sampler, reduces the
number of important factors to 33.

D. Model Construction, Evaluation & Interpretation

The general linear model for finding the best linear
relationship between the predictors and response variable
was employed where the Gaussian family accepted to
identify the response variable. To evaluate the effectiveness
and practical viability of the proposed approach, two other
conventional approaches, generalized boosted regression
model (GBM) and random forest (RF), were selected for
comparison. Through the adopted repeated-cv method,
residual mean square error (RMSE) and adjusted R-squared
were dedicated as evaluation criteria. The results are
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summarized in Table 4, in which the importance of
repetition and sample size nested with the result of
cross-validation. From  comparing the sampling
distributions for the four models, it is apparent that, in this
case, the GLM combined with Bayesian variable selection
technique has an advantage.

TABLE IV. SUMMARIZING RESULTS FROM THE DISTRIBUTIONS OF
EACH MODEL
RMSE Adjusted R-squared
Model? i X . .
Min Median Max Min Median Max
Gibbs +
GLM 2.709 2.806 2.845 0.292 0.297 0.332
GBM +
GLM 2.900 3.032 3.164 0.1782 0.181 0.183
RE* 3058 3067 3076 0142 0177 0221
GLM ) ) ) ) ) )
GLM 150.4 186.9 218 0.004 0.008 0.011
a. Number of resamples 2, Number of iterations 1
RMSE Adjusted R-squared
Model? . . . .
Min Median Max Min Median Max
Gibbs +
GLM 1.842 2.653 2.841 0.046 0.371 0.711
GBM +
GLM 2.534 3.051 3.332 0.000 0.053 0.337
RE* 5268 2838 3660 0016 0203 0507
GLM ) ) ) ) ) )
GLM 7.951 34.60 139.8 0.000 0.029 0.214

a. Number of resamples 20, Number of iterations 2

Seeking the validation and advantage of our framework,
to evaluating the reliability of selected variables, reverted to
the associated predictor variables by Cohen’s kappa,
comparison is shown 3 pairs of substantial agreement, 74
pairs of moderate agreement, 500 pairs of fair agreement
and 6528 pairs of slight agreement between the selected and
other predictor variables. We consider all factors with
moderate and higher levels of kappa as the potential critical
factors which can influence the growth of the vyield
enhancement.

The final stage of the framework is to mine the critical
time spots. Fig. 4, illustrates the supporting time series for
the selected rules by Gibbs sampler and critical factors
selected by Cohen’s kappa. The problem or perfection
would be detected at a certain cycle time when a relatively
large number of wafers deviate significantly at the high or
low yield scope.

Time Frame of Yield Distribution

High Yield

5 e ol

Ll |
| e le Yield

8-28-20141:33 8202014230 83020141042 912014437 9-3-2014831 9620141137 872014 711
Processing Date

Figure 4. Scatter boxplot of selected factor’s CP yield over the time

To promote the use and exploitation of the proposed
framework, a part of final critical rules as a core structure
for decision making summarized in Table 5.

V. CONCLUSION

The huge volume of data recorded on the line during the
manufacture of chips makes it a natural application for data
mining. Many studies have reported on their efforts to data
mining. There have been notable successes in these efforts,
mostly in the detective work for finding the cause of an
unresolved problem in the fab. There, some specialized
samples are collected to find root causes [11], [12], [13],
[14] and [15].

Besides the data preparation, data clearance and variable
selection are important works in the data mining process
although, this part is very time-consuming, it cannot be
ignored and needs much patience.

The proposed framework combines the Bayesian
approach with traditional statistical methods and data
mining viewpoint to explore huge semiconductor
manufacturing data. Based on the empirical results, we
validate that the proposed approach has practical viability,
which means adding the efficacy of domain knowledge and
experience to the system could improve results.
Furthermore, using the domain knowledge might be to
restrict conjunctions in rules to tools, chambers and steps
that are related or occur within a reasonable time frame.

The data are not sampled from a stationary population,
hence, over the time, the results may change significantly,
and in addition some empirical answers might be reject
based on engineer domain knowledge, which doesn’t mean
that the result is incorrect. Rather, the result may be a proxy
for one or more events that are occurring elsewhere or at the
other periods of the time, hence, the simulation study is an
essential tool for evaluating the accuracy of our proposed
method. Also, as a part of the simulation study future study
can be done to develop the effect of prior probability to
consider the performance of the Gibbs sampler.

TABLE V. TELIC DECISION TABLE CORE STRUCTURE

Date

Factors
Bad Good

Stagel0 - Tool2 -

befor 8/29/2014 2:32  after 8/29/2014 12:50

Chamber3
Stagel2 - Toolz -  Detween 83072014 o roo 8199/2014
Chamberl 3:26 &3?‘/1330/2014 10:55
Stagel2 - Tool2 - after 8/29/2014 7:36 before 8/29/2014
Chamber4 till 8/30/2014 3:44 7:36
Stagel3 - Tool5 - ) generally effected the
Chamber2 high yield
Stagceﬁ;ﬁl; ?‘2)'2 T after 8/30/2014 12:21 befor18é§307/2014
Stage23-Tool3-Cham ) generally effected the
ber2 high yield
Stage44 - Tool7.-
Chamber2 and at 9/3/2014 at 9/1/2014
Chamber3
Stegess - Toolt.- at 9/3/2014 at 9/2/2014
Stage57 - Tooll.- ) generally effected the
Chamber3 high yield
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