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Introduction 

In most item response theory (IRT) models the unit of analysis is the individual item. In such 

models the probability that a person correctly answers an item or endorses certain categories is 

modeled. However, common IRT models need at least one parameter per item (any many more on 

polytomous IRT models), so they are relatively complex for situations where the same task or 

many simple tasks are given to examinees and aggregation of hits/misses is conducted. Such 

testing conditions arise in psychomotor testing (Spray, 1990), the testing of attention/processing 



speed (Baghaei, Ravand, & Nadri, in press; Doebler & Holling, 2015), oral reading errors (Jansen, 

1997b; Rasch, 1960; Verhelst & Kamphuis, 2009), reading comprehension (Verhelst, & 

Kamphuis, 2009), and divergent thinking (Forthmann, Gerwig, Holling, Çelik, Storme, & Lubart, 

2016). In these tests, examinees usually have to solve an unlimited (or at least very large) number 

of relatively easy items within a fixed period of time. Another example is identifying correctly 

spelled words in a long list of words. In such testing situations the total scores (raw counts) or the 

total numbers of errors on the tasks are modeled instead of the individual attempts.  

The Rasch Poisson Counts Model (RPCM, Rasch, 1960/1980) is a member of the family 

of Rasch models which was developed for tests where counts of errors or successes on a number 

of tasks are modeled instead of replies to individual items. Modeling the number of errors might 

be the only option when the number of potential successes is not well defined, say in classic oral 

reading tests where examinees are to read a passage aloud and the test administrator counts the 

number of errors (Rasch, 1960). In such conditions the total scores or the total number of errors 

on each block is assumed to be the realization of a Poisson process (e.g. Ross, 1983). That is, the 

number of correct checks (or errors) on each block for each person is assumed to be Poisson 

distributed and is the unit of analysis.1 

RPCM is a unidimensional latent trait model (Jansen, 1994) and enjoys all the elegant 

properties of Rasch models including separate person and item parameters, sufficiency of raw 

scores, and specifically objective comparison of persons and items (Masters & Wright, 1984). 

Masters and Wright (1984) demonstrate that the RPCM, binomial trials, rating scale model, and 

 

1 Andrich’s (1978) Rating Scale Model or Master’s (1982) Partial Credit Model could be considered 

alternatives for this situation, but (a) they have a lot more parameters and (b) hence require larger sample 

sizes than the RPCM for stable parameter estimation. Also, (c) the maximal number of errors would have 

to be known. 



the partial credit model all originate from a logistic function and hence have the same algebraic 

basis. In all these models simple counts of correct replies or successes are the sufficient statistics 

to estimate ability and difficulty parameters.  

The Poisson distribution 

To appreciate the RPCM understanding the mathematical basis of the model is in order. The model 

rests on the Poisson probability function and its underlying assumptions. The Poisson probability 

function, named after the French mathematician Siméon Denis Poisson (1781-1840), expresses the 

probability of a number of events occurring in a fixed time period if the average number of events 

is known. The function is written as follows: 

𝑃(𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
                             (1) 

where λ is the expectation or the average of events within a fixed interval of time, and k is the 

observed number of events. Note also, that the parameter λ coincides with the variance of a Poisson 

variable. 

The Poisson probability function is adequate in the following situation: The number of many 

potential events is recorded, each event has a very small probability of occurring and the number 

of potential events might be unknown. In addition, the occurrence of one event does not have any 

impact on the probability of another event (stochastic independence). Suppose the average number 

of oral reading errors is 2.5 in a session (say this value has been computed using the past records 

of reading error frequency). Now we can compute the probability of making no errors (k=0) or 1, 

2, 3 … errors in a given reading session. Using the Poisson probability function we have: 

𝑃(𝑘 = 0) =
2.50𝑒−2.5

0!
=
𝑒−2.5

1
= 0.082 



𝑃(𝑘 = 1) =
2.51𝑒−2.5

1!
=
2.5𝑒−2.5

1
= 0.205 

𝑃(𝑘 = 2) =
2.52𝑒−2.5

2!
=
6.25𝑒−2.5

2
= 0.257 

 

That is, the probability of making no errors in a session is .08, the probability of one error is .20, 

and the probability of making two is .25.  

 

Rasch Poisson Counts Model 

The RPCM is historically the first member of the family of Rasch models developed by the Danish 

mathematician and statistician Georg Rasch. Despite being the first Rasch model introduced it has 

had limited applications compared with other extensions of the model such as the dichotomous 

model or the polytomous models for rating data. In 1951 the Danish Ministry of Social Affairs 

assigned Rasch to the task of analyzing oral reading data collected over several years from a group 

of 125 students with reading problems. The complication that Rasch encountered was that the texts 

students had read in each testing administration differed in difficulty, making the monitoring of 

their reading development rather difficult. 

In a concrete formulation of this problem I imagined - in good statistical tradition - the 

possibility that the reading ability of a student at each stage, and in each of the two 

above-mentioned dimensions [accuracy and speed], could be characterized in a 

quantitative way - not through a more or less arbitrary grading scale, but by a positive 

real number defined as regularly as the measurement of a length (Rasch, 1977). 

 

Preliminary analyses of the reading errors revealed that the numbers of reading errors 

students committed across different texts were “proportionate to each other, although with a wide 

margin for variations” (Rasch, 1977). To account for these variations he used a Poisson probability 



function to model the oral misreadings. Rasch assumed that the distribution of reading errors across 

different texts (items) was independent. That is, it should be possible to estimate the probability of 

the number of errors made by each test taker with the Poisson function. Rasch’s reading data fitted 

very well to the Poisson distribution leading to the introduction of the multiplicative Poisson model 

(Rasch, 1960/1980). “The outcome of the reading test experiment was beyond expectation: a 

statistically very satisfactory analysis on the basis of a new model which represented a genuine 

innovation in statistical techniques!” (Rasch, 1977). The development of the most well-known and 

widely used Rasch model, i.e., the dichotomous model, was based upon the multiplicative Poisson 

model.  

Rasch (1960) used the Poisson probability function to model raw counts of errors on the 

reading tests. Here the total numbers of misreadings on individual tests were modeled. The RPCM 

assumes that the total raw scores or errors Yvi of person v on part i of a test are independent and 

Poisson distributed with mean μvi. Note that in part of the RPCM literature a collection of simple 

items or tasks, i.e. a subtest, is referred to as an item and the total scores on these subtests are 

modeled and not responses to individual items. Item parameters refer to the subtests.  Time limits 

on the subtests are optional (Doebler, Doebler, & Holling, 2014).  

The parameter μvi is the expected number of successes of person v on item i. The probability 

that person v gets a raw scores of y on item i is given by the Poisson function which is the 

multiplicative form of the model: 

𝑃(𝑌𝑣𝑖 = 𝑦𝑣𝑖) =
𝑒𝑥𝑝⁡(−𝜇𝑣𝑖)𝜇𝑣𝑖

𝑦𝑣𝑖

𝑦𝑣𝑖!
                       (2) 

The probability to observe a score (or number of errors) yvi in Equation 2 is obtained by 

replacing k in Equation 1 by yvi  and λ by μvi. The expectation μvi is a function of person’s ability 



and item’s difficulty and is assumed to have a multiplicative composition, i.e., it is the product of 

person’s ability and item’s easiness:   

𝜇𝑣𝑖 = 𝜃𝑣𝜎𝑖                                                (3)                

where θv, and σi are person ability and item easiness parameters, respectively. Extending the model  

by a time limit is possible, i.e.,  𝜇𝑣𝑖 = 𝜏𝑖𝜃𝑣𝜎𝑖, where τi is the time limit for item i, which can be set 

to one if there is no time limit (e.g. Doebler, et al. 2014) . In some estimation approaches the 

following constraint is imposed for model identification (Jansen & van Dujn, 1992): 

∑ 𝜏𝑖𝜎𝑖 = 1𝑖                                                        (4) 

but constraints on the distribution of θv can also be used, as we will elaborate below. 

 Rasch (1960/1980) with some algebra demonstrated that it is possible to estimate the 

person parameter 𝜃𝑣 independently of the item parameter 𝜎𝑖 and vice versa (separability of 

parameters). Equivalent to the multiplicative form of the RPCM is the additive specification that 

uses the natural logarithm as a link function. Towards this, apply the log-function to Equation 3 

and obtain: 

𝜇𝑣𝑖~ = 𝑙𝑜𝑔(𝜇𝑣𝑖) = 𝑙𝑜𝑔(𝜃𝑣𝜎𝑖) = 𝑙𝑜𝑔(𝜃𝑣) + 𝑙𝑜𝑔(𝜎𝑖) = 𝜃𝑣~ + 𝜎𝑖~                                           (5)        

We use the tilde symbol to indicate that log-parameters are used. Note that we can always 

obtain the original form in Equation 3 by applying the exponential function, i.e., 𝑒𝑥𝑝(𝜃𝑣~) = 𝜃𝑣 and 

𝑒𝑥𝑝(𝜎𝑖~) = 𝜎𝑖. 

The additive specification is important because it allows to view the RPCM as a special 

case of a generalized linear mixed model, a large class of regression models, and to employ 

corresponding software. 



Local independence and unidimensionality are assumed to hold for the RPCM like in other 

IRT models. That is, a test is supposed to measure a single trait and the trials should be independent 

of each other conditional on a fixed level of ability as are the scores for different examinees. This 

assumption may be violated as learning and fatigue can affect attempts, especially those close to 

each other in time (Spray, 1990).  

There are several estimation methods for the RPCM (Kampuis & Verhelst, 2009). As there 

are sufficient statistics for parameter estimation, conditional maximum likelihood estimation 

(CML) is feasible. However, no distribution of the person parameters is obtained in CML, which 

might be interesting especially when structural models for latent traits are of interest (Jansen, 

2003). Treating the ability parameter as a Gamma distributed random variable one can derive 

marginal maximum likelihood estimators for the person and item parameters (Jansen, 1997a).  

Joint maximum likelihood estimation (JML) also exists to estimate the parameters of 

RPCM. However, formally each additional person adds a parameter to the model, which is 

statistically undesirable. In contrast, marginal maximum likelihood estimation (MML) imposes 

some distributional assumptions on the person parameters and as a consequence, the model’s 

likelihood is a function of the item parameters only (and maybe the parameters of the marginal 

distribution; Doebler & Holling, 2015). For MML estimation the two-parameter Gamma 

distribution is typically specified for the person parameter with shape parameter c and scale 

parameter m. This is referred to as Gamma Poisson Counts Model (Jansen & van Duijn, 1992).  

Alternatively, a lognormal distribution is computationally feasible (e.g. Doebler & Holling, 2015) 

but analytically less tractable (Jansen, 1994). Since person parameters are non-negative the 

Gamma distribution which is conjugate to the Poisson is very convenient from an algebraic 

perspective. Jansen and van Duijn (1992) demonstrated that imposing a Gamma distribution on 



the person parameters does not affect the point estimates of the item parameters, i.e. JML, MML 

with Gamma marginal distribution, and CML result in the same item parameter estimates. The 

drawback of imposing a parametric distribution, however, is that the ability distribution might be 

misspecified (Jansen, 1994) which, nevertheless, does not affect point estimates of item 

parameters. Therefore, if only the difficulty of the tests is of interest the distribution of the abilities 

can essentially be ignored. However, in other applications the person parameters and their 

distribution are important (Jansen, 1994, 1997a). 

The fit of the model is assessed by checking the ability of the model to correctly predict 

total scores, as they are sufficient statistic for estimating model parameters. As the RPCM is a log-

linear model (cf. Equation 3) it can be considered as a generalized linear model (GLM; McCullagh 

& Nelder, 1989) or (from the MML perspective) as a generalized linear mixed model (GLMM; 

Demidenko, 2013; Brown and Prescott, 2015). Therefore, methods for checking GL(M)Ms and 

the diagnosis of under or overdispersion is available for RPCM too (Doebler & Holling, 2015). 

Assuming a Gamma distribution for the person parameters implies that the distribution of the row 

total scores is negative binomial (Jansen & van Duijn, 1992). This property can be used to evaluate 

the correctness of the Gamma assumptions (Jansen & van Duijn, 1992). Model checking within 

MML estimation entails comparing the observed distribution of total scores with the one predicted 

by the model.  

Empirical Example 

In this section RPCM is estimated using the lme4 package (Bates, et al., 2017) in R (R Core Team, 

2016). We employ the glmer function from the lme4 package. The additive form of the model 

from Equation 5 has to be used as glmer does not support the equivalent multiplicative form 



directly. Also, glmer can only handle a lognormal distribution of the person parameter, i.e. Ѳ𝜈~  from 

Equation 5 is assumed to follow a normal distribution and the parameters of this normal 

distribution are estimated, too. 

The data of 228 examinees to a selective attention test is used for demonstration. The test is 

constructed by Beyzaee (2017) after the model of Ruff 2 and 7 Selective Attention Test (Ruff, 

Evans, & Light, 1986). In this test respondents have to cross out the digits 2 and 7 in three rows of 

randomly arranged digits and letters. The test contains 20 blocks each containing three lines. The 

time limit for each block is 15 seconds. Here the task is very simple and it is not reasonable to 

scale the test with the dichotomous Rasch model. An example block is given below. 

2 G O X C 7 M J 7 H Z R N G A S 2 Y W Q 2 L H B Z G J N V 7 E T 2 P R V M J H S T Q 2 C 7 K L W C 7 
X M T 7 K T R 2 A V P I W O C 2 G J 7 L S 2 B N V W 7 T O X R 2 P H 7 F D A B M 2 W H K A S T 2 O P 
H W E D 2 T R N E Q X 2 P K L 7 P K 7 Z C V 7 2 Z 7 E T G H L K S D I N 7 S 2 W I S N 7 T B M O P W 

 
 
Estimation with ‘lme4’ 

A prerequisite for RPCM analysis with lme4 is that the data should be in long format. Perhaps the 

simplest way to do this is with SPSS though also R includes this functionality in the reshape 

function. The data structure for the current analysis after converting it to long format is shown in 

Figure 1. ‘ID’ is student identification number, ‘Grade’ indicates each student’s grade at school, 

‘Item’ refers to the block of letters and numbers students had to check, ‘Hit’ is the total number of 

correct checks on each item for each examinee, ‘Miss’ is the number of items that test takers have 

failed to check, and ‘TL’ is the hypothetical time limit (in seconds) set for each item. As explained 

before in RPCM the raw counts of correct answers or the counts of errors within a set of items are 

modeled. Here each block is considered an item and the total number of correct checks of 2’s and 

7’s are recorded under ‘Hit’ and modeled as the unit of analysis. 



Figure 1: The data structure for the attention test 

ID Grade Item Hit Miss TL 
1 3 1 20 10 15 
1 3 2 21 9 15 
1 3 3 16 14 12 
1 3 4 13 17 10 
1 3 5 16 14 12 
1 3 6 13 17 10 
1 3 7 14 16 11 
1 3 8 14 16 11 
1 3 9 20 10 15 
1 3 10 20 10 15 
1 3 11 14 16 11 
1 3 12 12 18 10 
1 3 13 16 14 12 
1 3 14 13 17 10 
1 3 15 21 9 15 
1 3 16 14 16 11 
1 3 17 18 12 14 
1 3 18 11 19 10 
1 3 19 17 13 13 
1 3 20 18 12 14 
2 3 1 25 5 15 
2 3 2 25 5 15 
2 3 3 29 1 12 
2 3 4 20 10 10 
2 3 5 25 5 12 
2 3 6 28 2 10 
2 3 7 28 2 11 
2 3 8 28 2 11 
...      

Preliminary analyses 

To perform the analyses first load the package: 

library(lme4) 

import the dataset (here from a text file, which is not the only option): 

 
attention <- read.table("Att_Hit.txt", header=TRUE) 

 

A summary of the variables in the dataset can be obtained with the following function: 

summary(attention) 

To make sure that R treats items as categorical variables run the following code: 



attention$Item <- as.factor(attention$Item) 

The boxplot of the raw scores can be obtained with: 

boxplot(attention$Hit ~ attention$Item) 

Test takers’ raw scores, i.e. the sum of the hits, can be obtained with the following function. 

rs <- tapply(attention$Hit, attention$ID, sum) 

A histogram of the raw score is produced by: 

hist(rs) 

The basic function call to fit the RPCM is: 

fit1 <- glmer(Hit ~ -1 + Item + (1|ID), data = attention,family = poisson) 

 

Note two peculiarities in the models syntax: (1) the -1 omits a regular intercept from the model. 

In combination with + Item, this yields item-wise intercepts, which are the easiness parameters 

(or in regression model terms: cell means coding). (2) The syntax + (1|ID) adds a random 

intercept on the person level, with mean 0 and unknown variance. The following function returns 

the item parameters, their standard errors, and information criteria:  

summary(fit1) 

Output 1: The output of RPCM analysis 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 

Family: poisson  ( log ) 

Formula: Hit ~ -1 + (1 | ID) + Item 

Data: attention 

 

   AIC      BIC   logLik    deviance df.resid  



 24945.9  25080.9 -12452.0  24903.9     4539  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.4315 -0.4723 -0.0100  0.4440  2.4441  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 ID     (Intercept) 0.02276  0.1509   

Number of obs: 4560, groups:  ID, 228 

 

Fixed effects: 

       Estimate Std. Error z value Pr(>|z|)     

Item1   2.97307    0.01793   165.8   <2e-16 *** 

Item2   2.86497    0.01863   153.8   <2e-16 *** 

Item3   2.91227    0.01832   159.0   <2e-16 *** 

Item4   2.88115    0.01852   155.6   <2e-16 *** 

Item5   2.86324    0.01864   153.6   <2e-16 *** 

Item6   2.89587    0.01842   157.2   <2e-16 *** 

Item7   2.85303    0.01871   152.5   <2e-16 *** 

Item8   2.95110    0.01807   163.3   <2e-16 *** 

Item9   2.94519    0.01811   162.6   <2e-16 *** 

Item10  3.04886    0.01748   174.4   <2e-16 *** 

Item11  2.94973    0.01808   163.2   <2e-16 *** 

Item12  2.95019    0.01808   163.2   <2e-16 *** 

Item13  2.89922    0.01840   157.6   <2e-16 *** 

Item14  2.93464    0.01818   161.5   <2e-16 *** 

Item15  2.97130    0.01795   165.6   <2e-16 *** 

Item16  2.93764    0.01816   161.8   <2e-16 *** 

Item17  2.93418    0.01818   161.4   <2e-16 *** 

Item18  2.91439    0.01830   159.2   <2e-16 *** 

Item19  2.90707    0.01835   158.4   <2e-16 *** 

Item20  2.90184    0.01839   157.8   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 In Output 1 the Akaike Information Criterion (AIC, Akaike, 1974) and Bayesian Information 

Criterion (BIC, Schwarz, 1978) and log item easiness parameters are given. The easiest item is 

Item 10 with easiness parameter 3.04 and the hardest item is Item 7 with an easiness estimate of 

2.853. The standard deviation of the log person ability parameters is 0.15 and their mean is 

constrained to zero for model identification. 

Confidence intervals for the item parameters can be obtained using the following code: 

confint(fit1) 



The confidence intervals are helpful to assess the amount of uncertainty in the estimation of item 

easiness parameters. Note that the first confidence interval is not for an easiness parameter, but for 

the standard deviation of the person parameters. Since the lower bound is clearly separated from 

zero there is variance in the person parameters which amounts to individual differences that the 

test is able to discern. 

In attention or processing speed tests the contents of the items do not differ much. Usually the 

same items with little variation in content are repeated across the test. Since the structure and 

content of the blocks are the same we can expect equal difficulty for the items. For comparison 

purposes we can run a model that assumes equal difficulty for all the items but includes a person 

parameter (random intercept model): 

 

fit0 <- glmer(Hit ~1+ (1|ID),data = attention, family = poisson) 

 

Output 2: Output of RPCM analysis with equal item parameters 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 

Family: poisson  ( log ) 

Formula: Hit ~ (1 | ID) 

Data: attention 

     AIC       BIC    logLik  deviance  df.resid  

 25082.01  25094.86 -12539.01  25078.01      4558  

Random effects: 

Groups Name        Std.Dev. 

ID     (Intercept) 0.1509   

Number of obs: 4560, groups:  ID, 228 

Fixed Effects: 

(Intercept)   

      2.925 

 

Outputs 1 and 2 show that the AIC and BIC for the model named ‘fit1’ are smaller than those for 

‘fit0’. That is, the model with equal item parameters does not fit as good as the model where 



different difficulty parameters are assumed for the items. Hence, the item difficulties vary across 

the items. To compare the fit of the two models with a hypothesis test, run the following code: 

anova(fit0, fit1) 

which gives Output 3. 

Output 3: Comparison of the fit of the two models 

Data: attention 

Models: 

fit0: Hit ~ (1 | ID) 

fit1: Hit ~ -1 + (1 | ID) + Item 

     Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)     

fit0  2 25082 25095 -12539    25078                              

fit1 21 24946 25081 -12452    24904 174.06     19  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Output 3 depicts the information criteria, the log-likelihood, and the deviance statistic (-

2*loglikelihood) for each model. A likelihood ratio test (LRT) with a chi square test statistic is 

computed to compare the fit of the two models. The value of the chi square (174.6) statistic is 

significant at p<.001, df =19. In other words, the model with different item parameters (fit1) 

significantly fits better than the model with equal item parameters (fit0).  

To obtain predicted score for each item and person run the following code: 

pre <- fitted(fit1)  

For graphical check of the model run the following code: 

plot(fit1, xlab = "Scores predicted by model", ylab = "Pearson residuals") 

Figure 2: Graphical overall model check  



a. Predicted scores against their Pearson residuals 

 

 

b. Predicted scores against observed scores 

 



 

In Figure 2a we see the predicted values for each person on the x-axis and the Pearson-residuals 

on the y-axis. For good model fit, Pearson residuals have a mean of 0 and S.D. of 1.0. The more 

the points diverge from these values, the worse the fit. They are assumed to be roughly symmetrical 

(which is the case here) and they should (roughly) follow a normal distribution, at least when 

counts are not small. Here, they are too small for large values of the predicted values, i.e. there is 

less variance than the model predicts. This is not necessarily detrimental and just means that the 

Poisson distribution predicts too much variance here, hence our data is underdispersed, potentially 

leading to more conservative inference (Zeviani, Ribeiro, Bonat, Shimakura, & Muniz, 2014). 

Additionally, we can plot the predicted values against the observed values and obtain a regression 

line (Figure 2b) with the following code: 



plot(fit1, Hit ~ fitted(.), abline = c(0,1), xlab = "Scores predicted by 

model", ylab = "Observed Scores") 

 

Fit of the individual items can be evaluated by graphical inspection of the residuals. The 

following code can be run: 

boxplot(resid(fit1) ~ attention$Item) 

which returns Figure 3. The residuals are the difference between the observed scores and the scores 

predicted by the Poisson model. The boxes and the whiskers indicate the range of the residuals. 

The residuals should roughly span from -2 to 2, i.e. approximately the 2.3%- and 97.7% quantiles 

of a standard normal distribution that approximates the distribution of the residuals. Some outliers 

are expected. As Figure 3 shows only Items 1 and 2 have a substantial amount of residuals which 

exceed ±2.  

Figure 3: Graphical item fit check 
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The item parameters given in Output 1 are on the log-scale (additive parameterization from 

Equation 5). By exponentiation we can obtain the item parameters on the multiplicative scale 

(Equation 3): 

exp(fixef(fit1)) 

The next function returns the person parameters: 

 
ranef(fit1) 

 

Output 4 depicts the person parameters for the first 10 respondents out of the total of 228 

respondents.  

 
Output 4: Person parameters 
 
 
$ID 

      (Intercept) 

1   -0.1318555277 

2    0.3244358819 

3   -0.2692883165 

4    0.0099088747 

5   -0.0189995007 

6    0.3902893258 

7    0.0945963592 

8   -0.0238910051 

9    0.2409053514 

10   0.0835225095 

Likewise, we can obtain the person parameters on the multiplicative scale using the following 

code: 

exp(ranef(fit1)$ID) 

To obtain the summary of person parameters use the following functions, depending on which 

person parameters you obtained: 

summary(ranef(fit1)$ID[,1]) 

summary(exp(ranef(fit1)$ID[,1])) 

 



RPCM with separate time limits for items 

In the analysis above all the 20 items had an equal time limit. However, in many such tests different 

time limits are imposed for each task. Let’s assume that different time limits (between 10 to 15 

seconds in this example) are set for the 20 attention items. Now we want to estimate RPCM 

considering these time limits. A new column in the dataset needs to be created to record the time 

limit for each item if it is not already part of the data in long format. First a vector for the time 

limits should be created in the order of the items: 

timelimit <- c(15, 15, 12, 10, 12, # Items 1-5 
               10, 11, 11, 15, 15, # Items 6-10 
               11, 10, 12, 10, 15, # Items 11-15 
               11, 14, 10, 13, 14) # Items 16-20 
 

Then run the following lines of code: 

attention$timelimit <- timelimit[as.numeric(attention$Item)] 

The time limits in the multiplicative form define the units of the easiness parameter. As the model 

is fit on the log-scale, the time limits need to be log transformed and added as an offset in the 

additive form of the model, i.e., a known constant added to the regression equation. This amounts 

to the factor 𝜏𝑖 in the multiplicative parametrization (𝜇𝑣𝑖 = 𝜏𝑖𝜃𝑣𝜎𝑖). Consequently, one only needs 

to add an offset argument to the glmer call: 

fit2<-glmer(Hit~-1+Item+(1|ID),data=attention,offset= 

log(attention$timelimit), family = poisson) 

 

Output 5: The output of RPCM with different time limits for the items 

Generalized linear mixed model fit by maximum likelihood (Laplace 



Approximation) [glmerMod] 

Family: poisson  ( log ) 

Formula: Hit ~ 1 + (1 | ID) + Item 

Data: attention 

Offset: log(attention$timelimit) 

 

     AIC      BIC   logLik deviance df.resid  

 24945.9  25080.9 -12452.0  24903.9     4539  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-4.4316 -0.4723 -0.0100  0.4440  2.4441  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 ID     (Intercept) 0.02276  0.1509   

Number of obs: 4560, groups:  ID, 228 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.265015   0.017935  14.776  < 2e-16 *** 

Item2       -0.108091   0.021642  -4.994 5.90e-07 *** 

Item3        0.162362   0.021377   7.595 3.07e-14 *** 

Item4        0.313550   0.021550  14.550  < 2e-16 *** 

Item5        0.113325   0.021652   5.234 1.66e-07 *** 

Item6        0.328259   0.021468  15.291  < 2e-16 *** 

Item7        0.190133   0.021710   8.758  < 2e-16 *** 

Item8        0.288190   0.021166  13.616  < 2e-16 *** 

Item9       -0.027883   0.021198  -1.315 0.188395     

Item10       0.075801   0.020662   3.669 0.000244 *** 

Item11       0.286820   0.021174  13.546  < 2e-16 *** 

Item12       0.382594   0.021171  18.071  < 2e-16 *** 

Item13       0.149296   0.021449   6.960 3.39e-12 *** 

Item14       0.367035   0.021255  17.268  < 2e-16 *** 

Item15      -0.001758   0.021059  -0.083 0.933464     

Item16       0.274716   0.021239  12.935  < 2e-16 *** 

Item17       0.030100   0.021257   1.416 0.156784     

Item18       0.346778   0.021365  16.231  < 2e-16 *** 

Item19       0.077103   0.021406   3.602 0.000316 *** 

Item20      -0.002229   0.021435  -0.104 0.917166     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

As you can see in Output 5 the item parameters change but the information criteria are identical to 

those in ‘fit1’, because including the offset merely shifts parameters without a change in the log-

likelihood. In other words, including the a priori known time limits does not change the model fit, 

but merely enhances interpretation of the easiness parameters: On the multiplicative scale, they 



can now be interpreted as the expected number of points scored / errors made by a person of 

average ability (average ability being zero as person parameters are centered at zero) within the 

imposed time unit, i.e., a second in this study. The code given to produce the statistics for ‘fit1’ 

can be used to obtain the statistics for ‘fit2’. 

Investigating item fit 

To investigate item fit, we propose a simple chi-square type statistic: Let the set 𝐺 of person indices 

be subdivided into 𝐾 subsets, 𝐺1, . . . , 𝐺𝐾 , formed by ordering the persons by total score and binning 

them. In the application to the attention data 𝐾 = 5 subsets will be used, corresponding to the 

quantiles of the total score distribution. The chi-square type statistic for item 𝑖 is calculated by 

dividing the squared difference of the sums of the predictions 𝜇𝑣𝑖^  of the model and the sum of the 

scores 𝑌𝑣𝑖 by sums of the predictions for each group and summing over the groups:  

𝑋𝑖
2 = ∑

(∑ 𝑌𝑣𝑖𝑣∈𝐺𝑘 − 𝜇𝑣𝑖^ )
2

∑ 𝜇𝑣𝑖^𝑣∈𝐺𝑘

𝐾

𝑘=1

 

If the model holds, then 𝑋𝑖
2 asymptotically follows a 𝜒2-distribution with 𝐾 degrees of freedom, 

that is, for large samples the distribution of the statistic is well approximated by a 𝜒2-distribution. 

One can then proceed and investigate and/or remove misfitting items as in other IRT models by 

comparing 𝑋𝑖
2 to quantiles of the 𝜒2-distribution with 𝐾 degrees of freedom or calculating 

(approximate) p-values. Defining and applying the function requires the following code: 

chisquares <- function(glmerMod, theta_name, item_ids, person_ids, 
                       quantiles = seq(0,1,by=0.2)){ 
  if(!class(glmerMod) == "glmerMod"){ 
    stop("expected an object of class glmerMod. Use an output of glmer!") 
  } 
  resp <- model.extract(model.frame(glmerMod), "response") 
  pred <- predict(glmerMod, type = "response") 
  theta <- ranef(glmerMod)[theta_name][[1]][[1]] 
  groups <- cut(theta, quantile(theta, quantiles))[person_ids] 



 

  d <- data.frame(resp, pred, groups) 
   
  # define function to calculate itemwise chisquare statistic 
  itemwise <- function(data){ 
    resp <- data$resp 
    p <- data$pred 
    groups <- data$groups 
     
    expected <- tapply(p, groups, sum) 
    observed <- tapply(resp, groups, sum) 
    X2 <- (expected - observed)^2 / expected 
    sum(X2) 
  } 
  # return itemwise statistic: 
  by(d, item_ids, itemwise) 
} 
 

itemfit1 <- chisquares(fit1, theta_name = "ID", item_ids = attention$Item, 

person_ids = attention$ID) 

 

For the attention data, items 5 and 10 show misfit, i.e., the chi square-values are larger than the 

.99-quantile of a chi square distribution with five degrees of freedom. 

which(1- pchisq(itemfit1, 5) < 0.01) # check which items have a small p-value; 

df=5 and refers to the number of subsets of the persons  

 We omit a reanalysis with these items removed and mention in passing, that the asymptotic 

argument can be replaced by a parametric bootstrap in small samples. 

 

Differential Item Functioning 

When one or more groups are to be compared with IRT models, the comparison should be based 

on means of latent variables. The prerequisite for such a comparison is that the latent variables of 

both groups are on the same scale, otherwise one could merely be observing an artefactual 

difference (e.g. Holland & Thayer, 1988). As the scale is implied by the item difficulty parameters, 



it is vital to check that item difficulty parameters are identical, i.e., the items do not function 

differentially or that measurement invariance (Millsap, 2011) holds.  

We now discuss a Differential Item Functioning (DIF) detection method in the context of the 

RPCM, that builds on well-known approaches for existing IRT models. Similar to binary or ordinal 

IRT models, detecting DIF items is complicated by the fact, that latent means from the two groups 

cannot be assumed to be equal. We propose a modelling approach that first uses an LRT to 

investigate globally whether DIF is present. In the absence of DIF, group means can then be 

compared. The method also flags items as DIF items and by subsequently eliminating flagged 

items, a DIF-free item set can be obtained. 

In the attention test example, 3rd and 4th graders have been tested (N3rd  = 174, N4th = 54) and we 

investigate, whether there is a difference in latent means for these two groups. In a first step, we 

extend the model with different time limits (fit2) by group-specific intercepts: 

# Grade is 0-1 coded with 0 = 3rd grade and 1=4th grade  

 

fit3 <- glmer(Hit ~ -1 + Grade+Item+(1|ID), data = 

attention,offset=log(attention$TL),family=poisson,control=glmerControl(optimi

zer="bobyqa",optCtrl=list(maxfun=2e5))) 

 
 

 

Note that for numerical reasons, we have used a different optimizer (bobyqa) and a higher number 

of function evaluations (maxfun), which avoids mild convergence problems. The glmer function 

provides several alternative model fitting procedures (optimizers) and sometimes default values 

need to be adjusted to ensure model fitting proceeds smoothly. 

Output 6: Differential Item Functioning: Baseline Model 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 



Family: poisson  ( log ) 

Formula: Miss ~ -1 + Grade + (1 | ID) + Item 

Data: attention 

Offset: log(attention$TL) 

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)) 

 

     AIC      BIC   logLik deviance df.resid  

 24795.5  24936.8 -12375.7  24751.5     4538  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.2387 -0.6029  0.0094  0.6030  6.4120  

 

Random effects: 

Groups Name        Variance Std.Dev. 

ID     (Intercept) 0.1008   0.3175   

Number of obs: 4560, groups:  ID, 228 

 

Fixed effects: 

Estimate Std. Error z value Pr(>|z|)    

Grade  -0.03472    0.05077  -0.684  0.49402    

Item1  -0.31344    0.16695  -1.878  0.06045 .  

Item2  -0.13749    0.16674  -0.825  0.40961    

Item3   0.01648    0.16682   0.099  0.92130    

Item4   0.24139    0.16677   1.448  0.14776    

Item5   0.09174    0.16673   0.550  0.58215    

Item6   0.22540    0.16679   1.351  0.17655    

Item7   0.19329    0.16672   1.159  0.24629    

Item8   0.03662    0.16690   0.219  0.82635    

Item9  -0.27107    0.16689  -1.624  0.10433    

Item10 -0.48502    0.16719  -2.901  0.00372 ** 

Item11  0.03290    0.16690   0.197  0.84371    

Item12  0.12945    0.16690   0.776  0.43796    

Item13  0.01917    0.16681   0.115  0.90849    

Item14  0.16114    0.16686   0.966  0.33419    

Item15 -0.31215    0.16694  -1.870  0.06151 .  

Item16  0.05214    0.16688   0.312  0.75471    

Item17 -0.17454    0.16686  -1.046  0.29556    

Item18  0.19533    0.16682   1.171  0.24163    

Item19 -0.05513    0.16681  -0.330  0.74104    

Item20 -0.11973    0.16680  -0.718  0.47286    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The parameter of the Grade variable is the difference in latent means on the log-scale. Here, 4th 

graders are slightly less skilled. The item parameters are assumed to be equal in this model for 

both groups. As we have introduced the difference in latent means, the item parameters deviate 



slightly from this in fit1. We now add group by item interaction terms that represent the group-

specific deviations in item difficulty: 

 

fit44 <- glmer(Hit ~ -1 + Grade +Item+(1|ID) + Item*Grade, data = attention, 

offset=log(attention$TL),family=poisson,control=glmerControl(optimizer="bobyq

a",optCtrl=list(maxfun=2e5))) 

 

 

 

Output 7: Differential Item Functioning: Interaction Model 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 

Family: poisson  ( log ) 

Formula: Miss ~ -1 + Grade + (1 | ID) + Item + Item * Grade 

Data: attention 

Offset: log(attention$TL) 

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)) 

 

     AIC      BIC   logLik deviance df.resid  

 24806.4  25069.8 -12362.2  24724.4     4519  

 

 

 

Scaled residuals:  

Min      1Q  Median      3Q     Max  

-3.2378 -0.6033  0.0045  0.6033  6.2416  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 ID     (Intercept) 0.1008   0.3175   

Number of obs: 4560, groups:  ID, 228 

 

Fixed effects: 

             Estimate Std. Error z value Pr(>|z|)    

Grade         0.03749    0.06905   0.543   0.5872    

Item1        -0.54725    0.22572  -2.425   0.0153 *  

Item2        -0.06851    0.21853  -0.314   0.7539    

Item3         0.33401    0.22384   1.492   0.1357    

Item4         0.33312    0.22001   1.514   0.1300    

Item5        -0.02096    0.21713  -0.097   0.9231    

.                 .          .       .       . 

.                 .          .       .       .    

.                 .          .       .       . 

Grade:Item2  -0.09356    0.06594  -1.419   0.1560    

Grade:Item3  -0.17071    0.06774  -2.520   0.0117 *  

Grade:Item4  -0.10060    0.06641  -1.515   0.1298    

Grade:Item5  -0.03736    0.06539  -0.571   0.5677  



.                 .          .       .       . 

.                 .          .       .       .    

.                 .          .       .       . 

Grade:Item10 -0.24283    0.07382  -3.290   0.0010 ** 

.                 .          .       .       . 

.                 .          .       .       .    

.                 .          .       .       . 

 

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

The interaction of Grade and the individual items (the lines starting with Grade:ItemX) are the 

difference in item difficulty on log-scale of the 4th graders relative to the 3rd graders. For example, 

item 2 is slightly more difficult for the 4th graders (-0.094), but the difference is not significant. 

The difference of -0.170 for Item 3 is significant. Note however, that with 20 items, a multiple 

testing problem exists and one should not interpret significant interaction terms before conducting 

a global DIF test: 

 

By comparing the two models with an LRT, we test whether the interaction terms explain 

variability in the data, which amounts to a global DIF test. Here we find: 

Output 8: LRT for global DIF test 

> anova(fit3, fit4) 

Data: attention 

Models: 

fit3: Miss ~ -1 + Grade + (1 | ID) + Item 

fit4: Miss ~ -1 + Grade + (1 | ID) + Item + Item * Grade 

     Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq) 

fit3 22 24796 24937 -12376    24752                          

fit4 41 24806 25070 -12362    24724 27.069     19     0.1031 

 

A p-value of 0.10 results, indicating that the model with the interaction term does not explain more 

variability in the data, i.e., the LRT provides no evidence for global DIF. It is hence not necessary 



to remove items to limit the amount of item level DIF. We can now proceed and test for group 

differences by comparing fit2 and fit3: 

Output 9: Testing for Global DIF 

> anova(fit2, fit3)  

Data: attention 

Models: 

fit2: Miss ~ -1 + (1 | ID) + Item 

fit3: Miss ~ -1 + Grade + (1 | ID) + Item 

     Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq) 

fit2 21 24794 24929 -12376    24752                          

fit3 22 24796 24937 -12376    24752 0.4685      1     0.4937 

 

We find no differences in latent means (p =0.49), i.e., 3rd and 4th graders have comparable latent 

attention ability. Alternatively, the z-test for the coefficient of Grade in fit3 can be used (which is 

also not significant, z = -0.69, p = 0.49). 

In some scenarios one wants to study DIF on the item level. By studying the interaction terms 

in fit4 item-wise, we see which items have been flagged by the procedure. Here items 3 and 10 are 

flagged, and we could proceed to purify the item set by removing the flagged item with the smaller 

p-value first (item 10 here) and refitting the model of fit4 to the reduced item set to investigate the 

remaining item set. We caution, however, that this sequential procedure might be suboptimal in 

terms of the nominal alpha level. 

Dispersion 

In a Poisson model (and by implication in the RPCM) the assumption is that the variance of the 

dependent variable Y given covariates X is equal to its expectation, i.e. 

Var(Y|X) =  E(Y|X)                                            (7) 



In reality, this equidispersion assumption is frequently violated. The φ coefficient is essentially the 

ratio of model implied variance to predicted mean (McCullagh & Nelder, 1989). It is expected to 

be 1. Three scenarios may occur: 

1. φ is roughly equal to 1; the assumption of equal mean and variance is met. 

2. φ < 1 indicates underdispersion. This means that there is less variance in the data than the 

Poisson model predicts. This is a very commonly observed scenario in test data. This 

entails that confidence intervals calculated from a model fit are too wide. Also, in our 

context, the reliability is underestimated, i.e., the test seems less reliable than it really is. 

Clearly, this is undesirable and needs to be addressed. Unfortunately, the problem of 

underdispersion has been widely ignored in the literature and dispersion modeling normally 

focuses on overdispersion.  

3. φ > 1 indicates overdispersion. This means that there is more variance in the data than the 

Poisson model predicts. Confidence intervals for model parameters are too narrow and 

reliability is overestimated. Again, this in undesirable. 

There are some strategies to address under- and overdispersion: (1) deleting misfitting items or 

exclude persons (especially those without any mistakes might be the cause of an overly low 

variance), (2) employ a kind of ad-hoc statistical correction via a so-called quasi-Poisson-

Regression. This has been advised for the case of overdispersion in the literature, but it is not a 

standard procedure in the random effects case, and (3) employ extensions of the Poisson-

distribution, say the Conway-Maxwell-Poisson distribution (Boatwright, Borle, & Kadane, 2003; 

Shmueli, Minka, Kadane, Borle, & Boatwright, 2005) or the Gamma-count distribution (Zeviani 

et al., 2014). However, currently no standard procedures or software for these approaches are 

available. 



Generally, overdispersion is considered to be worse than underdispersion, because if ignored 

statistical inference is anti-conservative: When overdispersion occurs, SEs from a Poisson model 

are spuriously too small and when undersidpersion occurs they are artificially too large. To 

estimate φ the following code should be run: 

 

phi <- function(fit){ 

    y <- fit@resp$y  
    pred <- exp(predict(fit)) 

    sum((y - pred)^2/pred)/length(y) 
 } 

 

 
 
phi(glmer(Hit~-1+(1|ID)+Item,data=attention, family = poisson)) 
[1] 0.531849 

 

Which returns a φ equal to .53. The value of φ is way smaller than 1 which indicates 

underdispersion. The model is prone to underestimate reliability and inference on model 

parameters is conservative. 

Reliability 

As in other IRT models, reliability varies as a function of ability. Figure 4 shows reliability for 

different ability estimates. The horizontal axis depicts the ability continuum and the vertical axis 

depicts the reliability estimate. The plot implies that the precision of the test changes as a 

function of the ability. The reliability estimates for different locations on the log ability scale can 

be read from plot. For example the reliability for examinees with ability -1 on the log scale is .90 

and for examinees with ability -.50 is. 94.  

Note that we use a reliability estimate on log scale here, in contrast to Verhelst and 



Kamphuis (2009) and Doebler and Holling (2015). Specifically, from an estimate 𝑠𝜃~
2 of the latent 

variance of the person parameters on log scale, and a squared standard error 𝑠𝑣
2 for the vth 

person’s ability, we define 

𝑠𝜃~
2 (𝑠𝜃~

2 + 𝑠𝑣
2)⁄  

as the person specific reliability estimate for person v. 

Figure 4 was produced with the following lines of code:     

 

 

 theta_ests <- as.data.frame(ranef(fit1, condVar = TRUE)) 

var_log_theta <- as.numeric(VarCorr(fit1)) 

plot(theta_ests$condval, var_log_theta/(var_log_theta + theta_ests$condsd^2), 

     ylab = "reliability estimate", # label of y-axis 

     xlab = "log-person ability estimate", # label of x-axis 

     pch = 19, # type of symbol (19 = small dot) 

     cex = .1) # size of symbol (.1 = one tenth of default size) 

Figure 4: Reliability graph 



 

Conclusion 

In this article the RPCM was reviewed and R functions were given to fit the model. The ‘lme4’ 

package (Bates, et al., 2017) in R was employed to estimate the model parameters. The data of 228 

respondents to an attention test developed after the model of “Ruff 2 and 7” test (Ruff, et al., 1988) 

were analyzed and the outputs were interpreted. Item residuals and a chi-square type statistic 

showed that only two items misfit the model. Overall graphical and statistical model checks 

indicated that the attention data fit the RPCM, but the data was underdispersed, making inference 

conservative and biasing reliability estimates downwards.  

Instead of modeling the counts of the correctly checked items (Hit) we could have modeled the 

counts of missed items (Miss). The analysis of the counts of missed items, which is not reported 

here due to space limitations, had a better fit to the data. In the original application of the model 

by Georg Rasch also the oral misreadings or errors were modeled instead of the correct words.    

The MML-approach as implemented with the glmer function here has several advantages and some 

practical and statistical limitations: On the plus side, the GLMM framework is very flexible. One 

can add covariates as fixed effects and incorporate additional random effects, for example to model 

multilevel structures in the data that appear naturally in many (educational) applications, such has 



persons nested in classrooms which are maybe even nested in schools (e.g. Aiken, Mistler, Coxe, 

& West, 2015). Adding fixed effects is interesting to explain variation in ability, say to predict 

ability by gender, age or experimental conditions. While we cannot cover all these techniques in 

this brief example, we refer the reader to the authoritative monograph on explanatory IRT models 

by de Boeck and Wilson (2004) and the tutorial by de Boeck et. al. (2011) for IRT-models for 

dichotomous data. However, by assuming log-normal person parameters, the MML-approach is a 

bit more restrictive than conditional maximum likelihood (CML). From our experience, the 

differences in item parameter estimates are minor, i.e., they are essentially only rescaled. Also, 

glmer can be computationally intensive for large datasets and complex models. 

It is worth noting in this context, that count data items are typically more informative of person 

ability than binary items. This has two consequences: Person parameter estimates are reliable, even 

when only a few items are used. Depending on an item’s mean and the variance of the person 

parameters, as few as three items will give reliable person parameter estimates. The second 

implication is that as a rule of thumb sample size requirements for RPCM are more modest 

compared to the dichotomous case, which includes the explanatory models mentions above. 
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