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Abstract: Cyber security is used to protect and safeguard computers and various networks from
ill-intended digital threats and attacks. It is getting more difficult in the information age due to
the explosion of data and technology. There is a drastic rise in the new types of attacks where the
conventional signature-based systems cannot keep up with these attacks. Machine learning seems to
be a solution to solve many problems, including problems in cyber security. It is proven to be a very
useful tool in the evolution of malware detection systems. However, the security of Al-based malware
detection models is fragile. With advancements in machine learning, attackers have found a way to
work around such detection systems using an adversarial attack technique. Such attacks are targeted
at the data level, at classifier models, and during the testing phase. These attacks tend to cause the
classifier to misclassify the given input, which can be very harmful in real-time Al-based malware
detection. This paper proposes a framework for generating the adversarial malware images and
retraining the classification models to improve malware detection robustness. Different classification
models were implemented for malware detection, and attacks were established using adversarial
images to analyze the model’s behavior. The robustness of the models was improved by means of
adversarial training, and better attack resistance is observed.

Keywords: malware detection; adversarial machine learning; deep learning; cyber security

1. Introduction

Malware has been a threat to individuals and organizations for a very long time. It
dates back to the 1970s, when the Creeper Virus was first encountered. Since then, the
world has faced a constant and never-ending stream of malware attacks from hundreds
of thousands of its variants [1,2]. The sole intent of such programs is to cause as much
disruption and destruction as possible [3-5]. Even after advancements in cybersecurity,
malware attacks are still a great threat to the world. Recent studies have shown that more
than 60% of organizations still face malware threats, and just 5% of companies” documents
are properly protected, on average. These dangers cost a lot of money and time, with the
average cost of a malware assault on a corporation being USD 2.6 million and the average
time it takes to recover from a malware attack being 50 days [6,7]. Machine learning in
malware detection has become increasingly important in the face of such serious attacks.

Every day we face a new threat in cyberspace. With the onslaught of such threats, we
need a tool to go toe to toe with it [8,9]. Machine learning is the answer to not just this but
many other problems [10]. Even though today’s systems are built with some of the most
secure code and penetrate systems, there are still many vulnerabilities, primarily due to
human error, obsolete software, and the use of insecure protocols and systems. Malware is
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the modern-day artillery used by attackers to hurt unsuspecting consumers and steal their
data by violating their privacy [11,12]. Malware detection systems have progressed from
detecting binary files to detecting executables. However, such attacks can also target the
detection system [13].

Machine learning models learn to classify malware by a learning process in which
the model is provided with a training data set and testing data set. The model learns with
the help of the training dataset [14,15]. There is a huge drawback to this approach. The
attackers can affect the learning process and circumvent the classifiers, helping them to
bypass the detection systems. It also affects the privacy preservation of the data in such
systems [9,16]. Along with machine learning, deep learning techniques have also been
applied to improve malware detection’s accuracy [17]. DL models such as LSTM, RNN,
CNN have been implemented in the literature [18,19].

Adversarial attacks are these types of attacks, and adversarial modeling (AML) is the
process of training a model to withstand them without compromising its overall effective-
ness (adversarial machine learning) [20,21]. It has been extensively tested and applied in
areas such as spam detection and image classification. In domains such as malware detec-
tion, its exploration is currently insufficient [22,23]. Robust malware detection is not only
needed for standalone systems, but also lIoT-based systems [24,25] and Android system:s,
which also require an aggressive malware management framework. Lots of attacks happen
at the sensor level, and also in Android-based devices [26].

In this work, the authors examined various state-of-the-art ML and DL architectures
and their optimization for malware detection in this research work, and how those algo-
rithms may be made more robust by attacking and training them using adversarial data.

2. Theoretical Background
2.1. Malware and Types of Malware

Malware is malicious software that causes extensive damage to the data and systems
or gains access to the sensitive information of a network. Based on its purpose, malware
classification can be performed in the following ways.

2.2. Malware Analysis

Before initiating malware detection techniques, there is a need to analyze the different
functionalities of a particular malware, how it executes these functionalities, and the
purpose behind its development. Malware analysis techniques are classified into three
main categories [27]:

1.  Statics Analysis—This includes examining a program’s or software’s source code
without running it. The static information from the source code is extracted in this
procedure to see if it contains any dangerous code. Debuggers, de-compilers, de-
assemblers, code analyzers, and other tools are used for this type of analysis. File
format extraction, string extraction, fingerprinting, AV scanning, and disassembly are
some of the methods used to do perform static analysis with the help of these tools.

2. Dynamic Analysis—The functionality of the software or a program is examined using
this method, which involves running the source code. In other words, a software’s
behavior is examined, and the software’s intents or purpose are deduced from these
observations. This is commonly done in a virtual environment with a sandbox,
simulator, emulators, RegShot, a process explorer, and other tools. This strategy
makes malware detection simple.

3. Hybrid Analysis—This is a hybrid of static and dynamic analysis techniques. The
source code is first analyzed in this manner, and then it is run in a virtual environment
to examine its actual behavior [28]. Table 1 shows the comparative analysis of static
and dynamic methods.
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Table 1. Comparison between static analysis and dynamic analysis.
Static Analysis Dynamic Analysis
Signature-based malware detection Behavior-based malware detection
Simple and Straightforward analysis Thorough analysis
Best suited to detect common malware Can detect advanced malware
It is fast and safe It is time-consuming and vulnerable

2.3. Malware Detection Techniques

Malware detection strategies can be divided into three categories based on signatures,

heuristics, and requirements. These strategies describe and track malware, as well as taking
countermeasures against it, to safeguard information systems, data, and resources from
being harmed by it [27]:

1.

Signature-based detection technique: When malware is created, it has a signature,
which may determine which malware family it belongs to. The majority of antivirus
solutions use a signature-based identifying mechanism. The antivirus software de-
codes the corrupted file code and looks for malware-related sequences. Signatures of
malware are stored in a database and are compared later during the detection process.
This type of identification technique is also known as scanning or matching string or
pattern. It could be static, dynamic, or hybrid in nature.

Heuristic-based detection technique: Heuristic-based identification detects or distin-
guishes between a system’s normal and abnormal activities, allowing known and
suspected malware threats to be identified and resolved. The heuristic-based de-
tection technique is divided into two parts. In the first stage, the behavior of the
mechanism is observed in the absence of an attack, and a record of essential details
is kept that may be confirmed and tested in the event of an assault. This disparity
is noted in the second phase to detect malware from a certain family. The action
detector in the heuristic-based methodology is made up of the three basic components
listed below.

(a) Data collection: Under this component, the data collection is performed with
either static or dynamic techniques.

(b) Interpretation: This component turns the data obtained by the data collection
component into the intermediate form after interpretation.

(c) Matching algorithm: This component is used to match the transformed infor-
mation to the behavior signature in the interpretation component.

Specification-based detection techniques: Applications are managed according to their
parameters and controls for normal and abnormal behavior in specification-based
detection approaches. This methodology is derived from a heuristic technique. The
key difference is that heuristic detection techniques use machine learning and Al to
identify a legitimate program’s valid and invalid behavior. In contrast, specification-
based detection techniques study the actions defined in the system specification. This
method is more of a manual comparison of the system’s typical operations. It solves
the flaws of heuristic-based techniques by lowering the number of false positives and
increasing the number of erroneous negatives. Each malware detection technique
might be static, dynamic, or hybrid. Figure 1 shows an overview of the different
malware detection techniques.

2.4. Need for Artificial Intelligence

Malware detection systems based on signatures work flawlessly when the mal-
ware is previously known and has been detected by some other antivirus vendors.
However, such a system is practically useless in polymorphic malwares, as they
would go undetected because such malware can change their signatures. So generally,
malware detection depends on the heuristic-based approach for such kinds of mal-
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ware. However, it is not very efficient in adequately detecting malware, as it gives
many false positives and false negatives.
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Figure 1. Different types of malware detection techniques.

Now, the spread of such polymorphic malware has overwhelmed the traditional
heuristic-based approach. One solution to this problem is to amalgamate the heuristic-
based approach and the powers of machine learning methods [29] to yield higher accuracy
during the detection.

3. Malware Detection and Classification with Machine Learning

Machine learning is a methodology in which we make the computer learn about
the problem statement. We make it learn by giving it the data and the information in
observation and real-world interactions. In the architecture of malware detection proposed
by Gupta et al. [30], they used data from the VXheaven, Nothing, and VirusShare datasets
on models and applied 10-fold cross-validation to it. Multiple classification algorithms were
used, including support vector machine, naive Bayes and random forest. The performance
was evaluated using the FPR, FNR, TPR, accuracy and precision. The naive Bayes, SVM,
and random forest gave the accuracy of 96.8%, 97.68%, 99.11%, respectively [31]. Among
the three, random forest showed the highest accuracy, with the lowest FPR & FNP.
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Burnap et al., 2018 [32] presented a novel approach where the self-organizing feature
maps are used to classify and reduce the overfitting between the malware and benign
files occurring during training of the dataset. This dataset is gathered with the help of the
VirusTotal APL. Random forest, BayesNet, MLP, and SVM are among the classifiers used in
this paper. The random forest classifier has the highest accuracy, with a score of 98 percent.
However, due to overfitting, it was reduced by 12% when applied with various datasets.
The problem of overfitting was addressed with the program Self-Organizing Feature Map
(SOFM), which is a classifier based on the ANN technique, and the accuracy increased
by 7%.

Al Ahmadi et al., 2018 [33] suggested a novel mal classifier technique. CTU13 and
the Stratosphere IPS project were the datasets used. With 95.5 percent accuracy, KNN and
Random Forest were employed for malware classification and training.

Pai etal., 2017 [34] proposed a novel malware classification method based on clustering
techniques such as k-means, expectation-maximization, and hidden Markov models. The
information was gathered from the Malicia website. Among all of the methods, expectation-
maximization had the best accuracy.

Liu et al. [35] provided an approach in which the unknown malware instances are
classified into a cluster according to their families. The shared nearest neighbor clustering
algorithm was used, giving an accuracy of 98.9% for available malware and 86.7% for
unavailable malware.

Neural networks were employed by Kosmidis et al., 2017 [36] to classify unknown
malware. The methods used for malware classification were perceptron, decision tree,
closest centroid, stochastic gradient, multilayer perceptron, and random forest, with the
random forest approach providing the best average of training and testing accuracy.

Gandotra et al., 2014 [37] presented a framework to classify unknown malware ex-
tracted from static and dynamic features. Multilayer perceptron, IB1, decision tree, and
random forest were the four classifiers used to classify the data. With a 99.58 percent
accuracy rate, random forest was the most accurate.

Tian et al., 2009 [38] proposed a method for classifying malware using printable strings.
Naive Bayes, support vector machine, IB1, random forest, and decision trees were used on
the retrieved features. The AdaBoostM1 meta-classifier was employed to increase efficiency.
With a 97 percent accuracy, random forest and IB1 produced superior outcomes.

Devesa et al., 2010 [39], To improve the performance, Naive Bayes, SMO, Random
forest and J48, were used to the retrieved features in this work. Random forest classifiers
were the most accurate, with a 96.2 percent accuracy rate.

4. Challenges

Detection systems empowered by machine learning usually react to evasion attacks by
analyzing the attack and retraining the model based on the newly collected data. The next
time the attacker uses a similar approach, the system can counter the attacker’s strategy.
This system works fine in the scenario mentioned above, but what if it is under attack?
A type of attack that feeds the system with an example that makes the model learn to
misclassify? Such types of attacks are known as adversarial attacks, and are an increasing
threat in the security area. Such a challenge can be overcome by none other than what is
called adversarial machine learning [40]. Table 2 shows an overview of the existing systems
and also discusses the Al algorithms used in these systems.
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Table 2. Overview of existing techniques.

Paper Algorithms Used Dataset Sources Results
[30] Naive Bayes methodology, SVM, VX Heaven, Virus, Share, Nothin K. The Random Forest gives the
random forest best accuracy
[32] Random forest, BN, MLP, SVM, SOFM Virus total AP Performance increased by 7.24%
. Performance increased. An accuracy of
[33] KNN, random forest CTU13, Stratosphere IPS project 95.5% was accomplished
[34] Clustering algorithms Collected from Malicious website Expectation maximization techniques

give a high accuracy
98.9% accuracy of known malware and
[35] Shared nearest neighbor (SNN) Kingsoft, ESET NOD3 2, and Anubis 86.7% of accuracy for unknown
malware detected
Stochastic gradient, multilayer perceptron,

[36] random forest, decision tree, nearest Making a dataset
centroid and perceptron

Improved accuracy results using
random forest algorithms

[37] MLP, DT, IB1, random forest University of California Random Forest had high accuracy
values of 99.58 percent
, . Better accuracy and improved
[38] Random forest, IB1, DT, support CA’s (Computer Associates) VETZoo performance by 9% using random forest
[41] Adiic:gls‘tr’;fcll’ﬁf;%?q Ifgfsz%z;gsort CA’s VET zoo Overall classification accuracy is 97%
[39] Naive Bayes, random forest, SMO, J48 VX Heaven Random Fore(s)’; gg\; /ohigh accuracy

5. Adversarial Machine Learning

Machine learning algorithms are developed to assume that the environment is benign,
but they fail when even a small adversary can modify their inputs. This is where adversarial
machines come in handy [42]. Adversarial machine learning is a branch of machine learning
that studies a set of assaults aimed at degrading the performance of classifiers on certain
tasks. Adversarial machine learning ensures the machine learning model’s resilience [22,43].
Figures 2 and 3 show the taxonomy of the adversarial attacks and defenses.

i' "
tdversan‘al Attacks

v v v

Location Specific Knowledge Specific iKnowledge Speciﬁc'
| Attacks | Attacks | | Attacks
Training Attack White Box Attack
—»  Eg: Poisoning —>»  Eg: DeepFool, —» Targeted Attack
attack JSMA, C&W,

Black Box Attack
> Equg?:i:cemag?tgt . —»  Eg: Physical —> Non Targeted Attack
2 Attacks. OOD attack

Figure 2. Different types of adversarial attacks and their classification.
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Figure 3. Different types of adversarial defenses and their classification.

5.1. Adversarial Attacks

Several attack tactics and approaches have been studied and utilized to identify mal-
ware, with a trade-off between several characteristics, including performance, complexity,
computing efficiency, and application situation, including black box and white box as-
saults [44]. White box attacks are those in which the attacker has all the information and
know-how about the internal workings of that particular model, including training data,
model parameters, and other useful information about the classifier. In contrast, black-box
attacks are those in which the attacker cannot or does not know the internal workings of
the model and has no prying access to it.

On the other hand, gradient-based techniques frequently include certain perturbations
that are specifically developed and optimized for specific distance metrics between the
original input samples and the perturbed ones.

The following are three frequently used distance measures that have been studied in
the literature:

1. Linf—This effectively reduces the maximum amount of disturbance that every feature
is subjected to;

2. L0—On the other hand, this reduces the number of characteristics that are affected;

3.  L2—This lowers the ED between the initial and altered samples on average.

Different Adversarial Attacks

1.  L-BFGS: This attack method uses the L2 Distance Metric. To reduce the number of
perturbations applied to the pictures, the L-BFGS optimization is utilized [20]. This
approach is quite good at generating adversarial instances. However, it is compu-
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tationally rigorous, because this attack approach is categorized as an optimization
method with box constraints.

FGSM: This assault technique uses the Distance Metric LinF. In this assault technique,
flat perturbations are applied to every feature in the direction of the gradient. This
assault technique saves time in terms of computing. The main disadvantage of this
assault approach is that perturbations are produced even when they are not needed
and are applied to every feature.

JSMA: This assault tactic uses the Distance Metric LO. Flat perturbations are applied
to features in decreasing order in this attack approach, depending on their saliency
value. Because just a few characteristics are disrupted, this attack technique is highly
successful. It is, nevertheless, more computationally expensive than FGSM.
Deepfool: Distance Metric L2 is used for this attack strategy. This attack strategy
estimates decision boundaries between the classes, and the perturbations are added
iteratively. This strategy is highly effective at producing adversarial examples. This
strategy, however, is computationally more intensive than FGSM and JSMA, and
adversarial examples likely produced may not be optimal.

C&W: This assault plan employs all distance measurements, L0, L2, and Linf. This
attack technique is similar to the L-BFGS attack (i.e., optimization problem), except it
does not need box restrictions and has different objective functions. Although this
method is computationally more rigorous and demanding than other attack tactics,
such as FGSM, JSMA, and Deepfool, it is highly successful at creating adversarial
instances and can quickly overcome various adversarial defenses.

GAN/WGAN: This assault tactic employs no distance metric. This approach entails
training two neural networks, one for generating samples and the other for distin-
guishing between actual and produced samples. This approach is quite good at
producing samples that are not the same as those used in training. However, training
a GAN requires a lot of computing power and can be quite unstable.

ZOO: This assault tactic uses the Distance Metric L2. This approach predicts the
gradient and hessian by querying the target model with updated individual charac-
teristics and utilizing Adam or Newton’s technique to minimize perturbations. Its
effectiveness is comparable to that of the C&W assault. This assault strategy’s sole
disadvantage is that it necessitates a high number of requests to the target classifier.

5.2. Adversarial Defenses

1.

Adversarial Training: This method integrates hostile instances (adversarial example)
into the training set or the model’s loss function, making it easy to use. When assaults
during deployment are identical to those in training, it is the most successful defense
technique. The only downside is that this method requires retraining the classifier in
use, and it may be ineffective against assaults not listed above [20].

Gradient Masking: This entails employing strategies that cause the attacker to become
perplexed regarding the model’s gradient, causing them to underestimate it. If attacks
are transferable across various models, this defense technique will fail.

Defensive Distillation: This requires creating and training a new network with the
last structure, using neural network distillation. However, the C&W attack appeared
to have defeated them. Aside from that, it necessitates the training of a completely
new model, which is another drawback of this defense.

Feature Squeezing: This is a collection of techniques that classify data using com-
pressed characteristics and features. It is best for working with images because it is
only beneficial in specific cases where compression is achievable without considerable
data loss.

Transferability Block: As part of this defense mechanism, the model is trained with
new labels (NULL) with values proportional to the amount of noise in the sample.
This is one of the most effective strategies for finding conflicting instances. It is, on
the other hand, unable to recognize an antagonistic sample’s original labels.
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6.  Universal perturbation defense method: This method employs a network that takes
features from adversarial instances and trains another model that recognizes and
identifies these adversarial samples. This does not necessitate the training of new
models and works in the same way as other defense mechanisms, but attacks with
different parameters can have identical effects.

7. MagNet: With reconstruction error, this method trains an autoencoder to recognize
adversarial examples and then utilizes a different one to produce non-adversarial
samples for classification on a separate classifier. It necessitates autoencoders, which
might be difficult to train at times, which is a disadvantage of this technique.

A malware detection approach based on autoencoders and GANs was proposed by Jin-
Young Kim et al. [45]. They used a typical malware challenge dataset that was accessible on
Kaggle. In identifying adversarial assaults, their suggested model beat models of machine
learning used in the past, such as support vector machines, KNN, random forest, MLP, and
naive Bayes. Joseph Clements et al. used the Kitsune network IDS (NIDS) classifier on the
Mirai botnet dataset to detect malware using four adversarial attacks: FGSM, ENM, JSMA,
and C&W.

Their study’s primary findings were that all attacks had 100% FNR in integrity attack
scenarios. In comparison, JSMA and FGSM only had 4% and 0% FNR in availability attacks,
respectively, while C&W and ENMc had 100 percent.

Biggio et al. [46] created various adversarial cases and tested them against malware
classifiers for PDF files using the Contagion dataset. Both neural networks and SVM
classifiers obtained false negative rates of up to 100%, suggesting that the assaults were
extremely successful in a black-box scenario.

In a black-box oracle setting, Weiwei Hu and Ying Tan employed MalGAN to create
adversarial malware. The classifiers addressed included random forest, linear regression,
decision tree, SVM, MLP, and a voting ensemble of the preceding classifiers. The study
discovered that all classifiers could achieve a TPR of 90%, with decision trees performing
the best. All classifiers” TPRs went below 0.20 percent.

Grosse et al. [47] discovered that the attack employing the Drebin dataset, an Android
malware dataset using a binary neural network classifier, had misclassification rates ranging
from 63 to 69 percent, with decreased misclassification rates as the malware ratio increased.
The distillation and adversarial training techniques were also tested, with results indicating
that accuracy decreased by up to 2% while using distillation on normal data. Still, the
misclassification rate plummeted by up to 38% when under assault.

Anderson et al. [48] used a reinforcement learning technique, deep Q-learning, to
target a malware dataset. When a sample successfully misclassified the target model, it
was given this reward. The authors utilized a gradient augmented decision tree to tackle
it, which yielded a 16 percent evasion rate. Their findings also indicate the characteristics
which were used to attack the model.

Weilin Xu et al. [49] employed a genetic programming technique to conduct evasion
attacks on the Contagio PDF malware dataset. The results indicate that a 100% evasion rate
was obtained while assaulting both defenses and maintaining the integrity of all attacks. In
all, 16,985 evasive variants for PDFrate and 2859 for Hidost were identified.

Calleja et al. [50] employed genetic programming techniques to change dangerous An-
droid apps in the DREBIN dataset so that they were mislabeled to distinct malware families,
and then used RevealDroid, a decision tree-based categorization tool. The authors were
able to misclassify 28 of the 29 malware families by only adding one additional feature.

Menéndez et al. [51] utilized entropy time series analysis with different forms of poly-
morphism (EnTS). The Kaggle malware competition dataset, packet (Pck) malware from
VirusShare, and Mix, a dataset created from the first two, were used to evaluate the method.
According to the data, EnTS achieved 82 percent accuracy while maximizing precision
(100 percent) and 93.9 percent accuracy while maximizing accuracy. El Empaquetador
Evolutivo (EEE) assaults resulted in an FNR of 90.8 percent to 98.7 percent, up from 0% to
9.4% without attacks.
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Chen et al. [52] proposed evasion attack malware (EvnAttack) situated in exec and
enhanced the FNR from 0.05 to 0.70. In addition, when Se Defender was deployed, the F1
score was restored to 0.95, while the FNR was drastically lowered.

Anderson et al. employed GANs for DGA, commonly used by malware to allow
numerous created domains to update the infection. After training the auto-encoder on the
Alexa top 1M dataset, a random forest classifier with specifically built properties such as
length, entropy character distribution, and vowel to consonant ratio was used.

This table files CCSCD (private) was used, and the results showed that Even Attack
dropped the F1 score from 0.96s to 0.43s model decreased AUC against regular attacks
from 0.99 to 0.94. Table 3 gives an overview of the existing adversarial attack techniques.

Table 3. Overview of existing adversarial attack techniques.

Paper

Attack Techniques

Classifiers Datasets

Metrics

Results and Conclusion

[45]

[46]

[47]

[48]

[49]

[50]

GAN

FGSM
JSMA
C&W
ENM

Gradient-Based
Technique

GAN

Modified [SMA

Deep Q-Learning

Genetic Algorithm

Genetic Algorithm

El Empaquetador
Evolutivo

EvnAttack

GAN

Decision tree
Random forest
SVM Kaggle Malware
KNN VirusShare
Naive Bayes
LDA

Kitsune NIDS (ensemble

of autoencoders) Mirai botnet

SVM Neural Network Contagio

Neural network malware

Neural network DREBIN

Gradient boosted DT Custom

PDFrate (Random forest)

Hidost (RBF SVM) Contagio

RevealDRoid (Decision tree) DREBIN

Kaggle Malware

Entropy time series analysis VirusShare

Comodo Cloud Security

Unspecified Centre Dataset (Private)

Random forest Alexa top 1M domain

Accuracy

False-negative rate

ENR

TPR

Misclassification rate

False-negative rate

Evasion rate

Evasion rate

Precision Accuracy
False-negative rate

F1 score, FNR

AUC

-An accuracy of 98% was reached
when other techniques were only
able to reach between 66% and
96% accuracy.

-All attacks were able to achieve
100% ENR.

-Under availability attacks, FGSM
and JSMA were only able to
achieve 0% and 4% FNR, while
C&W and ENM were able to
achieve 100%.

-FNR for NN and SVM classifiers
reached 100%.

-In a black-box setting, the attacks
are quite effective.

-TPRs of more than 90% were
achieved by all classifiers, with
the decision tree proving to be the
strongest performer. TPRs for all
classifiers fell below 0.20 percent.
-under attack misclassification
rate was between 63% and 69%
-Distillation reduced the accuracy
by 2% but improved MR to 36%
-For the black box attack, a
16 percent evasion rate
was attained.

-An evasion rate of 100% was
recorded against both defences
-16,985 evasive variants were
found for PDF rate and 2859
for Hidost
-For 28 of the 29 malware
families, a 100 percent evasion
rate was obtained.

-EnTS was able to attain an
accuracy of 82 percent and
94 percent when
maximizing accuracy.
When using EEE, the false
negative rate increased from 0%
to 9.4 percent, but the rate
increased from 0% to 9.4 percent
when not using EEE.
-EvnAttack improved the FNR
from 0.05 to 0.70 and reduced the
F1 score from 0.96 to 0.43.

-Se Defender improved the F1
score from 0.43 to 0.95 while also
significantly lowering the FNR.
-A decrease in the AUC from 0.99
against regular attacks to 0.94
against GAN was noted.

6. Implementation
6.1. Proposed Flow of Research Work

Based on the literature review and the knowledge acquired, the authors proposed the

methodology as explained in Figure 4.
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Figure 4. Schematic representation of the proposed model architecture.

6.2. Data Collection
About the Dataset

As the first step of data collection, we first finalized an open-source malware dataset
called the MaleVis dataset [55]. It comprises byte images of 25 malware classes and one
legitimate class. This dataset was constructed by converting malware binary files into
three-channel RGB images using bin2png script developed by Sultanik. This dataset is
available in two square-sized resolutions, that is, 224 x 224 and 300 x 300 pixels.

The MaleVis dataset has a total of 9100 training and 5126 validation RGB images. All
the classes in the training set are perfectly balanced, containing 350 images each. While
the validation set has a varying number of images. However, the legitimate class in the
validation set is larger, having 1482 images. This is because the nature of malware detection
is based on discriminating the legitimate ones from the malware images. Figure 5 shows the
different malware classes in the Malevis dataset, Figure 6 shows the distribution of samples
across various malware classes loaded in the datasets. Figure 7 shows the classification of
different malware classes into malware types.
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Figure 5. Malware classes in the dataset.
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Figure 7. Classification of dataset malware classes as malware types.

Bozkir et al. [56] proposed a new memory dumping and computer vision-based
method to detect malware in memory even they do not exist on hard drive using MaleVis
dataset. The state of the art manifold learning and dimension reduction technique named
UMAP was used for the first time in the problem domain for better discrimination.

Aslan et al. [57] proposed a novel hybrid deep-learning based architecture for malware
classification with the help of the MaleVis dataset. The authors’ suggested method uses a
new hybrid layer that involves two pre-trained models instead of one model. The proposed
method reduces feature spaces significantly. The measured accuracy rates are higher than
those of known methods.

6.3. Algorithms Used
The authors used three different types of classification algorithms as explained.

6.3.1. Machine Learning

Random forest [58] is a machine learning approach based on ensemble learning, which
is described as a way for addressing a complex issue by integrating several classifiers and
then improving the model’s performance.
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(None, 126x126x30)

It is a classifier that utilizes the arithmetic mean to improve the dataset’s prediction
accuracy. It is a classifier with a lot of decision trees based on distinct subsets of the
original dataset.

The random forest algorithm’s operation may be summarized as follows:

K random data points are chosen at random from the dataset.

The decision trees that are related to the specified data points are built.

Choose the number N for the decision trees that need to be built.

Repeat steps 1 and 2 as needed.

Finally, calculate the new data points’ forecasts for each tree, and then assign the new
data points to the category with the highest votes [59,60].

SRR

6.3.2. Deep Learning

Deep learning is a type of machine learning. We can extract greater features from
input data using a deep network of artificial neurons and artificial neural networks. Deep
learning starts working with the raw data, from the lowest level then works its way to the
higher levels. For instance, in image classification, the lower levels would detect the edges
of the object in the image, and as the neural network gets more complex, it may take on
high-level features. There are many different deep learning algorithms for different sorts
of challenges. The authors chose the convolutional neural network for this research work.
Figure 8 shows the architecture of the CNN model.

{with dropout}

Max Pooling2D_1 C|ass 1
(None,30x30x15)
, Class 2
: : Class 3
bl | i
Max Pooling2D Flatten
(None,63x63x30) (None, 13500) :
®
| Class 26

Figure 8. Convolutional Neural Network Architecture.

Convolutional Neural Networks

Convolution is the process of applying a filter to an input to generate an activation.
When the same filter is applied several times, a feature map is created, indicating the
position and intensity of identified features in input, such as an image. What distinguishes
CNN is its ability to learn many filters in parallel, specifically to a training dataset, within
the constraints of any specific classification or prediction modeling job, such as image
classification. As a result, the input image has a collection of very distinct characteristics
that may be easily identified [61,62].

EfficientNet BO

In computer vision, transfer learning is a popular method, since it allows quick de-
velopment and building accurate and efficient models. Instead of starting the learning
process from scratch, transfer learning begins with patterns learned while solving a sep-
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arate problem. This way, one can build on existing knowledge rather than starting from
scratch [30].

Pre-trained models are commonly used to implement transfer learning. A pre-trained
model has been trained on a big benchmark dataset to tackle a problem comparable to the
one that one decides to work on. As a result of the high computational cost of training such
models, it is customary to import and use models from the literature (e.g., VGG, Inception,
MobileNet). In this research analysis, the authors implemented the EfficeintNet- BO model
to detect malware.

EfficientNet-B0 is a CNN architecture and a scaling method that evenly scales all
dimensions, including depth/width/resolution, using a compound coefficient. For exam-
ple, if we choose to use computational resources that are 2N times larger, then this can be
done by increasing the depth of the network by o, the width of the network by BN, and
image sizer by y", where q, 3, and y are all constant coefficients. The implementation of
EfficientNet-B0 is performed by using the imagenet weights.

6.4. Adversarial Sample Generation

A variety of deep learning algorithms are highly accurate and precise in classification
tasks, be it natural language or image. These models are considered to be very good in
terms of their performance. However, at the same time, various research and studies claim
that these models, without any prior specific training, are highly susceptible to adversarial
attacks. With an increase in the research in AML, a variety of new and much more powerful
algorithms have been developed, which could easily temper and exploit these models [63].
In many scenarios, the attacks are initiated and implemented using the adversarial samples
created and given to the models to implement an attack, as shown in Figure 9. In some
cases, these samples are designed not to be visible to the naked eye, and one cannot figure
out any difference.

Clean Malware Image FGSM Perturbation Malware image with Noise

Figure 9. Perturbed image generation in FSGM attack to fool the classifier.

These attacks are divided into two categories: white-box attacks, in which the attacker
has complete control and knowledge of the model’s structure before initiating and im-
plementing attacks, and black-box attacks, in which the attacker does not have complete
control and knowledge of the model’s structure before initiating and implementing attacks.

The fast gradient sign method is a type of white box attack and uses adversarial
samples to implement an attack to temper and exploit a given model. An adversarial image
needs to be created to implement this attack. Adversarial images are created using the
combination of input (normal image) and a perturbation. These perturbations are the noises
added to an input image to create an adversarial image [64,65]. In FGSM, the perturbations
are created using the input samples. Thus, each perturbation is unique for different input
samples and is generated by analyzing the different properties of the samples. This process
causes the perturbations to completely merge into the input image so that the human eye
cannot figure out the difference between the original and the perturbed image [66].

A simple schematic representation of how the FGSM algorithm works can be seen
from the example below.

The FGSM method works in the following manner:
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Take an input image

Make predictions using a trained model on the image
Computation of loss of prediction based on the true class label
Calculations of the gradients of loss for the input image
Computation of the sign of the gradient

Use the signed gradient to construct the output adversarial image

SRR

For this work and research analysis, to generate the adversarial images for the Malevis
dataset, the steps mentioned in the algorithm were used. Several input images were
grouped in batches based on the class of the images and were taken as samples and put
through the FGSM model for various epsilon values. Subsequently, the adversarial samples
were generated. The three epsilon values used for the sample generation for this project
and research were 0.01, 0.1 and 0.15. Epsilon values are values multiplied by the signed
gradients to ensure that the perturbations are small enough that the human eye cannot
detect them but are large enough to fool the trained models. Table 4 shows the generation
of adversarial input malware images at various epsilon values.

Table 4. Adversarial input generation.

Adversarial Inputs

e =0.01 e=0.1 e =0.15

Classes Original Input

installCore

Elex

VBA

Neoreklami
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Table 4. Cont.

Classes

Original Input

Adversarial Inputs

€ =0.01

£=0.1
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Amonetize
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6.5. Adversarial Defense Mechanism

The below schematic representation shows how the authors performed the adversarial
attack. Different models, namely, random forest, convolution neural network and Efficient-
Net B0, were initially trained using the MaleVis dataset by traditional methods, after which
an adversarial attack using the FGSM method was performed. The images in the dataset
were mixed with some noise of three different epsilon values, which were 0.01, 0.1, and
0.15. When these adversarial images are fed into the classifiers, they fail to classify them
into their proper classes correctly. This can be a threat to the malware detection system, as a
malicious file can be classified as a benign file and can cause huge damage to the computer
system [32,66].

To mitigate this, an adversarial defense technique made the classifier robust against
the FGSM attack. The technique proposed by the authors is an adversarial training defense
mechanism. In this technique, the adversarial samples are included in the training set
and then fed to the model to learn the different features of adversarial samples and clean
images [67]. In various recent studies and articles, this type of defense technique proved
to be one of the most effective defensive mechanisms against a particular attack. In this
research work, the authors have particularly performed the FGSM adversarial training
method, including the adversarial samples generated using the FGSM method explained
in the previous section. This can help to improve the error rate on the samples generated
using the MaleVis dataset and the FGSM attack [53]. Figures 10 and 11 demonstrate the
process of establishing the adversarial attack and defense.

Training Phase

Feeding the noisy Image to the -~ |
classifier resulting into 2l
misclassification + 4

; . | Adversarial Example
Adversarial image | e tion

FGSM Perturbation Clean Malware Image

‘ Adversarial Attack

Figure 10. Schematic representation of adversarial Attack performed.



Algorithms 2021, 14, 297

19 of 29

Training Phase

+

Including the adu'ers;iri al
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Figure 11. Schematic representation of adversarial defense performed.

7. Results
7.1. Results Obtained before Performing Adversarial Attacks

The authors compared the results obtained before performing the FGSM attack by

training the MaleVis Dataset on the different classification models, i.e., random forest
(machine learning), CNN (deep learning), and EfficientNetBO (transfer learning). The
confusion matrix is also given below for each of the classifiers used in work. In these
matrices, we can see the number of images getting properly classified and the number of
misclassified images for each class.

1.

Random Forest: The results obtained after the dataset training show that the random
forest classifier was able to achieve an accuracy of 93%. The confusion matrix below
shows that the classifier could classify the images correctly for classes like Vilsel,
where a total number of 71 images were given to the model. It was able to classify
them with 100% accuracy, as no image was misclassified into any other class. Along
with Vilsel, the images belonging to the Amonetize, Hlux, Neoreklami, Regrun, Sality,
and VBA classes were also classified with 100% accuracy. Dinwood and Adposhel
followed this with only one misclassified image, whereas images from the Neshta
class were highly misclassified. Figure 12 shows the confusion matrix for CNN.

Convolutional Neural Network (CNN): Convolutional neural network gave an ac-
curacy of 92.3% after training the images from the MaleVis Dataset. The confusion
matrix shows that the images belonging to Amonetize, Fasong, HackKMS, Hlux,
InstallCore, Regrun, Stantinko, Snarasite, VBA, and Visel were correctly classified by
the CNN classifier. Compared to random forest, CNN was able to give 100% accuracy
to more classes. The Neshta class of the malware family had the least accuracy. Out of
the total 88 images fed into the classifier, only 52 were classified correctly as Neshta,
whereas 9 images were classified as benign images and 8 were classified into Sality
class. After Neshta, the Expiro class had the least accuracy of 72.22%. Figure 13 shows
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the confusion matrix for CNN model and Figure 14 displays the training and testing
loss curves.

3.  EfficientNet BO: The model developed using EfficientNet-BO was able to achieve

an accuracy of 93.7%. The classes with 100% accuracy were HackKMS, InstallCore,
Multiplug, Regrun, Snarasite, VBA, VBKrypt, and Vilsel. Similar to random forest
and CNN, this classifier also performed poorly for Neshta with an accuracy of 64.94%.
Figure 15 shows the confusion matrix for the random forest model, and Figure 16
displays the training and testing loss curves.

Confusion Matrix for Random Forest Model
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Figure 12. Confusion matrix for the random forest algorithm.
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7.2. Results Obtained after Performing Adversarial Attack

The classifiers that the authors developed were then attacked using the FGSM adver-
sarial attack. Adversarial samples were generated for each class with different epsilon
values, namely, 0.01, 0.1, and 0.15, and then were passed into the model to check its behav-
ior against them. Figure 17 shows the results obtained after performing adversarial attack.
The results of this attack are explained below.
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Figure 17. Results obtained after performing adversarial Attack.

1. Random Forest: The random forest classifier was observed to be relatively more
affected by the FGSM attack with an epsilon value of 0.1 and above. With the
0.01 epsilon value of the model, the confidence level was significantly dropped but
did not misclassify for maximum classes. There were some classes, such as like Nestha
and Other, for which the images were misclassified with a confidence level of 46% and
53%, respectively. The Vilsel class, which was classified with 100% accuracy before
the attack, had a confidence level of 68% for the epsilon value of 0.01. The overall
accuracy for the class for the epsilon value 0.1 was dropped by around 16% from
100% to 84.52%, whereas the Hlux class” accuracy was observed to be 83.66%, which
was 100% before attack. The attack performed with 0.15 epsilon proved fatal as the
average accuracy drop was 40%.
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2. CNN: Compared with the random forest classifier, CNN was relatively less affected by
the attack for an epsilon value of 0.1 and above. Still, for 0.01, it was similar to random
forest classifier. Only the confidence level dropped for classes such as Amonetize,
Fasong, InstallCore, Regrun, Stantinko, Visel, etc., which had very high accuracy
before attack. However, the classes which had very poor accuracy were misclassified
even with a 0.01 epsilon value, such as Expiro and Neshta, whose accuracy dropped
from 59.09 to 39% and 72.22 to 63.40%, respectively. For an epsilon value of 0.1, the
most affected classes were Autorun, whose accuracy dropped from 86.36% to 52.42%,
and Neshta, whose accuracy dropped to 31.58%. The accuracy for each class was
dropped around 30-35% for the epsilon value of 0.15.

3.  EfficientNet BO: This classifier proved to be least affected by the attack as compared to
the previous two models. Only the Neshta class was seen to have misclassification for
0.01 epsilon values. During the attack with 0.1 epsilon, the classes were significantly
impacted in terms of misclassification. The most affected classes were Elex, Expiro,
and Other (Benign), with 72.34%, 68.42%, and 70.22% accuracy. As seen earlier in the
before the attack section and after attack, Neshta is the only class with the highest
misclassification rate for all classifiers developed by the authors. The 0.15 epsilon
caused a 30% drop on average in the accuracies of all classes of the dataset.

The graphs of some classes from the MaleVis dataset shown below give a comparative
analysis of the effect of the attack for all the three epsilon values on each of the classifiers «.

7.3. Results Obtained after Performing Adversarial Defense

To make these developed models robust, adversarial training defense techniques
were implemented. This involves including the adversarial samples into the dataset and
then retraining the model. In this section, the results obtained by performing this defense
technique are discussed.

The defense mechanism implemented showed positive results, as the authors were
able to raise the accuracy and bring it closer to the accuracy achieved before the Attack.
As seen in the table below, the accuracy, F1 score, and precision before the attack and
after defense are almost similar, which proves that the authors were successful in making
the classifiers robust against the FGSM attack, and if any adversarial image is fed to the
classifier again, it would be able to classify it as malware /benign image. Table 5 shows the
results obtained for various classes before attack, after attack, and after the defense.

7.4. Anamoly Detection

The following part shows the model attempting to discover anomalies in the supplied
image and classify them in the appropriate class. Initially, the model tries to reason with
a standard malware/benign image, for which the column with anomaly detection can
be seen.

Malicious anomalies are more common in the ‘red’ part of the image, while malicious
anomalies are less common in the ‘blue’ region. The anomaly occurrences vary very
intriguingly once the adversarial pictures for the attack have been generated. In some
cases, it is seen that the true malicious anomalies are now completely masked due to the
perturbations, as seen in the case of Vilsel and Expiro.

This phenomenon has the potential to deceive the learning model, resulting in the
misclassification of such classes. However, in other circumstances, the assault is unable to
disguise malevolent anomalies. It can be shown, for example, that the anomalies of the
Hlux class are not hidden. Table 6 shows visualization of the anomaly detection of normal
image and an adversarial image.
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Table 5. Comparative metrics for all models before attack, after attack, and after the defense.

Before Attack
Classes Random Forest CNN EfficientNet B0
Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision
Elex 96.72 0.97 0.97 96.72 0.97 0.97 100 0.99 1
Vilsel 100 0.99 1 100 0.99 1 100 0.99 0.99
Expiro 80.23 0.84 0.8 7222 0.76 0.72 925 0.94 0.92
Hlux 100 0.99 0.99 100 0.99 0.99 98.57 0.99 0.99
Autorun 88.31 0.89 0.88 86.36 0.88 0.86 86.66 0.9 0.87
Other 74.28 0.78 0.74 85.5 0.87 0.86 91.3 0.92 0.91
(Benign)
After Attack (0.1 Epsilon)
Classes Random Forest CNN EfficientNet B0
Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision
Elex 63.23 0.65 0.63 61.28 0.61 0.61 72.34 0.74 0.73
Vilsel 84.52 0.85 0.84 88.02 0.9 0.88 98.04 0.98 0.98
Expiro 55.46 0.42 0.39 53.64 0.57 0.54 68.42 0.7 0.69
Hlux 83.66 0.85 0.84 85.39 0.86 0.86 96.32 0.97 0.97
Autorun 48.93 0.5 0.49 52.42 0.55 0.52 50.69 0.51 0.51
Other 46.23 0.49 047 62.8 0.63 0.63 70.22 0.69 0.69
(Benign)
After Defense
Classes Random Forest CNN EfficientNet B0
Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision Accuracy (%) F1-Score Precision
Elex 91.21 0.68 0.69 94.02 0.73 0.73 96.92 0.97 0.97
Vilsel 95.33 0.98 0.98 96.87 0.93 0.93 97.23 0.99 0.97
Expiro 71.23 0.65 0.62 72.07 0.42 0.39 90.06 0.92 0.9
Hlux 97.01 0.97 0.95 97.32 0.86 0.86 97.51 0.95 0.98
Autorun 86.39 0.51 0.51 85.05 0.55 0.52 86.55 0.89 0.87
Other 70.44 0.49 047 82.14 0.63 0.63 88.94 0.89 0.89
(Benign)
Table 6. Anomaly detection for normal image and adversarial image.
Images with . The Anomaly on
Class Normal Image 8 . Adversarial Image maty
Anomaly Detection Adversarial Image
Elex ETK
Elex

Vilsel
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Table 6. Cont.
Images with . The Anomaly on
Class Normal Image Anomaly Detection Adversarial Image Adversarial Image
Expiro Expira
Expiro
Hlux
Autorun
Other (Benign)

8. Discussion

The main goal of this research is to improve the robustness of the classification models
by using adversarial training methodology. In the proposed architecture, the experimental
results are produced by applying the methodology which was presented by the authors
on a malware dataset known as MaleVis. By using this dataset, the authors were able to
observe the behavior of the adversaries of different epsilon values on malware images
belonging to 26 different classes. The authors applied this methodology on three different
classification models which enabled them to study how vulnerable each model was and
whether they could defend against such attack with the help of a defense mechanism.

Table 5 shows comparison of the accuracies obtained by training all three models
before the attack, after attack and after defense. After evaluating the accuracies of the three
models which were trained by conventional techniques, it was observed that EfficientNet
BO performed better than the random forest algorithm and the CNN algorithm in terms of
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producing the highest accuracy, even though CNN was able to classify more classes with
an accuracy of 100 percent. This happened because the number of misclassified classes was
also higher in the CNN model than in the EfficientNet B0 model. During the analysis, the
authors also saw that the Vilsel class, which belonged to the trojan family of malware, was
classified correctly the most often by all the three models, whereas the Neshta class, which
belongs to the virus family, was misclassified the most by all three models.

After the adversarial attack was performed, EfficientNet BO was affected the least
when compared to the other two models. In all three models, when attacked with the
images perturbed with an epsilon value of 0.01, the authors found that only the confidence
level in predicting the respective malware classes dropped for the classes with significantly
higher accuracies before the attack was performed (example: class Vilsel), but for the classes
such as Neshta, where the prediction accuracies were extremely low, images perturbed
with 0.01 epsilon completely misclassified them. Additionally, on average for each class,
an accuracy drop of 35% was observed for all of the classes for all the models when the
models were attacked with images that were perturbed with an epsilon value of 0.15. It
needs to be noted that when attacked with images perturbed with a 0.01 epsilon value,
the perturbations are not significantly visible to the naked eye, whereas, in contrast, the
epsilon value of 0.15 perturbs the images to such an extent that it becomes a little obvious
that the image has been tampered with.

After evaluating the defense techniques applied by the authors in order to make the
models much more robust against the adversarial attacks, it was observed that models
were now able to regain their approximate actual accuracies which were compromised
during the attacks, thus making the models far more robust and accurate against the
FGSM adversarial attack. Not only the accuracy also but the F1 score and the precision
showed a significant rise, and thus the goal of having a highly trained and robust model
was achieved.

9. Conclusions and Future Scope

The performance of malware detection systems has been improved with the advent
of Al. However, the security of these classification models is still an area of concern. This
research proposes an architecture for a malware detection system using machine learning
and adversarial training. The authors have implemented a malware classification system
with machine learning, deep learning, and pretrained model, which have achieved an
accuracy of 93% for the random forest, 92.3% for CNN, 93.7% for the efficient net, and 92%
for VGG-16. Then, the authors have performed an FGSM attack on the EfficientNet model
with images with 0.01, 0.1, 0.15 epsilon values. The model successfully misclassified the
results. When trained against these adversarial samples, this model will not misclassify the
results and make the system robust against the FGSM adversarial attack. The adversarial
training will assist the system in becoming robust while executing the detection, and the
machine learning model will aid in identifying harmful files. The proposed system was
able to demonstrate that the model is vulnerable to adversaries via adversarial attacks.
The goal was to create a trained model that would not falter when confronted with an
adversary. The future scope of research would be using other forms of attacks available
and subsequently training the model against those attacks and making it even more robust.
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