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Abstract

The rise of Artificial Intelligence (AI) recently empowered researchers to investi-
gate hard mathematical problems which eluded traditional approaches for decades.
Yet, the use of Al in Universal Algebra (UA)—one of the fields laying the founda-
tions of modern mathematics—is still completely unexplored. This work proposes
the first use of Al to investigate UA’s conjectures with an equivalent equational
and topological characterization. While topological representations would enable
the analysis of such properties using graph neural networks, the limited trans-
parency and brittle explainability of these models hinder their straightforward use
to empirically validate existing conjectures or to formulate new ones. To bridge
these gaps, we propose a general algorithm generating Al-ready datasets based on
UA’s conjectures, and introduce a novel neural layer to build fully interpretable
graph networks. The results of our experiments demonstrate that interpretable
graph networks: (i) enhance interpretability without sacrificing task accuracy, (ii)
strongly generalize when predicting universal algebra’s properties, (iii) generate
simple explanations that empirically validate existing conjectures, and (iv) identify
subgraphs suggesting the formulation of novel conjectures.
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with deep impact in all mathematical disciplines. Figure 1: Interpretable graph networks
support universal algebra research.
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Universal algebra studies algebraic structures from an abstract perspective. Interestingly, several
UA conjectures equivalently characterize algebraic properties using equations or graphs (15). In
theory, studying UA properties as graphs would enable the use of powerful Al techniques, such as
Graph Neural Networks (GNN, (34)), which excel on graph-structured data. However, two factors
currently limit scientific progress. First, the absence of benchmark datasets suitable for machine
learning prevents widespread application of Al to UA. Second, GNNs’ opaque reasoning obstructs
human understanding of their decision process (33). Compounding the issue of GNNs’ limited
transparency, GNN explainability methods mostly rely on brittle and untrustworthy local/post-hoc
methods (135 255 265 133k [39) or pre-defined subgraphs for explanations (2; 36), which are often
unknown in UA.

Contributions. In this work, we investigate universal algebra’s conjectures through AI (Figure|I),
venturing for the first time in this previously uncharted territory. Our work includes three significant
contributions. First, we propose a novel algorithm that generates a dataset suitable for training
Al models based on an UA equational conjecture. Second, we generate and release the first-ever
universal algebra’s dataset compatible with Al, which contains more than 29, 000 lattices and the
labels of 5 key properties i.e., modularity, distributivity, semi-distributivity, join semi-distributivity,
and meet semi-distributivity. And third, we introduce a novel neural layer that makes GNNs fully
interpretable, according to Rudin’s (33) notion of interpretability. The results of our experiments
demonstrate that interpretable GNNs (iIGNNs): (i) enhance GNN interpretability without sacrificing
task accuracy, (ii) strongly generalize when trained to predict universal algebra’s properties, (iii)
generate simple concept-based explanations that empirically validate existing conjectures, and (iv)
identify subgraphs which could be relevant for the formulation of novel conjectures. Our findings
demonstrate the potential of our methodology and open the doors of universal algebra to Al

2 Background

Universal Algebra is a branch of mathematics studying general and abstract algebraic structures.
Algebraic structures are typically represented as ordered pairs A = (A, F'), consisting of a non-empty
set A and a collection of operations F' defined on the set. UA aims to identify algebraic properties
(often in equational form) shared by various mathematical systems. In particular, varieties are classes
of algebraic structures sharing a common set of identities, which enable the study of algebraic systems
based on their common properties. Prominent instances of varieties that have been extensively studied
across various academic fields encompass Groups, Rings, Boolean Algebras, Fields, and many others.
A particularly relevant variety of algebras are Lattices (details in Appendix [A.4)), which are often
studied for their connection with logical structures.

Definition 2.1. A lattice L is an algebraic structure composed by a non-empty set L and two binary
operations V and A, satisfying the commutativity, associativity, idempotency, and absorption axioms.

Equivalently a lattice can be characterized as a partially ordered set

in which every pair of elements has a supremum and an infimum (cf. M (D) @ N
Appendix[A.4). Lattices also have formal representations as graphs via 3 @ 5
Hasse diagrams (L, E) (e.g., Figure [2), where each node z € Lisa (a) (3) (¢ (b)
lattice element, and directecﬂ edges (z,y) € E C L x L represent the o (a) o

ordering relation, such that if (z,y) € F then x </, y in the ordering of
the lattice. A sublattice L’ of a lattice L is a lattice such that L' C L and
L’ preserves the original order (the “essential structure”) of L, i.e. for all
x,y € L' then x <j, yif and only if z <, y. The foundational work by Birkhoff (3), Dedekind (9),
and Jénsson (17) played a significant role in discovering that some significant varieties of lattices can
be characterized through the omission of one or more lattices. Specifically, a variety V) of lattices is
said to omit a lattice L if it cannot be identified as a sublattice of any lattice in V. A parallel line of
work in UA characterizes lattices in terms of equational ("ferm; ~ terms") and quasi-equational ("if
equation, holds then equation, holds") properties, such as distributivity and modularity.

Definition 2.2. Let L be a lattice. L is modular if it satisfiesx <y =V (yAz) =y A (zV 2);
distributive if it satisfies z V (y A z) = (z Vy) A (z V 2).

Figure 2: Hasse diagrams.

For instance, as showed in Figure 2} N is neither modular nor distributive- considering the substi-
tution x = a,y = ¢,z = b. The same substitution shows that M is not distributive. The classes

!The orientation of Hasse diagrams is always to be meant bottom-up, hence we will omit arrows for simplicity.



of distributive and modular lattices show classical examples of varieties that can equivalently be
characterized using equations and lattice omissions, as illustrated by the following theorems.

Theorem 2.3 (Dedekind (9)). A lattice variety V is modular if and only if V omits Ns.
Theorem 2.4 (Birkhoff (5). A lattice variety V is distributive if and only if V omits N5 and M.

Starting from these classic results, the investigation of lattice omissions and the structural charac-
terizations of classes of lattices has evolved into a rich and extensively studied field (15)), but it was
never approached with advanced Al methods before.

3 Methods

The problem of characterizing lattice varieties through lattice omission is very challenging as it
requires the analysis of large (potentially infinite) lattices (5519; [17). To address this task, we propose
the first Al-assisted framework supporting mathematicians in finding empirical evidences to validate
existing conjectures and to suggest novel theorems. To this end, we propose a general algorithm
(Section[3.T)) allowing researchers in universal algebra to define a property of interest and generate
a dataset suitable to train Al models. We then introduce interpretable graph networks (Section [3.2))
which can suggest candidate lattices whose omission is responsible for the satisfaction of the given
algebraic property.

3.1 A Tool to Generate Datasets of Lattice Varieties

We propose a general methodology to investi-
gate any algebraic property whose validity can
be verified on a finite lattice. In this work, we
focus on properties that can be characterized via
equations and quasi-equations. To train Al mod-
els, we propose a general dataset generato for
lattice varieties (Algorithm [T). The generator
takes as input the number of nodes n in the lat-
tices and a function to check whether a lattice
satisfies a given property. We generate 2"*"

Algorithm 1: Generate dataset of lattice varieties.

Input: n > 1, hasProperty(-,-,-)
Dataset = []
AllFuncs < genAllFuncs(n)
for L € AllFuncs do
if isPartialOrder( L) then
if isLattice( L) then
fori,j < ndo
ALl j] < supy<p{z <p dandz < 5}
Vili, gl «+ infacp{i <p zandj < x}
if hasProperty(L, A1, V 1,) then
Dataset.append([L, True])
else
Dataset.append([L, False])

/' m: cardinality

/I binary functions as n X n matrices
/I L(%,3) = 1 meaningi <y, j
/I check if <7, is refl., antisym. and trans.
/l check if L is a lattice

Il check N,V 1, properties

matrices of size n X n, containing all binary
functions definable on {1,...,n}?2, and filter only binary matrices representing partial ordersﬂ Then,
we verify that the partial ordered set L is a lattice, by checking that any pair of nodes always has a
unique infimum and supremum. This directly verifies that Ay, and Vp, satisfy Definition[2.1] Finally,
we check whether the lattice satisfies the target property or not, and append it and the property label
to our dataset. We remark that checking the validity of a single ternary equation on a medium-size
lattice is not computationally prohibitive (i.e., it “only” requires checking n> identities), but the
number of existing lattices increases exponentially as n increases. For instance, it is known that there
are at least 2,000,000 non-isomorphic lattices with L = 10 elements (4)). Therefore, we only sample
a fixed number of lattices per cardinality starting from a certain node cardinality. While this may
seem a strong bias, we notice that known and relevant lattice omissions often rely on lattices with
few nodes (5;19). To empirically verify that this is not a significant limitation, in our experiments we
deliberately investigate the generalization capacity of GNNs when trained on small-size lattices and
tested on larger ones. This way we can use GNNs to predict the satisfiability of equational properties
on large graph structures without explicitly checking them. Using Algorithm [I] we generated the
first large-scale Al-compatible datasets of lattices containing more than 29, 000 graphs and the labels
of 5 key properties of lattice (quasi-)varieties i.e., modularity, distributivity, semi-distributivity, join
semi-distributivity, and meet semi-distributivity, whose definitions can be found in Appendix [A]

3.2 Interpretable Graph Networks (iGNNs)

In this section, we design an interpretable graph network (iGNN, Figure [3) that satisfies the notion
of "interpretability" introduced by Rudin (33). According to this definition, a machine learning

The dataset generator code and the generated datasets will be made public in case of paper acceptance.
30Our algorithm optimizes this step considering only reflexive and antisymmetric binary relations, and enforces
transitivity with an easy fix-point calculation.
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Figure 3: An interpretable graph layer (i) aggregates node features with message passing, (ii) generates
a node-level concept space with a hard Gumbel-Softmax activation O, (iii) generates a graph-level
concept space with an interpretable permutation invariant pooling function HH on node-level concepts,
and (iv) predicts a task label with an interpretable classifier f using graph-level concepts.
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(ML) system is interpretable if and only if (1) its inputs are semantically meaningful, and (2) its
model inference is simple for humans to understand (e.g., sparse and/or symbolic). This definition
covers ML systems that take tabular datasets or sets of concepts as inputs, and (piece-wise) linear
models such as logistic regression or decision trees. To achieve this goal in GNNs, we introduce
an interpretable graph layer that learns semantically meaningful concepts and uses them as inputs
for a simple linear classification layer. We then show how this layer can be included into existing
architectures or into hierarchical iGNNs, which consist of a sequence of interpretable graph layers.

3.2.1 Interpretable Graph Layer

The interpretable graph layer (Figure [3) serves three main functions: message passing, concept
generation, and task predictions. The first step of the interpretable graph layer involves a standard
message passing operation (Eq. [T|right), which aggregates information from node neighbors. This
operation enables to share and process relational information across nodes and it represents the basis
of any GNN layer.

Node-level concepts. An interpretable concept space is the first step towards interpretability. Fol-
lowing Ghorbani et al. (10), a relevant concept is a “high-level human-understandable unit of infor-
mation” shared by input samples and thus identifiable with clustering techniques. Message passing
algorithms do cluster node embeddings based on the structure of node neighborhoods, as observed
by Magister et al. (26). However, the real-valued large embedding representations h; € R?, g € N
generated by message passing can be challenging for humans to interpret. To address this, we use a
hard Gumbel-Softmax activation © : R? — {0, 1}, following Azzolin et al. (2):

c; = O(h;) h; = ¢(Xi, @ ¢(Xi7xj)) (1)

JEN;

where v and ¢ are learnable functions aggregating information from a node neighborhood N;, and &
is a permutation invariant aggregation function (such as sum or mean). During the forward pass, the
Gumbel-Softmax activation © produces a one-hot encoded representation of each node embedding.
Since nodes sharing the same neighborhood have similar embeddings h; due to message passing,
they will also have the same one-hot vector c¢; due to the Gumbel-Softmax, and vice versa - we can
then interpret nodes having the same one-hot concept ¢; as nodes having similar embeddings h; and
thus sharing a similar neighborhood. More formally, we can assign a semantic meaning to a reference
concept v € {0, 1}? by visualizing concept prototypes corresponding to the inverse images of a node
concept vector. In practice, we can consider a subset of the input lattices I' corresponding to the
node’s (p-hop) neighborhood covered by message passing:

r(%p):{L“vmz‘eL/\ LeDA cizw} 2)

where D is the set of all training lattices, and L{*?’ is the graph corresponding to the p-hop neighbor-
hood (p € {1,...,|L|}) of the node i € L, as suggested by Ghorbani et al. (10); Magister et al. (26).
This way, by visualizing concept prototypes as subgraph neighborhoods, the meaning of the concept



representation becomes easily interpretable to humans (Figure [3), aiding in the understanding of the
reasoning process of the network.

Example 3.1 (Interpreting node-level concepts). Consider the problem of classifying distributive

lattices with a simplified dataset including N5 @ and M; C@ only, and where each node has a
constant feature z; = 1. As these two lattices only have nodes with 2 or 3 neighbours, one layer of
message passing will then generate only two types of node embeddings e.g., h;; = [0.2,—0.4,0.3]

for nodes with a 2-nodes neighborhood (e.g., gw}), and hy;; = [0.6,0.2, —0.1] for nodes with a
3-nodes neighborhood (e.g., “@j). As a consequence, the Gumbel-Softmax will only generate two
possible concept vectors e.g., c;r = [0,0, 1] and ¢;7; = [1, 0, 0]. Hence, for instance the concept

belongs to ¢y, while @ belongs to cyyy.

Graph-level concept embeddings. To generate a graph-level concept space in the interpretable
graph layer, we can utilize the node-level concept space produced by the Gumbel-Softmax. Normally,
graph-level embeddings are generated by applying a permutation invariant aggregation function on
node embeddings. However, in iGNNs we restrict the options to (piece-wise) linear permutation
invariant functions in order to follow our interpretability requirements dictated by Rudin (33). This
restriction still includes common options such as max or sum pooling. Max pooling can easily be
interpreted by taking the component-wise max over the one-hot encoded concept vectors c;. After
max pooling, the graph-level concept vector has a value of 1 at the k-th index if and only if at least
one node activates the k-th concept i.e., 3i € L, c;;, = 1. Similarly, we can interpret the output of a
sum pooling: a graph-level concept vector takes a value v € N at the k-th index after sum pooling if
and only if there are exactly v nodes activating the k-th concept i.e., Jig,...,i, € L,c; = 1.

Example 3.2 (Interpreting graph-level concepts). Following Example[3.1] let us use sum pooling
to generate graph-level concepts. For an N5 graph, we have 5 nodes with exactly the same 2-node
neighborhood. Therefore, sum pooling generates a graph-level embedding [0, 0, 5], which certifies

that we have 5 nodes of the same type e.g., 8& For an M3 graph, the top and bottom nodes have a

3-node neighborhood e.g., C@ while the middle nodes have a 2-node neighborhood e.g., @ This
means that sum pooling generates a graph-level embedding [2, 0, 3], certifying that we have 2 nodes

of type @ and 3 nodes of type @3

Interpretable classifier. To prioritize the identification of relevant concepts, we use a classifier to
predict the task labels using the concept representations. A black-box classifier like a multi-layer
perceptron (31) would not be ideal as it could compromise the interpretability of our model, so
instead we use an interpretable linear classifier such as a single-layer network (19). This allows for
a completely interpretable and differentiable model from the input to the classification head, as the
input representations of the classifier are interpretable concepts and the classifier is a simple linear
model which is intrinsically interpretable as discussed by Rudin (33). In fact, the weights of the
perceptron can be used to identify which concepts are most relevant for the classification task. Hence,
the resulting model can be used not only for classification, but also to interpret and understand the
problem at hand.

3.2.2 Interpretable architectures

The interpretable graph layer can be used to instantiate different types of iGNNs. One approach is to
plug this layer as the last message passing layer of a standard GNN architecture:

j= f( B (6 <¢(K) (hEK_U’S]% 1/}(K)(hl(K—1), h§K—1))>))) 3)
n") = g0 (hgl—lh P vOm!Y, hgl‘”)) I=1,...,K 4)
JEN;

where f is an interpretable classifier (e.g., single-layer network), B is an interpretable piece-wise
linear and permutation-invariant function (such as max or sum), © is a Gumbel-Softmax hard
activation function, and hY = x;. In this way, we can interpret the first part of the network as a feature
extractor generating well-clustered latent representations from which concepts can be extracted. This



approach is useful when we only care about the most complex neighborhoods/concepts. Another
approach is to generate a hierarchical transparent architecture where each GNN layer is interpretable:

g)(l):f(EEieK((a(hg.l)))) I=1,... . K (5)
In this case, we can interpret every single layer of our model with concepts of increasing complexity.
The concepts extracted from the first layer represent subgraphs corresponding to the 1-hop neighbor-
hood of a node, those extracted at the second layer will correspond to 2-hop neighborhoods, and so on.
These hierarchical iGNNs can be useful to get insights into concepts with different granularities. By
analyzing the concepts extracted at each layer, we gain a better understanding of the GNN inference
and of the importance of different (sub)graph structures for the classification task.

3.2.3 Training

The choice of the activation and loss functions iGNNs depends on the nature of the task at hand and
does not affect their interpretability. For classification tasks, we use standard activation functions
such as softmax or sigmoid, along with standard loss functions like cross-entropy. For hierarchical
iGNNs (HiGNNs), we apply the loss function at each layer of the concept hierarchy, as their layered
architecture enables intermediate supervisions. This ensures that each layer is doing its best to extract
the most relevant concepts to solve the task. Internal losses can also be weighted differently to
prioritize the formation of optimal concepts of a specific size, allowing the HiGNN to learn in a
progressive and efficient way.

4 Experimental Analysis

4.1 Research questions
In this section we analyze the following research questions:

* Generalization - Can GNNs generalize when trained to predict universal algebra’s proper-
ties? Can interpretable GNNs generalize as well?

* Interpretability - Do interpretable GNNs concepts empirically validate universal algebra’s
conjectures? How can concept-based explanations suggest novel conjectures?

4.2 Setup

Baselines. For our comparative study, we evaluate the performance of iGNNs and their hierarchical
version against equivalent GNN models (i.e., having the same hyperparameters such as number
layers, training epochs, and learning rate). For vanilla GNNs we resort to common practice replacing
the Gumbel-Softmax with a standard leaky ReLLU activation. We exclude from our main baselines
prototype or concept-based GNNs pre-defining graph structures for explanations, as for most datasets
these structures are unknown. Appendix [B]covers implementation details. We show more extensive
results including local and post-hoc explanations in Appendix ??.

Evaluation. We employ three quantitative metrics to assess a model’s generalization and inter-
pretability. We use the Area Under the Receiver Operating Characteristic (AUC ROC) curve to assess
task generalization. We evaluate generalization under two different conditions: with independently
and identically distributed train/test splits, and out-of-distribution by training on graphs up to eight
nodes, while testing on graphs with more than eight nodes (“‘strong generalization”). We further assess
generalization under binary and multilabel settings (classifying 5 properties of a lattice at the same
time). To evaluate interpretability, we use standard metrics such as completeness (38) and fidelity (32).
Completeness{z_r] assesses the quality of the concept space on a global scale using an interpretable
model to map concepts to tasks, while fidelity measures the difference in predictions obtained with an
interpretable surrogate model and the original model. Finally, we evaluate the meaningfulness of our
concept-based explanations by visualizing and comparing the generated concepts with ground truth
lattices like e.g. M3 and N5, whose omission is known to be significant for modular and distributive
properties. All metrics in our evaluation, across all experiments, are computed on test sets using 5
random seeds, and reported using the mean and 95% confidence interval.

“We assess the recall of the completeness as the datasets are very unbalanced towards the negative label.



5 Key Findings
5.1 Generalization

iGNNs improve interpretability without sacrificing task accuracy (Figured). Our experimen-
tal evaluation reveals that interpretable GNNs are able to strike a balance between completeness and
fidelity, two crucial metrics that are used to assess generalization-interpretability trade-offs (32). We
observe that the multilabel classification scenario, which requires models to learn a more varied and
diverse set of concepts, is the most challenging and results in the lowest completeness scores on
average. We also notice that the more challenging out-of-distribution scenario results in the lowest
completeness and fidelity scores across all datasets. More importantly, our findings indicate that
1GNNS achieve optimal fidelity scores, as their classification layer consists of a simple linear function
of the learnt concepts which is intrinsically interpretable (33)). On the contrary, interpretable surrogate
models of black-box GNNs exhibit, as expected, lower fidelity scores, confirming analogous obser-
vations in the explainable Al literature (32;33)). In practice, this discrepancy between the original
black-box predictions and the predictions obtained with an interpretable surrogate model questions
the actual usefulness of black-boxes when interpretable alternatives achieve similar results in solving
the problem at hand, as extensively discussed by Rudin (33)). Overall, these results demonstrate how
concept spaces are highly informative to solve universal algebra’s tasks and how the interpretable
graph layer may improve GNNs’ interpretability without sacrificing task accuracy. We refer the
reader to Appendix [D] for detailed discussion on quantitative analysis of concept space obtained by
iGNNs under different generalization settings with comparisons to their black-box counterparts.
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Figure 4: Accuracy-interpretability trade-off in terms of concept completeness (accuracy) and model
fidelity (interpretability). iGNNs attain optimal fidelity as model inference is inherently interpretable,
outmatching equivalent black-box GNNs. All models attain similar results in terms of completeness.

GNNs strongly generalize on universal algebra’s tasks (Figure[5). Our experimental findings
demonstrate the strong generalization capabilities of GNNs across the universal algebra tasks we
designed. Indeed, we stress GNNSs test generalization abilities by training the models on graphs of size
up to n (with n ranging from 5 to 8), and evaluating their performance on much larger graphs of size
up to 50. We designed this challenging experiment in order to understand the limits and robustness
of interpretable GNNs when facing a significant data distribution shift from training to test data.
Remarkably, iGNNs exhibit

robust generalization abili- " Distributive " Modular " Multilabel
ties (similar to their black- i P

P—— s/ 90 y 44 90 =i
box counterparts) when & 7 / 7/ 7 /
trained on graphs up to ¥ * N 7 4 :
size 8 and tested on larger & » "FEE > l— | ' > «
graphs. This evidence con- 3 = ’ w & w

. O e g

firms the hypothesis that F ' . B . Cw

interpretable models can
deliver reliable and inter-
pretable predictions, as sug- -~ Black-Box GNN  -¢- iGNN HIGNN
gested by Rudin (33)). How-
ever, we observe that black-
box GNN:ss slightly outper-
form iGNNs when trained on even smaller lattices. We hypothesize that this is due to the more
constrained architecture of iGNNs, which imposes tighter bounds on their expressiveness when
compared to standard black-box GNNs. Notably, training with graphs of size up to 5 or 6 significantly

Maximum Number of Nodes in Training

Figure 5: Strong generalization performance with respect to the maxi-
mum number of nodes used in training.



diminishes GNNs generalization in the tasks we designed. We hypothesize that this is due to the
scarcity of non-distributive and non-modular lattices during training, but it may also suggest that some
patterns of size 7 and 8 might be quite relevant to generalize to larger graphs. Unfortunately, running
generalization experiments with n < 4 was not possible since all such lattices trivially omitted N5
and M3. It is worth mentioning that GNNs performed well even in the challenging multilabel case,
where they had to learn a wider and more diverse set of concepts and tasks. In all experiments, we
observe a plateau of the AUC ROC scores for n = 8, thus suggesting that a training set including
graphs of this size might be sufficient to learn the relevant patterns allowing the generalization to
larger lattice varieties. For detailed numerical results across all tasks, we refer the reader to Table[T]in
Appendix [C] Overall, these results emphasize the potential of GNNSs in addressing complex problems
in universal algebra, providing an effective tool to handle lattices that are difficult to analyze manually
with pen and paper.

5.2 Interpretability

Concept-based explanations empirically validate universal algebra’s conjectures (Figure [6).
We present empirical evidence to support the validity of theorems [2.3] and [2.4] by examining the
concepts generated for modular and distributive tasks. For this investigation we leverage the inter-
pretable structure of iGNNs. Similarly to Ribeiro et al. (32), we visualize in Figure [6] the weights
of our trained linear classifier representing the relevance of each concept. We remark that the visu-
alization is limited to the (top-5) most negative weights, as we are interested in those concepts that
negatively affect the prediction of a property. In the same plot, we also show the prototype of each
concept represented by the 2-hop neighborhood of a node activating the concept, following a similar
procedure as Ghorbani et al. (10); Magister et al. (26); Azzolin et al. (2)). Using this visualization,
we investigate the presence of certain concepts when classifying modular and distributive lattices.
For the modularity task, our re-
sults show that the lattice N5 ap-
pears among non-modular con-
cepts, but is never found in mod-
ular lattices, while the lattice M3
appears among both modular and
non-modular concepts, which is
consistent with Theorem 23] In
the case of distributivity, we ob-
serve that both M3 and N5 are
present among non-distributive
concepts, and are never found in
distributive lattices, which is also
in line with Theorem 2.4l These
findings provide a large-scale empirical evidence for the validity of theorems[2.3]and 2:4] and further
demonstrate the effectiveness of graph neural networks in learning and analyzing lattice properties.
Overall, these results highlight how interpretable GNNs can not only learn the properties of universal
algebra but also identify structures that are unique to one type of lattice (e.g., non-modular) and
absent from another (e.g., modular), thus providing human-interpretable explanations for what the
models learn.

Concept ID [Distributive] Concept ID [Modular]
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Figure 6: Ranking of relevant clusters of lattices (x-axis) accord-
ing to the interpretable GNN linear classifier weights (y-axis, the
lower the more relevant the cluster). N5 is always the most im-
portant lattice to omit for modularity, while both M3 and N are
relevant for distributivity, thus validating theorems @ and @
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Contrastive explanations highlight topological differences between properties of lattice vari-
eties (Figure[7). We leverage interpretable GNNs to analyze the key topological differences of
classical lattice properties such as join and meet semi-distribuitivity characterized by relevant quasi-
equations (cf. Appendix [A.6). To this end, we visualize specific concept prototypes correspond-
ing to lattices that are not meet semi-distributive against lattices that are meet semi-distributive.
We observe N5 but not M3 Non Join Semi-Distributive Lattice Varieties Non Meet Semi-Distributive Lattice Varieties
among the COIlCCptS of meet Meet Semi-Distributive Meet Semi-Distributive Meet Semi-Distributive  Join Semi-Distributive Join Semi-Distributive Join Semi-Distributive

semi-distributive lattices, while

we observe both N5 and Mj

only in concepts that are not meet
semi-distributive. This observa- Figure 7: Contrastive explanations showing lattice varieties with a

tion suggests that N5 is not akey ~a pair of discording labels to highlight the key difference between
lattice for meet semi-distributive Jjoin and meet semi-distributivity.



lattices, unlike distributive lattices. Furthermore, we find that the lattice pattern ¥ is relevant for non
meet semidistributivity, while its dual +2v is relevant for non join semidistributivity, thus empirically
confirming the hypotheses of Jénsson and Rival (18). These findings are significant because they
demonstrate how analyzing concepts in interpretable GNNs can provide universal algebraists with a
powerful and automatic tool to formulate new conjectures based on identifying simple lattices that
play a role in specific properties. By leveraging the power of interpretable GNNs, we may uncover
previously unknown connections between different properties and identify new patterns and structures
that could lead to the development of new conjectures and theorems in universal algebra, providing
exciting opportunities for future research in universal algebra.

6 Discussion

Relations with Graph Neural Network explainability. Graph Neural Networks (GNNs,(34))
process relational data generating node representations by combining the information of a node with
that of its neighbors, thanks to a general learning paradigm known as message passing (L1). A number
of post-hoc explainability techniques have been proposed to explain the reasoning of GNNs. Inspired
by vision approaches (355132 [10), early explainability techniques focused on feature importance (30),
while subsequent works aimed to extract local explanations (39; 25} 36) or global explanations using
conceptual subgraphs by clustering the activation space (265 40; 27). However, all these techniques
either rely on pre-defined subgraphs for explanations (which are often unknown in UA) or provide
post-hoc explanations which may be brittle and unfaithful as extensively demonstrated by Rudin
(33). On the contrary, our experiments show that iGNNs generate interpretable predictions according
to Rudin (33) notion of interpretability via linear classifiers applied on sparse human-understandable
concept representations.

Limitations. The approach proposed in this paper focuses on universal algebra conjectures charac-
terized both algebraically and topologically. Our methodology is limited to finite lattices, which may
not capture all relevant information about infinite algebraic structures. However, the insights gained
from finite-lattice explanations can still provide valuable information regarding a given problem
(albeit with potentially limited generalization). Moreover, our approach is restricted to topological
properties on graphs, while non-structural properties may require the adoption of other kinds of
(interpretable) models.

Broader impact and perspectives. Al techniques are becoming increasingly popular for solv-
ing previously intractable mathematical problems and proposing new conjectures (215 24; [7; [12]).
However, the use of modern AI methods in universal algebra was a novel and unexplored field
until the development of the approach presented in this paper. To this end, our method uses inter-
pretable graph networks to suggest graph structures that characterize relevant algebraic properties
of lattices. With our approach, we empirically validated Dedekind (9) and Birkhoff (5)) theorems
on distributive and modular lattices, by recovering relevant lattices. This approach can be readily
extended—beyond equational properties determined by the omission of a sublattice in a variety (37)—
to any structural property of lattices, including the characterization of congruence lattices of algebraic
varieties (15205 28;137). Our methodology can also be applied (beyond universal algebra) to investi-
gate (almost) any mathematical property that can be topologically characterized on a graph, such as
the classes of graphs/diagraphs with a fixed set of polymorphisms (233} 29). However, as universal
algebra is a foundational branch of modern mathematics, any contribution to this field can already
have significant implications in various mathematical disciplines.

Conclusion. This paper presents the first-ever Al-assisted approach to investigate equational and
topological conjectures in the field of universal algebra. To this end, we present a novel algorithm to
generate datasets suitable for Al models to study equational properties of lattice varieties. While topo-
logical representations would enable the use of graph neural networks, the limited transparency and
brittle explainability of these models hinder their use in validating existing conjectures or proposing
new ones. For this reason, we introduce a novel neural layer to build fully interpretable graph net-
works to analyze the generated datasets. The results of our experiments demonstrate that interpretable
graph networks: enhance interpretability without sacrificing task accuracy, strongly generalize when
predicting universal algebra’s properties, generate simple explanations that empirically validate
existing conjectures, and identify subgraphs suggesting the formulation of novel conjectures. These



promising results demonstrate the potential of our methodology, opening the doors of universal
algebra to Al with far-reaching impact across all mathematical disciplines.
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A Algebra definitions

A.1 Formal defintions for Universal Algebra

Universal algebra is the field of mathematics that studies algebraic structures, which are
defined as a set A along with its own collection of operations. An n-ary operation on A is a
function that takes n elements of A and returns a single element from the set. More formally (6; [8}[16):

Definition A.1. N-ary function For A non-empty set and n nonnegative integer we define A° = {(}
and, for n > 0, A™ is the set of n-tuples of elements from A. An n-ary operation (or function) on A
is any function f from A" to A; n is the arity (or rank) of f. An operation f on A is called an n-ary
operation if its arity is n.

Definition A.2. Algebraic Structure An algebra A is a pair (A4, F') where A is a non-empty set
called universe and F' is a set of finitary operations on A.

Apart from the operations on A, an algebra is further defined by axioms, that in the particular case of
universal algebras are often of the form of identities. The collection of algebraic structures defined by
equational laws are called varieties. (14)

Definition A.3. Variety A nonempty class K of algebras of type F is called a variety if it is closed
under subalgebras, homomorphic images, and direct products.

Definition A.4. A lattice L is an algebraic structure composed by a non-empty set L and two binary
operations V and A satisfying the following axioms and their duals obtained exchanging V and A:

zVy~yVze (commutativity)
zV(yVz)=(zVy) (associativity)
zVrx2x (idempotency)
rzV(rAy) (absorption)

Theorem A.5 ((6)). A partially ordered set L is a lattice if and only if for every a,b € L both
supremum and infimum of {a, b} exist (in L) with a VV b being the supremum and a A b the infimum.

Definition A.6. Let L be a lattice. Then L is modular(distributive, \/-semi-distributive, \-semi-
distributive) if it satisfies the following equation:

r<y—zV(yAz)=yA(xVz) (modularity)
xV(yAz)=(xVy A(xVz) (distributivity)
zVy~zVz—zazV(yAz)mzVy (V-semi-distributivity)
cAymrzAz—oxzA(yVz)=zAy (A-semi-distributivity).

Furthermore a lattice L is semi-distributive if is both V-semi-distributive and A-semi-distributive

0 0

Figure 8: N5, a non-modular non-distributive and M3, a modular non-distributive lattice.
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Congruence lattices of algebraic structures are partially ordered sets such that every pair of elements
has unique supremum and infimum determined by the underlying algebra. This object is important
relatively to algebraic structures’ properties, many of which can be described by omission or
admission of certain subpatterns in a graph.

Definition A.7. Congruence Lattice

For every algebra 4 on the set A, the identity relation on A, and A x A are trivial congruences.
An algebra with no other congruences is called simple. Let Con(.A) be the set of congruences on
the algebra .A. Because congruences are closed under intersection, we can define a meet operation:
A : Con(A) x Con(A) — Con(A) by simply taking the intersection of the congruences £y A Ey =
FE41 N E5. Congruences are not closed under union, however we can define the closure operator
of any binary relation F, with respect to a fixed algebra A, such that it is a congruence, in the
following way: (E)4 = [\{F € Con(A) | E C F}. Note that the closure of a binary relation
is a congruence and thus depends on the operations in .4, not just on the carrier set. Now define
V : Con(A) x Con(A) — Con(A) as Eq1V Ey = (E1UE») 4. For every algebra A, (Con(A), A, V)
with the two operations defined above forms a lattice, called the congruence lattice of A.

Definition A.8. Subalgebra Let A and B be two algebras of the same type. Then B is a subalgebra
of A if B C A and every fundamental operation of B is the restriction of the corresponding operation
of A, i.e., for each function symbol f, fB is f2 restricted to B.

Definition A.9. Homomorphic image Suppose A and B are two algebras of the same type F. A
mapping « : A — B is called a homomorphism from A to B if

af(al,...,a,) = fB(aas, ..., aa,)

for each n-ary f in F and each sequence a1, . ..,a, from A. If, in addition, the mapping « is onto
then B is said to be a homomorphic image of A.

Definition A.10. Direct product Let A; and A, be two algebras of the same type F. We define the
direct product A; x Aj to be the algebra whose universe is the set Ay x As, and such that for f € F
and a; € Ay, a} € Az,1 <i<n,

fA1><A2(<a1’a/1>’ ey <anaaln) = <fA1 (a17 o 7an)7fA2(a/17 te 7a;1/)>

B Baselines’ details

In practice, we train all models using eight message passing layers and different embedding sizes
ranging from 16 to 64. We train all models for 200 epochs with a learning rate of 0.001. For
interpretable models, we set the Gumbel-Softmax temperature to the default value of 1 and the
activation behavior to "hard," which generates one-hot encoded embeddings in the forward pass,
but computes the gradients using the soft scores. For the hierarchical model, we set the internal
loss weight to 0.1 (to score it roughly 10% less w.r.t. the main loss). Overall, our selection of
baselines aims at embracing a wide set of training setups and architectures to assess the effectiveness
and versatility of GNNs for analyzing lattice properties in universal algebra. To demonstrate the
robustness of our approach, we implemented different types of message passing layers, including
graph convolution and GIN.

C Generalization results details

D Concept completeness and purity

Our experimental results demonstrate that interpretable GNNs produce concepts with high complete-
ness and purity, which are standard quantitative metrics used to evaluate the quality of concept-based
approaches. Specifically, our approach achieves up to X% completeness and Y purity, with an average
score of Z and W, respectively. The lowest scores are obtained for the multilabel case, which is
more challenging as models must learn a wider and more diverse set of concepts. Furthermore,
the hierarchical structure of interpretable GNNs enables us to evaluate the quality of intermediate
concepts layer by layer. This hierarchy provides insights into why we may need more layers, and
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Table 1: Generalization performance of graph neural models in solving universal algebra’s tasks.
Values represents the mean and the standard error of the mean of the area under the receiver operating
curve (AUCROC, %).

weak generalization strong generalization
GNN iGNN HiGNN GNN iGNN HiGNN
Distributive 99.80 £0.04 99.56 £0.12 99.45+0.06 99.51+0.20 99.44+0.05 99.42+0.04

Join Semi Distributive ~ 99.49 £0.02 98.31 £0.15 98.284+0.04 98.77+0.15 97.50+£0.14 97.48+0.14
Meet Semi Distributive  99.52 +£0.04 98.19+0.06 98.254+0.08 98.90+0.03 97.18+£0.14 96.89 +0.37

Modular 99.77£0.02 99.18 £0.11 99.35+£0.09 99.324+0.22 99.214+0.14 99.114+0.22
Semi Distributive 99.66 £0.03 98.57+£0.02 98.50+£0.06 99.194+0.04 97.284+0.48 96.8840.47
Multi Label 99.60 £0.02 96.324+0.34 95.98+0.50 98.62+£0.43 95.29+0.55 95.27+0.32

it can be used as a valuable tool to find the optimal setup and tune the size of the architecture.
Additionally, it can also be used to compare the quality of concepts at different layers of the network.
Overall, these results quantitatively assess and validate the high quality of the concepts learned by
the interpretable GNNs, highlighting the effectiveness of this approach for learning and analyzing
complex algebraic structures.

Table 2: Concept purity scores of graph neural models in solving universal algebra’s tasks.

WEAK PURITY STRONG PURITY
GNN iGNN HiGNN GNN iGNN HiGNN
Distributive 3.30+£0.36 3.64+£0.30 3.09+£0.56 3.29+0.38 4.00+0.77 4.15+0.67

Join Semi Distributive ~ 2.38 +0.37 3.96+0.51 3.74+0.62 3.45+0.34 3.98+0.68 4.29+0.61
Meet Semi Distributive 3.244+0.63 3.55+0.62 3.39+0.29 3.364+0.32 4.25+0.39 4.97+0.44
Modular 3.10£0.35 3.50+£046 4.44£0.56 3.144+024 3.19+£1.01 4.25+0.69
Semi Distributive 2844051 3.70+0.54 411+£046 3.70+0.55 3.92+0.28 4.08+0.85

Table 3: Concept completeness scores of graph neural models in solving universal algebra’s tasks.
Values represents the mean and the standard error of the mean of the area under the receiver operating
curve (AUCROC, %).

WEAK COMPLETENESS STRONG COMPLETENESS
iGNN HiGNN iGNN HiGNN
Distributive 77.30£0.20 76.60£2.35 T7819+£1.71 73.16+3.63

Join Semi Distributive  85.20 £0.86 86.84 £0.37 81.08 £0.18 79.76 £+ 0.38
Meet Semi Distributive 84.21 £0.68 84.34 £1.08 80.86£1.32 79.68 £+ 0.22
Modular 76.98+0.28 73.77+£3.14 81.36+£0.70 77.61+£2.37
Semi Distributive 87.33+1.16 85.624+0.27 84.03+0.89 82.26+0.21
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