
Expert Systems With Applications 230 (2023) 120534

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An efficient deep learning model to categorize brain tumor using
reconstruction and fine-tuning
Md. Alamin Talukder a,∗, Md. Manowarul Islam a, Md. Ashraf Uddin b, Arnisha Akhter a,
Md. Alamgir Jalil Pramanik c, Sunil Aryal b, Muhammad Ali Abdulllah Almoyad d,
Khondokar Fida Hasan e, Mohammad Ali Moni f,∗

a Department of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh
b School of Information Technology, Deakin University, Geelong Waurn Ponds Campus, Australia
c Department of Surgery, Rangpur Medical College Hospital, Rangpur, Bangladesh
d Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt King Khalid University, 47 Abha, Mushait, PO Box. 4536, ZIP.
61412, Saudi Arabia
e School of Computer Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
f Artificial Intelligence & Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioral Sciences, The University of Queensland St
Lucia, QLD 4072, Australia

A R T I C L E I N F O

Keywords:
Neuroscience
Deep learning
Transfer learning
Brain MRI image
Brain tumor
Classification

A B S T R A C T

Brain tumors are among the most fatal and devastating diseases, often resulting in significantly reduced
life expectancy. An accurate diagnosis of brain tumors is crucial to devise treatment plans that can extend
the lives of affected individuals. Manually identifying and analyzing large volumes of MRI data is both
challenging and time-consuming. Consequently, there is a pressing need for a reliable deep learning (DL)
model to accurately diagnose brain tumors. In this study, we propose a novel DL approach based on transfer
learning to effectively classify brain tumors. Our novel method incorporates extensive pre-processing, transfer
learning architecture reconstruction, and fine-tuning. We employ several transfer learning algorithms, including
Xception, ResNet50V2, InceptionResNetV2, and DenseNet201. Our experiments used the Figshare MRI brain
tumor dataset, comprising 3,064 images, and achieved accuracy scores of 99.40%, 99.68%, 99.36%, and
98.72% for Xception, ResNet50V2, InceptionResNetV2, and DenseNet201, respectively. Our findings reveal
that ResNet50V2 achieves the highest accuracy rate of 99.68% on the Figshare MRI brain tumor dataset,
outperforming existing models. Therefore, our proposed model’s ability to accurately classify brain tumors in
a short timeframe can aid neurologists and clinicians in making prompt and precise diagnostic decisions for
brain tumor patients.
1. Introduction

The brain is an essential and highly complex component of the
human body, responsible for governing both intentional and uninten-
tional activities (Quader, Kataoka, & Cabral, 2022). As one of the
most intricate and delicate organs, it controls various critical functions,
including cognition, emotion, vision, hearing, and response (Asif et al.,
2022). Brain tumors, which result from abnormal tissue growth within
the skull, are among the most lethal brain disorders. These tumors can
be categorized into primary and secondary types. Primary brain tumors,
accounting for 70% of cases, only spread within the brain, whereas
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secondary tumors originate in other organs like the breast, kidney, or
lung before metastasizing to the brain (Kibriya et al., 2022).

Common types of brain tumors include gliomas, meningiomas, and
pituitary tumors. Gliomas result from abnormal proliferation in glial
cells, which constitute approximately 80% of the brain. Meningiomas
develop in the meninges spinal cord, the protective layer of the brain,
while pituitary tumors arise within the pituitary gland, responsible for
producing essential hormones. Although pituitary tumors are typically
benign, they can cause hormonal imbalances and irreversible vision
impairment (Komninos et al., 2004).
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Numerous disorders can damage the brain, notably brain tumors,
which are primarily accompanied by abnormal proliferation within the
nervous system (Naki & Aderibigbe, 2022). These abnormalities were
extremely difficult to cure; therefore, prompt detection is critical to
the human’s wellbeing (Almadhoun & Abu-Naser, 2022). World Health
Organization (WHO) suggests that the brain tumors will expand by 5%
each year globally (Çinar & Yildirim, 2020). Brain tumors are more
deadly and difficult to diagnose than a tumor in any other section of
the body. Since the brain is surrounded by the blood–brain barrier,
typical radioactivity detectors are unable to detect tumor cell impul-
sivity (Graber, Cobbs, & Olson, 2019; Naseer, Yasir, Azhar, Shakeel, &
Zafar, 2021). As a result, magnetic resonance imaging (MRI) as well as
computed tomography (CT) images are considered the most effective
clinical tracers for detecting brain disturbance (Naseer et al., 2021).
MRI is a widely used technology for diagnosing and prognosing brain
tumors in a variety of neurological disorders and situations (Gurbină,
Lascu, & Lascu, 2019). Many clinical disorders now require MRI as
the main diagnostic evaluation (Abd-Ellah, Awad, Khalaf, & Hamed,
2019). The premise underlying MRI is to achieve higher cross-sectional
images of organs using non-ionizing radio-frequency electromagnetic
waves in the context of regulated magnetic fields (Katti, Ara, & Shireen,
2011). It is also thought to be superior to CT since it exposes patients
to less radiation, has less dimensional inaccuracy, and has no adverse
effects (Niraj et al., 2016).

In neuroscience, brain tumors are a hot topic, as the detection of
brain tumors in the early stages is very important to protect against
loss of human life (Islam et al., 2021). Although there are several
approaches for diagnosing abnormalities in brain magnetic resonance
scans, there is still scope for enhancing performance and making the
classification within a reasonable amount of time (Mandle, Sahu, &
Gupta, 2022). Due to the growing volume of medical data, attempt
in analyzing and extrapolating them using conventional techniques
are becoming increasingly difficult (Abiwinanda, Hanif, Hesaputra,
Handayani, & Mengko, 2019; Badža & Barjaktarović, 2020). Scientists
now have a new incentive to optimize present methodologies for more
complete clinical research (Bruton, Medlin, Brown, & Sacco, 2020).
Deep learning is a popular technique for evaluating biomedical data
in the healthcare field (Naser & Deen, 2020; Talukder et al., 2022).

Deep learning (DL) is an advanced categorization and prediction
innovation that has demonstrated outstanding performance in domains
that require multilevel data processing, such as classification, detection,
and voice recognition (Pyrkov et al., 2018). It can obtain valuable
underlying patterns from images that have been shown to achieve
provincial efficiency (Ciregan, Meier, & Schmidhuber, 2012). It is the
most notable ML achievement, capable of managing complex pattern
recognition and object detection from image dataset (Avci et al., 2021).
Traditional ML-based techniques are not applicable for image classi-
fication because they rely heavily on hand-made features (Le, Wang,
Huang, Hickman, & Gilbert, 2019). The essential factor to make them
attractive to complex biomedical applications is their ability to extract
optimized features directly from raw data to the nature of the problem
to enhance classification performance (Kiranyaz et al., 2021).

Transfer learning (TL) refers to the process that uses the knowledge
of previously trained models to discover a new set of data to deal with
a precise scenario (Tan et al., 2018). Moreover, we do not require a lot
of processing power. The model employs the convent weights of the
pre-trained model and trains only the final dense layer (Talo, Baloglu,
Yıldırım, & Acharya, 2019). There are three ways in which it can be
utilized, namely as a baseline model for object classification that can
be used to train TL models on imagenet data (Morid, Borjali, & Del Fiol,
2021); as a feature extractor that extracts features from image data and
then uses deep learning or machine learning for labels. Abbasi et al.
(2020); as a fine-tuning, which requires changing the last layer to suit
the classes of the preferred data source and retraining the network’s
2

layers (Montalbo, 2020).
Numerous efforts have been identified in the related works, each
based on a unique strategy for classifying brain tumors (Afshar, Mo-
hammadi, & Plataniotis, 2018; Ayadi, Elhamzi, Charfi, & Atri, 2021;
Belaid & Loudini, 2020; Rehman, Naz, Razzak, Akram, & Imran, 2020;
Sadad et al., 2021). Various medical images have already been iden-
tified and represented using DL approaches. Its procedures have en-
abled machines to evaluate multidisciplinary pathology scans, high-
dimensional image data, and video recordings (Andresen et al., 2022;
Talukder et al., 2022). As they can handle biomedical image data,
many deep-learning techniques have been applied to disease predic-
tion (Islam, Wijewickrema, & O’Leary, 2022; Khan et al., 2022; Savaş,
2022).

Manually assessing and analyzing a vast array of brain MRI data is
not only time-consuming and costly, but it can also be prone to errors,
as the processing and classification of MRI images require expertise.
Accurate diagnosis and classification of brain tumors are vital, as
they inform prognostic predictions and enable medical professionals to
select the most suitable treatment options.

To help medical experts in selecting the best line of action and
stopping the early death of life due to brain tumors, we need to build a
robust DL model to accurately predict brain tumor with less amount
of time. Hence, our research focuses on creating a productive and
well-organized framework to classify brain tumors in which we use
numerous preprocessing steps to prepare our dataset, reconfigure the
TL architecture, and add some extra layers. The proposed DL approach
is tested on the publicly available Figshare MRI brain tumor dataset.
In order to build a robust model, we used our novel DL approach for
effective improvement in brain tumor classification. In this research, we
assess the effectiveness of our proposed deep learning model by utiliz-
ing various performance metrics, such as Accuracy, Precision, Recall,
F1-score, Confusion Matrix, Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Mean Squared Error (MSE). The findings
demonstrate that our deep learning model is capable of classifying brain
tumors with an exceptional accuracy rate surpassing 99%.

The main contributions of this research are as follows:

• It proposes a novel deep learning model for brain tumor clas-
sification, incorporating comprehensive preprocessing, transfer
learning architecture modification, and fine-tuning to enhance
efficiency.

• Reconfiguration architecture is modified by involving image aug-
mentation to solve overfitting problems and utilize the GPU
speed. Furthermore, to get instantaneously standardize images
based on the configuration, which helps the initiative of reim-
plementing the augmentation process.

• Fine-tuning is the process of adding layers with the modified
architecture that let us build a new DL architecture to classify
brain tumor efficiently.

• Finally, assess the effectiveness of our proposed models using
multiple criteria, including accuracy, precision, recall, f1-score
and confusion matrix and finding the best model to categorize
brain tumor.

The subsequent sections of the paper are structured as follows: In
Section 2, an overview of related work on brain tumor diagnosis using
deep learning is presented. The methodology and dataset used in our
research are elaborated in Section 3. Section 4 outlines the experimen-
tal setup and performance evaluation. Lastly, the paper concludes with
Section 5.

2. Related works

Classification of brain tumors is essential for evaluating tumors and
deciding on medication options based on their categories. Brain cancers
are detected using a variety of neuroimaging methods. Conversely, MRI

is frequently employed because of its greater image quality and lack of
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Fig. 1. The tree diagram of related works for brain tumor classification.

ionizing radiation. DL is a machine learning discipline that has consis-
tently demonstrated outstanding results, particularly in categorization
and detection issues. Fig. 1 shows the tree diagram of related works for
brain tumor classification.

2.1. Brain tumor classification using Transfer Learning (TL)

Belaid and Loudini (2020) explored the use of transfer learning
networks to categorize brain tumors in MRI images. The TL networks
were trained and evaluated using several optimization strategies on the
Figshare brain tumor dataset to identify the most frequent brain lesions.
With ResNet50 and Adadelta optimization, the presented transfer learn-
ing model got the greatest classification accuracy of 99.02 percent. The
classification results showed that the most frequent brain tumor may
be classified with excellent accuracy. As a result, the transfer learning
paradigm in medicine holds promise and can help physicians make
rapid and precise diagnoses.

Rehman et al. (2020) used three different designs of convolutional
neural networks to diagnose brain lesions in three experiments. They
employed MRI slices from the Figshare brain tumor dataset; each
study investigates TL strategies, including fine-tuning and freezing. The
MRI slices are subjected to data augmentation procedures to improve
the generalization of results and expand data sampling to lower the
overfitting chance. The optimized VGG16 model produced the best
results in categorization and had a prediction rate of 98.69% in the
tests.

Sadad et al. (2021) utilized NASNet and ResNet50-UNet TL archi-
tects to achieve brain tumor classification. To improve the recognition
results, the pre-processing and data augmentation idea was established.
According to the findings, the research proposal paradigm outper-
formed the current state of the art. Among the many TL models used
for tumor categorization, NASNet was the greatest accuracy rate of 99.6
percent.

Tummala, Kadry, Bukhari, and Rauf (2022) used ImageNet-based
ViT models that had been pre-trained and fine-tuned for categorization
assignment. The Figshare brain tumor data set was utilized to evaluate
the performance of the ensemble ViT model in cross-validation (CV)
and testing for a three-class classification task. The combination of all
four ViT variants, L/16,L/32, B/16 and B/32, yielded a 98.7% total
testing accuracy. As a result, a collection of ViT models could be used
to support the computer-assisted identification of brain cancers based
on MRI scans, easing the burden on radiologists.

Swati et al. (2019) proposed a blockwise fine-tuning approach
utilizing TL with a pre-trained CNN model. On the Figshare brain
tumor dataset, the offered approach was tested. Their strategy was
more versatile because it did not employ any feature extractor, required
little preprocessing, and had an average accuracy of 94.82 percent
when tested five times. They contrasted their findings with classic CNN-
based ML and DL methods. The developed VGG19 technique exceeded
state-of-the-art classification, according to experimental results.
3

2.2. Brain tumor classification using Capsule Network (CapsNet)

Afshar et al. (2018) exploited CapsNets to increase the performance
of the categorization issue on a real series of brain MRI images to
identify brain tumors. Due to the handling of a limited training set
and their units being increasingly adaptable, they exceed CNNs in the
tumor diagnosis challenge by 86.56 percent. Their findings demon-
strated that the suggested method could efficiently defeat CNNs in the
categorization of brain tumors.

Afshar, Plataniotis, and Mohammadi (2019) developed a modified
CapsNet design that included both raw MRI brain images and tumor
borders in order to categorize cancers. The tumor rough borders are
added as new inputs to the CapsNet’s workflow to boost the CapsNet’s
emphasis. They utilized the figshare brain MRI data with 3064 pictures
to test their recommended CapsNet framework and achieved a 90.89
percent accuracy rate, which exceeds its competitors significantly. They
showed that, in contrast to previous CapsNets and CNNs, the new
technique improved the classification accuracy. It was also notable to
observe that CapsNets were equipped with features that improved their
interpretability.

Afshar, Mohammadi, and Plataniotis (2020) introduced a Bayesian
CapsNet framework, termed the BayesCap, capable of providing not
only mean estimates, but also entropy as an indicator of forecasting
uncertainties, by taking advantage of the ability of capsule networks to
regulate small datasets and control uncertainty. To test the BabyesCap
model, they used Figshare brain tumor dataset and obtained a 78
percent accuracy rate in detecting brain tumors. They demonstrated
that screening out the uncertain forecasts improves accuracy, indicating
that releasing the uncertain forecasts was a good method for increasing
network comprehensibility.

2.3. Brain tumor classification using Convolution Neural Network (CNN)

Badža and Barjaktarović (2020) demonstrated a new CNN model
for brain tumor categorization that is easier to use than pre-trained
networks and was evaluated using Figshare MRI data. The network’s
capacity to generalize was evaluated through various methods, in-
cluding the use of the 10-fold CV technique. The record-wise CV for
the augmented data yielded the highest results among the different
approaches. They had a 96.56 percent accuracy rate. The novel CNN
architecture could be employed as an excellent verdict utility for ra-
diologists in diagnostic purposes, together with its high generalization
potential and processing speed.

Leveraging two publicly accessible datasets, a DL model premised
on a convolutional neural network is presented by Sultan, Salem, and
Al-Atabany (2019) to diagnose various brain tumor kinds. For the
2 experiments, the presented network topology produces remarkable
results, with the greatest overall accuracy of 96.13 percent and 98.7
percent, respectively. The findings proved that the proposal could be
used to detect multiple types of brain tumors.

Ait Amou, Xia, Kamhi, and Mouhafid (2022) presented an improved
hyperparameter optimization strategy for CNN that relies on Bayesian
optimization. This strategy was tested by categorizing MRI scans of the
brain into three classes of cancers. Five well-known deep pre-trained
models are examined to optimize CNN’s efficiency using TL. Despite
the use of data augmentation or cropping lesion procedures, their CNN
was capable of achieving an accuracy rate of 98.70 percent at most after
utilizing Bayesian optimization. Furthermore, using the MRI sample,
the suggested model exceeds the existing work, proving the viability of
hyperparameter optimization automation.

Abiwinanda et al. (2019) attempted to train CNN to recognize three
different types of brain tumors: gliomas, meningiomas, and pituitary
tumors. The authors used a simple CNN architecture that included
only one convolution layer, a max-pooling layer, and a flattening layer
over each hidden layer, followed by a full connection from one hidden
layer. Their model achieved 98.51 percent training accuracy and 84.19
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Fig. 2. The block diagram of our proposed research.

percent validation accuracy despite its simplicity and lack of prior
region-based segmentation. This method has the potential to be a
straightforward tool for doctors in accurately diagnosing brain tumors.

Das, Aranya, and Labiba (2019) worked on constructing a CNN
model for the classification of brain tumors, and the designed scheme
was made up of two major steps: preprocessing images using various
image processing strategies and then categorizing the processed images
using CNN. Using their CNN model on a brain tumor dataset, they were
able to attain a high accuracy of 94.39 percent. In the data set, the
designed scheme demonstrated satisfactory accuracy and exceeded the
number of well-known current approaches.

Paul, Plassard, Landman, and Fabbri (2017) employed 989 axial
photos to develop a convolutional neural network over the axial data,
which proved to be efficient in categorization with a 5-fold CV of
91.43 percent on the finest CNN model. This finding showed that
CNN outperformed specialized approaches in tumors that need image
dilation and ring-forming subareas.

Ayadi et al. (2021) demonstrated a novel CNN-based model with
multiple layers for classifying MRI brain tumors. It was an intelligent
model that needed very little preprocessing and was evaluated on
three different brain tumor datasets. To test the accuracy of the model
and determine the resilience of the system, a variety of performance
metrics were examined. With an accuracy rate of 94.74% for Figshare,
93.71% for Radiopaedia, and 97.22 percent for Rembrandt datasets,
the proposed scheme achieved the best classification and recognition
accuracies relative to previous relevant studies along the same data.

3. Methodology

This section presents our proposed methodology, which includes a
description of the various transfer learning (TL) algorithms that are
utilized in our approach. First, we explain the working principle of our
proposal and then we briefly describe the transfer learning algorithms.

To ensure a brain tumor prognosis, we constructed our proposed
approach using image data collection, preprocessing, reconstruction
transfer learning architecture and fine-tune by attaching some extra
layers such as global avg. pooling, batch normalization and dense layers
to classify brain tumors on a brain tumor dataset. The block diagram
and architecture of our proposed paradigm are depicted in Figs. 2 and
3. The following are the steps of our proposed approach:
4

• Step-1: Initially, we take the brain tumor dataset to conduct our
experiment. There are three types of brain tumors available in our
dataset such as glioma, meningioma and pituitary.

• Step-2: During the pre-processing stage, the image is resized to
achieve the desired size of 256 × 256, applied a filter to sharpen
the image, then complements the image and performed image
scaling to normalize the image data.

• Step-3: In the reconstruction transfer learning architecture step,
we add image augmentation after the input layer and then trun-
cate the last few layers after the activation layer.

• Step-4: In this step, we fine-tune by attaching some layers includ-
ing global average pooling, batch normalization and dense layer
to make it more suitable to classify brain tumors.

• Step-5: In this step, some well-known transfer learning algo-
rithms such as Xception, ResNet50V2, InceptionResNetV2 and
DenseNet201 are utilized in our approach.

• Step-6: Finally, the performance is evaluated for each trans-
fer learning model and selecting the best one based on various
performance metrics, including Accuracy, Precision, Recall, F1-
score, Confusion Matrix, RMSE, MAE and MSE. Furthermore, a
comparison analysis is performed with other existing works.

3.1. Data collection

The dataset (Cheng, 2017) contains 3064 T1-weighted contrast-
enhanced images of the brains of 233 patients who had been diagnosed
with one of three types of brain tumors: meningioma (708 slices),
glioma (1426 slices), or pituitary tumor (930 slices). The information
can be downloaded in the form of Matlab files (.mat files). Each image
file includes a struct that contains pertinent information about the
image, such as the label (1 for meningioma, 2 for glioma, and 3 for
pituitary tumor), patient ID (PID), image data, and tumor Border. The
tumor border is a vector that contains the coordinates of distinct points
on the tumor’s edge, and it is obtained by manually tracing the tumor
border. Due to the availability of this information, the generation of a
binary image of the tumor mask is made simple. In addition, the dataset
contains a tumor Mask, which is a binary image with the tumor region
represented by a string of ones.

The distribution of the dataset is depicted in Fig. 4

3.2. Data preprocessing

In the data preprocessing, we took the dataset and prepare it for
processing by taking the image and label information from the dataset
as the dataset was in Matlab (.mat) file format. Then we start image pre-
processing by utilizing the resize the images into 256 × 256, applying a
sharp filter to sharpen the images and complement the images to make
them more visible. After that, we scale the image by dividing the images
by 255. Moreover, to fit into the CNN model, we split our dataset into
train, test and validation parts in 80%, 10% and 10% and also shuffle
1000 times to minimize loss, reduce the variance and generalize the
model.

The preprocessed images are sharper, brighter, and have more de-
tectable details than the original images, making them appropriate for
driving into the model and achieving greater performance than existing
works. Fig. 5 illustrates the image preprocessing steps for brain tumor
types, including glioma, meningioma, and pituitary. The top section
of the figure (a,b,c) shows the images before preprocessing, while the
bottom section (d,e,f) displays the images after the preprocessing steps
have been applied.

We have further enhanced the experimental setup by incorporating
additional photographs to measure the impact of the image preprocess-
ing techniques proposed in this paper. In Fig. 6a and b, we present a se-
lection of before-and-after images randomly selected from our dataset,
illustrating the demonstrable effects of the image processing methods
employed. These visual examples serve to provide compelling evidence
of the efficacy of our image preprocessing approach, enhancing the
attractiveness and visual appeal of our research
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Fig. 3. The proposed architecture for brain tumor classification.
Fig. 4. The distribution of brain tumor dataset.

3.3. Reconstruction transfer learning architecture

In reconstruction transfer learning architecture, we reconstruct the
architecture of transfer learning as we have already known that the
transfer learning algorithms are pre-trained with ImageNet data (You,
Kou, Long, & Wang, 2020) so to use it in our dataset we need to
reconstruct the architecture for better predictions. We reconstruct the
architecture so that we can utilize all transfer learning algorithms in
our modified architecture. This procedure follows two steps:

• Image Augmentation: Initially, we take the input layer then we
add the image augmentation layer means we make the aug-
mentation layer part of our architecture so that the modified
architecture can use preprocessed images to perform augmenta-
tion on-device, simultaneously with the remainder of the layers,
and advantage from GPU speed. In addition, when we extract
our model, the preprocessing layers are stored alongside the rest
of the model. When we afterward deploy this model, it will
instantaneously standardize images (based on the configuration of
our layers), saving us the initiative of reimplementing that logic
server-side.

• Truncate Layers: After that, we keep all the layers of transfer
learning algorithms except after the last activation layers in our
architecture as we want to add more layers to make it a more
efficient architecture to predict brain tumors.

Fig. 7 shows the original and reconfigured transfer learning archi-
tectures where Fig. 7(a) represents the original architecture of trans-
fer learning and Fig. 7(b) represents the reconfigured architecture of
transfer learning.

3.4. Image augmentation

Fig. 8 illustrates the image augmentation process used in our pro-
posed architecture. Image augmentation is a frequently employed ap-
proach to enhance the scale and variety of a dataset, which in turn
5

can enhance the efficacy of deep learning models. In our approach, we
applied a series of image processing techniques to the input images
to generate augmented images. The augmentation process includes
horizontal flipping, rotation, zooming, and contrast adjustment. The
input images are also rescaled to 0 to 1 to facilitate model training. Ad-
ditionally, we randomly rotated and translated the images to increase
the diversity of the augmented dataset further. Firstly, we take the input
image from the input layer of TL architecture, later we perform the
following image augmentation processing techniques as follows:

• RandomFlip(‘‘horizontal’’, input_shape=(size,size,3)): This tech-
nique randomly flips the input image horizontally with image
shape of 256 × 256 × 3, where 256 is height, 256 is width and 3
is the channel for rgb image.

• RandomRotation(0.2): This technique randomly rotates the input
image by a maximum of 0.2 radians.

• RandomZoom(0.2): This technique randomly zooms in or out of
the input image by a maximum of 20%.

• RandomContrast(0.2): This technique randomly adjusts the con-
trast of the input image by a maximum of 20%.

• Rescaling(1.0/255): This technique rescales the input image pixel
values to a range of 0 to 1.

• RandomRotation(30): This technique randomly rotates the input
image by a maximum of 30 degrees.

• RandomTranslation(ℎ𝑒𝑖𝑔ℎ𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 = 0.2, 𝑤𝑖𝑑𝑡ℎ𝑓 𝑎𝑐𝑡𝑜𝑟 = 0.3,
𝑓 𝑖𝑙𝑙_𝑚𝑜𝑑𝑒 = ‘𝑟𝑒𝑓𝑙𝑒𝑐𝑡’, 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ‘𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟’): This technique
randomly translates the input image horizontally and vertically
by a maximum of 20% and 30% of the image height and width,
respectively. The ‘‘fill_mode’’ parameter determines how the pix-
els outside the image boundary are filled, and the ‘‘interpolation’’
parameter determines how the image is interpolated after the
translation.

The augmentation process was carefully designed and adjusted
to ensure the augmented dataset was diverse and representative of
the original dataset. The resulting augmented dataset was used to
train our proposed model, which achieved state-of-the-art performance
on the task of interest. Thus, these image-processing techniques can
help augment the dataset’s size and diversity, which can upgrade the
performance of deep-learning models.

3.5. Fine-tuning

In Fine-tuning, we add some layers to suit the classes of the pre-
ferred brain MRI data making a better architecture. We add Global
Average Pooling2D and twice Batch Normalization and Dense layer
to complete the proposed architecture. In the Global Average Pool-
ing2D layer, we add the output of the base model after that, we add
Batch Normalization and Dense layer of neuron 1280, activation of
‘relu’, kernel initializer of ‘glorot uniform’ with seed 1377 and bias
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Fig. 5. Brain glioma, meningioma and pituitary image before and after image preprocessing.

Fig. 6. Sample of before and after image preprocessing.
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Fig. 7. The original and reconfigured architecture of transfer learning model.
Fig. 8. The augmentation process of our proposed architecture.

initializer is ‘zeros’. Then we again add another Batch Normalization
and later we add a prediction Dense layer with 3 neurons which is
the class number. ‘softmax’ activation is utilized as it is a multilabel
classification (Kini et al., 2022; Thilagaraj, Arunkumar, & Govindan,
2022), ‘random uniform’ kernel initializer and ‘zeros’ bias initializer.
7

We use the pre-trained trainable weighted to utilize the knowledge in
our architecture. Finally, the architecture is compiled with ‘Adamax’
optimizer with a learning rate of 0.0001 and ‘sparse categorical cross’
entropy with ‘accuracy’ metrics. The ‘Adamax’ is utilized as it is an
Adam variant relying on the infinity norm that outperforms Adam,
particularly in models with embeddings. The learning rate is 0.0001,
since at this rate, the output models can ensure durability with less
loss than others (Mustapha, Mohamed, & Ali, 2020). We utilized ‘sparse
categorical cross’ entropy as the output labels are in integer form
(performs label encoding) and It helps in saving memory and compu-
tation time by using a single integer for a class rather than an entire
vector (Andrei-Alexandru & Henrietta, 2020; Chai et al., 2022; Kakarla,
Isunuri, Doppalapudi, & Bylapudi, 2021).

3.6. Transfer leaning algorithms

• Xception: The Xception architecture, also known as ‘‘Extreme
Inception’’ (Chollet, 2017), is a convolutional neural network
design consisting of a sequence of depthwise separable convo-
lution layers with residual connections. The architecture com-
prises 36 convolutional layers grouped into 14 blocks, where all
but the first and last blocks feature linear residual connections
between them. This appears to consider the architecture very
simple to interpret and customize; utilizing a top-level library
such as Keras (Joseph, Nonsiri, & Monsakul, 2021) or TensorFlow-
Slim (Silberman, 2017), it requires only 30 to 40 lines of code,
similar to VGG-16 (Simonyan & Zisserman, 2014), but unlike
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architectures such as InceptionV2 or V3, which are far more
difficult to delineate.

• ResNet50V2: ResNet is a novel neural network that was first
invented by He, Zhang, Ren, and Sun (2016a). The success of this
model is undeniable, as demonstrated by the fact that its ensemble
was able to secure the first position in the ILSVRC 2015 classifi-
cation contest, with an impressively low defect rate of only 3.57
percent. It has many varieties using the same principle but has
various numbers of layers. Resnet50 is a variation that can work
with 50 neural network layers. Deep residual nets employ resid-
ual blocks to enhance model accuracy. The central idea behind
residual blocks, known as ‘‘skip connections’’, is the robustness of
this neural network architecture. ResNet50V2 (He, Zhang, Ren, &
Sun, 2016b) is an adapted variant of ResNet50 that demonstrates
superior performance over ResNet50 and ResNet101 in the Im-
ageNet dataset. Specifically, ResNet50V2 (Rahimzadeh & Attar,
2020) introduces a modified inter-block connection structure to
improve information flow between blocks.

• InceptionResNetV2: According to Szegedy, Ioffe, Vanhoucke, and
Alemi (2017), the InceptionResNetV2 architecture, based on the
Inception block, extracts features using transformation and merg-
ing functions. It outperforms inceptionResNetv1 with less compu-
tation. Residual learning and inception blocks underpin it. Resid-
ual connections link different-sized convolution filters. Residual
connections avoid degradation and shorten training. This network
uses Stem, InceptionResNet, and Reduction blocks to improve
detection accuracy. According to Asif et al. (2022), the deep
network connects one main block, five Inception ResNetA blocks,
ten ResNet-B blocks, five ResNet-C blocks, one Reduction-A block,
and one Reduction-B block.

• DenseNet201: The architecture of DenseNet, as introduced in
Huang, Liu, Van Der Maaten, and Weinberger (2017), utilizes
feedforward connections to establish interactions between each
layer and all subsequent layers. This is in contrast to traditional
L-layer CNNs that only have L connections. With DenseNet, the
number of direct connections between layers increases signifi-
cantly to (L(L+1))/2, leading to improved feature propagation
and gradient flow throughout the network. A feature map is
included in each layer of the model. Each layer’s feature map is
utilized as the next layer’s input. It maximizes information trans-
fer within the network by directly connecting all layers. It sig-
nificantly reduces the dimensionality, lessens gradient runaway,
improves feature diffusion, and encourages feature reusability.
When contrasted with traditional CNN. DenseNet needs fewer
parameters since the feature map is not discovered twice. Further-
more, by using regularization, DenseNet minimizes the possibility
of overfitting. DenseNet121 is made up of four dense blocks, each
with six, twelve, twenty-four, and sixteen convolution blocks (Asif
et al., 2022).

. Results and discussion

We have reconfigured transfer learning architecture and fine-tuning
y attaching some extra layers, used four transfer learning algorithms,
nd evaluated the performance of our proposed scheme to identify
rain tumors. The performance is evaluated using a variety of per-
ormance indicators. The experiment setup, performance evaluation
etrics, results analysis, and discussion are provided in the following

ection.

.1. Experiment setup

The research is carried out using a computer that is powered by an
ntel Xeon CPU with 2 Cores, 13 GB of RAM, a 16 GB GPU, and a 73 GB
ard drive. With the help of a Jupyter notebook, the experiment has
een conducted. Python is used to implement the proposed approach,
ogether with a number of widely used libraries such as Scikit-learn,
8

eras, TensorFlow, Seaborn, Matplotlib, Numpy, and Pandas.
Table 1
Confusion matrix.

Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

4.2. Performance evaluation metrics

Several performance indicators, such as accuracy, precision, recall,
f1-score, confusion matrix, MSE, MAE, and RMSE, evaluate the per-
formance of our proposed approach. The following are the metrics
developed for evaluating performance:

• A method for evaluating the effectiveness of machine learning
categorization is the confusion matrix. This table-like structure
displays four different combinations of predicted and actual val-
ues, namely TP (True Positive), TN (True Negative), FP (False
Positive), and FN (False Negative). The confusion matrix, depicted
in Table 1, uses these labels to represent correct and incorrect
predictions for positive and negative values. A confusion matrix
is a valuable tool for assessing accuracy, precision, recall, and
f1-score in evaluating dependability, as cited by Talukder et al.
(2023).

• The most considered highly statistical is accuracy, which depends
on the number of proper outcome expectations over the total
number of observations.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(1)

• Precision is defined as the proportion of accurately predicted
positive values among the total number of predicted positive
values. It is visually represented as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

• Recall is the proportion of positively predicted values that are
accurate to all other actual values. As seen, it is:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

• The F1-score, which is a measure of performance for classification
tasks, is calculated as the harmonic mean of precision and recall
scores. It is typically represented in the following formula:

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(4)

• The mean absolute error (MAE) is a metric used to compare
errors in observations that are connected and represent the same
phenomenon. The arithmetic mean of the expected and actual
numbers, as stated in Willmott and Matsuura (2005), is utterly
inaccurate.

𝑀𝐴𝐸 =
∑𝑛

𝑖=1 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑖) − 𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)
𝑛

(5)

• The mean squared error (MSE) calculates the average of the
squared residuals or the average squared difference between the
values that were actually observed and those that were pre-
dicted. The most crucial aspect of MSE is it is frequently com-
pletely positive (rather than zero) due to unpredictability or if the
classifier does not permit data that could produce a reasonable
forecast (Das, Jiang, & Rao, 2004; Lehmann & Casella, 2006).

𝑀𝑆𝐸 =
∑𝑛

𝑖=1(𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑖) − 𝐴𝑐𝑡𝑢𝑎𝑙(𝑖))2

𝑛
(6)

• The root mean square error is the assessment measure most
frequently employed in regression issues (RMSE). Its foundation
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Table 2
Performance analysis of transfer learning models.

Proposed model Performance metrics

Accuracy Precision Recall F1-score MAE MSE RMSE MCC Kappa CSI

Xception 98.40 97.94 98.02 97.97 1.6 1.6 12.66 98.39 98.36 98.40
ResNet50V2 99.68 99.49 99.78 99.64 0.32 0.32 5.66 99.69 99.67 99.68
InceptionResNetV2 99.36 99.14 99.27 99.2 0.64 0.64 8.01 99.35 99.34 99.36
DenseNet201 98.72 98.16 98.83 98.48 1.28 1.28 11.32 98.70 98.68 98.72
is that mistake is objective and appears to have a normal distri-
bution. The impact of outlier traits on RMSE is fairly significant.

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1(𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖) − 𝑎𝑐𝑡𝑢𝑎𝑙(𝑖))2

𝑛
(7)

where n is the total number of values.
• An classifier evaluation can be made with the help of the

Matthews correlation coefficient (MCC). The value can be any-
thing from −1 to 1, with −1 indicating that the expected and
actual results are completely at odds with one another, 0 indicat-
ing that the predictions are completely random, and 1 indicating
that the predictions are spot on.

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√

(𝑇𝑃 + 𝐹𝑃 ) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃 ) ∗ (𝑇𝑁 + 𝐹𝑁)

(8)

• Kappa is a measurement for evaluating the degree of agreement
between a classification model’s anticipated and observed results,
controlling for the possibility that the observed agreement is
due to chance alone. It goes from −1 to 1, with −1 denoting
total disagreement, 0 denoting chance agreement, and 1 denoting
perfect agreement.

𝐾𝑎𝑝𝑝𝑎 =
(𝑃𝑜 − 𝑃𝑒)
(1 − 𝑃𝑒)

(9)

where P_o = observed agreement, and P_e = expected agreement.

𝑃𝑜 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(10)

𝑃𝑒 =
((𝑇𝑃 + 𝐹𝑃 ) ∗ (𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃 ) ∗ (𝑇𝑁 + 𝐹𝑁))

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
(11)

• The Classification Success Index (CSI) is a measurement tool that
assesses the effectiveness of a classification model by counting the
percentage of samples that were properly classified out of all the
samples. CSI has a scale from 0 to 1, with 0 denoting incorrect
classification and 1 denoting flawless classification.

𝐶𝑆𝐼 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(12)

4.3. Results and performance analysis

Our proposed approach uses four transfer learning algorithms on
the brain tumor dataset to classify brain tumors efficiently. Table 2
and Fig. 9 shows the performance and error analysis of our deployed
transfer learning models. In 9(a), we can see that the accuracy rates
are 98.40%, 99.68%, 99.36%, 98.72%; the precision rates are 97.94%,
99.49%, 99.14%, 98.16%; the recall rates are 98.02%, 99.78%, 99.27%,
98.83%; the f1-score rates are 97.97%, 99.64%, 99.20%, 98.48%;
for Xception, ResNet50V2, InceptionResNetV2 and DenseNet201 re-
spectively. Among all the models, ResNet50V2 achieves the highest
performance rate with 99.68% accuracy, 99.49% precision, 99.27%
recall and 99.20% f1-score rate.

Similarly, in 9(b), we can see that the MAE rates are 1.6%, 0.32%,
0.64%, 1.28%; the MSE rates are 1.6%, 0.32%, 0.64%, 1.28%; the
RMSE rates are 12.66%, 5.66%, 8.01%, 11.32%; for Xception,
9

ResNet50V2, InceptionResNetV2 and DenseNet201 respectively.
Among all the models ResNet50V2 attains the lowest error rate with
0.32% MAE, 0.32% MSE and 5.66% RMSE rate.

Fig. 10 shows all transfer learning models’ accuracy and loss graphs.
With the number of epochs, the accuracy rate rises while the loss rate
falls. The learning curves also reveal that the models are not overfitting
because the models learn the given input very well at each epoch. The
augmentation procedure addresses the overfitting issue. The following
is a brief analysis of all accuracy and loss graphs:

• Xception: In Fig. 10(a), we can visualize that the training and
validation accuracy rate are slightly far away where the training
accuracy is close to 99.5% and the testing accuracy is close to
98.5%. In Fig. 10(b), we can see that the training and validation
error rate are also slightly far away, where the training accuracy
is close to 0.3% and the testing accuracy is close to 1.5%.

• ResNet50V2: In Fig. 10(c), the training and validation accuracy
rates are smooth and close to each other where the training
accuracy is close to 99.99% and the testing accuracy is close to
99.7%. In Fig. 10(d), we can see that the training and validation
error rate are also close to each other where the training accuracy
is close to 0% and the testing accuracy is close to .3%.

• InceptionResNetV2: In Fig. 10(e), the training and validation
accuracy rate is not smooth where the training accuracy is close
to 99.8% and the testing accuracy is close to 99.4%. In Fig. 10(f),
we can see that the training and validation error rate are slightly
far away where the training accuracy is close to 0.1% and the
testing accuracy is close to .6%.

• DenseNet201: In Fig. 10(g), the training and validation accuracy
rates are slightly close to each other and the training accuracy
is close to 99.8% and the testing accuracy is close to 98.7%.
In Fig. 10(h), we can see that the training and validation error
rate are also slightly close where the training accuracy is close to
0.2% and the testing accuracy is close to 1.2%.

Fig. 11 represents the confusion matrix for all transfer learning
models. The following is a brief description of all confusion matrices:
Fig. 11(a) shows the confusion matrix of Xception model where con-
sidering the glioma TP, TN, FP, FN rates are 48.08%, 51.28%, 0%,
0.64%; considering meningioma TP, TN, FP, FN rates are 19.87%,
78.53%, 0.64%, 0.96%; and considering pituitary rates are 30.45%,
68.59%, 0.96%, 0% respectively. In Fig. 11(b), the confusion matrix
of the ResNet50V2 model where considering glioma TP, TN, FP, FN
rates are 48.4%, 51.28%, 0%, 0.32%; considering meningioma TP,
TN, FP, FN rates are 20.83%, 78.85%, 0.32%, 0%; and considering
pituitary TP, TN, FP, FN rates are 30.45%, 69.55%, 0%, 0%. Fig. 11(c)
shows the confusion matrix of the InceptionResNetV2 model where
considering glioma TP, TN, FP, FN rates are 48.4%, 51.28%, 0%,
0.32%; considering meningioma TP, TN, FP, FN rates are 20.51%,
78.85%, 0.32%, 0.32%; and considering pituitary TP, TN, FP, FN rates
are 30.45%, 69.23%, 0.32%, 0%. Fig. 11(c) shows the confusion matrix
of DenseNet201 model where considering glioma TP, TN, FP, FN rates
are 47.76%, 51.28%, 0%, 0.96%; considering meningioma TP, TN, FP,
FN rates are 20.51%, 78.21%, 0.96%, 0.32%; and considering pituitary
TP, TN, FP, FN rates are 30.45%, 69.23%, 0.32%, 0%.

After analyzing all the performance metrics, we can conclude that
among all the transfer learning models, ResNet50V2 provides the best

performance and lowest error rate as well as high TP and TN rates
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Fig. 9. Analysis of transfer learning models.
and less number of FP and FN rates. ResNet50V2 (He et al., 2016b)
is a revised version of ResNet50 which uses residual nets that utilize
residual blocks to improve model performance. ‘skip connections’ is
the spirit of residual blocks which render it much simpler for the
layers to gain knowledge identification operations in skip connections.
ResNet50v2, similar to ResNet50, increases the effectiveness of deep
neural networks with more neural layers while reducing the portion of
errors (Shafiq & Gu, 2022).

The analysis results reveal that ResNet50V2 achieved the high-
est overall performance with an accuracy of 99.68%, followed by
InceptionResNetV2 with an accuracy of 99.36%, DenseNet201 with
an accuracy of 98.72%, and Xception with an accuracy of 98.40%.
ResNet50V2 also achieved the highest precision, recall, F1-score, MCC,
Kappa, and CSI among the proposed models. Overall, the analysis
indicates that ResNet50V2 is the most effective transfer learning model
for the given task, followed by InceptionResNetV2, DenseNet201, and
Xception.

Further, a test performance measurement analysis as depicted in
Fig. 12 we have also included a measure of our proposal where we
provide a performance of our efficient brain tumor classification model
by illustrating a visualization of performance metrics for some random
images to prove the effectiveness of our model in random input images.
The results of the random test images (a total of 8 images) were
10

astonishing, with a perfect accuracy rate of 100% for each image!
Table 3
Prediction speed analysis.

Proposed model Prediction speed (In s)

Xception 19
ResNet50V2 16
InceptionResNetV2 27
DenseNet201 23

4.4. Complexity analysis

We ascertain the complexity of our experiments by calculating the
prediction time in seconds using an Intel Xeon CPU with 2 Cores,
13 GB RAM, and a 16 GB GPU. The experiments have been conducted
utilizing 312 test images to classify brain tumors. The predicted times
are 19 s, 16 s, 27 s, 23 s for Xception, ResNet50V2, InceptionResNetV2
and DenseNet201 respectively. Among all the models, our proposal
ResNet50V2 takes only 16 s which underperforms others. Table 3 and
Fig. 13 show the analysis of prediction time in tabular and graphical
format.

4.5. Discussion

In our proposal, we have conducted preprocessing, architecture
reconfiguration as well as fine-tuning by attaching some extra layers
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Fig. 10. Accuracy and loss for transfer learning models.



Expert Systems With Applications 230 (2023) 120534Md.A. Talukder et al.
Fig. 11. Confusion matrix for transfer learning models.
Fig. 12. Performance measurements of our proposed model.
to build a novel model to detect brain tumors efficiently. Our proposed
efficient brain tumor classification model has been evaluated against
other existing works and significantly achieved a notably superior level
of accuracy. Table 4 shows the comparison study of brain tumor classifi-
cation. Among all the accuracy performances our proposal provides the
greatest accuracy with the same (brain tumor Cheng, 2017) dataset as
well as the same number of images (3064). The use of the same dataset
and number of images allows for a fair comparison to predict efficiency.
12
The study demonstrates that by using RestNet50V2, we can reach the
highest 99.68 percent accuracy rate for the brain tumor dataset that
significantly outperforms others.

There are several methods available for categorizing brain tumors,
each with its advantages and disadvantages. Here, we compare the
following approaches: Transfer Learning (TL) (Belaid & Loudini, 2020;
Rehman et al., 2020; Tummala et al., 2022), Capsule Network (Cap-
sNet) (Afshar et al., 2020, 2019) and Convolution Neural Network
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Table 4
The comparison analysis of brain tumor classification.
SI. NO Author Architecture Dataset No. of images Accuracy (In %)

1 Belaid and Loudini
(2020)

VGG16 Brain tumor (Cheng, 2017) 3064 96.5

2 Rehman et al. (2020) Fine-tune VGG16 Brain tumor (Cheng, 2017) 3064 98.69
3 Badža and

Barjaktarović (2020)
CNN Brain tumor (Cheng, 2017) 3064 96.56

4 Sultan et al. (2019) DL Brain tumor (Cheng, 2017) 3064 98.7
5 Ait Amou et al. (2022) Optimized CNN Brain tumor (Cheng, 2017) 3064 98.7
6 Tummala et al. (2022) Ensemble ViT Brain tumor (Cheng, 2017) 3064 98.7
7 Abiwinanda et al.

(2019)
CNN Brain tumor (Cheng, 2017) 3064 84.19

8 Paul et al. (2017) CNN Brain tumor (Cheng, 2017) 3064 91.43
9 Das et al. (2019) CNN Brain tumor (Cheng, 2017) 3064 94.39
10 Afshar et al. (2018) CapsNet Brain tumor (Cheng, 2017) 3064 86.56
11 Afshar et al. (2019) CapsNet Brain tumor (Cheng, 2017) 3064 90.89
12 Afshar et al. (2020) BayesCap Brain tumor (Cheng, 2017) 3064 78
13 Swati et al. (2019) VGG19 Brain tumor (Cheng, 2017) 3064 94.82
14 Sadad et al. (2021) NASNet Brain tumor (Cheng, 2017) 3064 99.6
15 Ayadi et al. (2021) CNN Brain tumor (Cheng, 2017) 3064 94.74
16 Our proposal DL (ResNet50V2) Brain tumor (Cheng, 2017) 3064 99.68
Table 5
Advantages and disadvantages of other approaches.

Model Description Advantages Disadvantages

Transfer Learning (TL) Uses a pre-trained model as a starting
point for training a new model on a
related task

Reduces the amount of data needed for
training, speed up the training process,
can improve accuracy by using
pre-trained models trained on large
datasets

Difficult to find a pre-trained model
suitable for the specific task of brain
tumor classification, the model may not
be optimized for the specific features of
brain tumor images

Capsule Network
(CapsNet)

Uses capsules to represent the features
of an image, can handle variations in
pose and deformation, can handle
multiple viewpoints of the same object

Can improve accuracy for analyzing
brain tumor images

Can be computationally expensive to
train, may require a large amount of
data for training

Convolutional Neural
Network (CNN)

Commonly used for image classification
tasks, can handle spatial relationships
between pixels in an image, can identify
features such as edges and textures, can
identify complex patterns in an image

Can improve the accuracy of
classification for brain tumor images

Can require a large amount of data for
training, can be computationally
expensive

Proposed model Utilizes extensive preprocessing,
reconfiguration of transfer learning
architecture, and fine-tuning for
classification of brain tumors

Efficient utilizes image augmentation to
solve overfitting problems and utilize
GPU speed, can standardize images
based on configuration, allows building
of new DL architecture

Require advanced techniques in image
processing, and the suggested framework
would enhance the appropriateness of
the task.
Fig. 13. Prediction speed analysis.

CNN) (Ait Amou et al., 2022; Ayadi et al., 2021; Badža & Barjak-
arović, 2020) with our proposed approach. Table 5 illustrates the
dvantages and disadvantages of other approaches.

Besides, the proposed research can be applied to various classifica-
ion tasks related to neural networks, CNN, and deep learning beyond
rain tumor classification. The techniques and methods proposed in the
aper, such as preprocessing, reconstructing transfer learning architec-
ure, and fine-tuning, can be applied to various classification tasks in
13
medical imaging and beyond. For example, the proposed model can
be adapted for the detection of COVID-19 in medical imaging data, as
demonstrated in the papers (Almalki et al., 2021; Irfan et al., 2021).
The application of deep learning models in the diagnosis of COVID-
19 has become an important area of research during the pandemic
and the techniques proposed in the paper can be utilized to improve
the accuracy of diagnosis and facilitate timely treatment. Additionally,
the proposed model can be applied to fault diagnosis in industrial
settings, as shown in the paper (Glowacz, 2022). By utilizing deep
learning models in conjunction with thermal imaging techniques, the
proposed model can facilitate the early detection and diagnosis of faults
in machinery, leading to reduced downtime and increased productivity.
Overall, the proposed research can serve as a valuable basis for various
classification tasks involving medical imaging, fault diagnosis, and
other applications that require deep learning models.

4.6. Application and profitable implications on society

The proposed research aims to develop a fine-tuned deep-learning
model for brain tumor classification, leveraging the power of deep
learning to identify different types of brain tumors accurately. The
potential applications of this research are numerous and could have a
significant clinical impact in neuro-oncology. Fig. 14 illustrates the po-
tential application of our proposed brain tumor classification research.
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Fig. 14. Application of proposed research.
• Improved Brain Tumor Diagnosis: The proposed research can
assist radiologists and clinicians in accurately diagnosing brain
tumors from medical imaging data, such as MRI scans. It provides
accurate and consistent tumor classification results, reducing the
risk of misdiagnosis and enabling early detection of brain tumors.

• Personalized Treatment Planning: Accurate classification of brain
tumors can help tailor personalized treatment plans for patients.
The model aids in identifying the specific tumor type, enabling
clinicians to design targeted treatment plans, leading to more
effective and precise treatment outcomes.

• Clinical Decision Support System: The developed model can serve
as a clinical decision support system, assisting healthcare
providers in making informed decisions about patient manage-
ment. It provides accurate and reliable tumor classification re-
sults, aiding clinical decision-making for more precise and per-
sonalized patient care.

• Image-Guided Surgery: The proposed model can be integrated
into image-guided surgery systems, providing real-time tumor
localization and guidance during surgical procedures. This helps
neurosurgeons accurately identify tumor margins, optimize tu-
mor resection, and minimize damage to healthy brain tissue,
improving surgical outcomes.

• Research and Drug Development: The model can aid brain tumor
research and development by accurately classifying tumors and
identifying specific genetic mutations or molecular characteristics
associated with different tumor types. This provides insights into
tumor biology and potential therapeutic targets, facilitating the
development of new treatment strategies and drugs for brain
tumors.

Hence, the proposed research has significant potential applications
in improving brain tumor diagnosis, guiding personalized treatment
planning, facilitating research and drug development, image-guided
surgery, and serving as a clinical decision support system. These ap-
plications can positively impact patient care, outcomes, and neuro-
oncology advancement.

Furthermore, our innovative research has the potential to reshape
the medical imaging field, providing significant benefits to society. Our
proposed deep learning model accurately classifies brain tumors and
employs creative reconstruction and fine-tuning methods. The model’s
direct clinical relevance and easy integration into existing workflows
14

allow for smooth implementation in clinical settings, enhancing brain
tumor diagnosis, treatment planning, and patient outcomes. Our ap-
proach also reduces the need for extensive manual annotation, lowering
costs and development time and making it more suitable for clinical
use. The model’s capacity for personalized medicine is groundbreaking,
as tailored treatment plans based on tumor characteristics lead to
more effective therapies, improved results, and better patient well-
being. In addition to clinical impact, our research holds significant
societal implications by improving patient care, reducing healthcare
costs, and addressing global healthcare system challenges. Overall,
our model’s innovative reconstruction and fine-tuning techniques con-
tribute to deep learning research and inspire further progress in medical
imaging across various applications.

5. Conclusion

This article presents a novel deep learning (DL) method for clas-
sifying brain tumors that combine preprocessing, transfer learning
(TL) architecture reconstruction, and fine-tuning. Four TL algorithms
were utilized in our methodology: Xception, ResNet50V4, Inception-
ResNetV4, and DenseNet201. We evaluated the performance of the
model using a variety of metrics, including accuracy, recall, preci-
sion, f1 score, MAE, MSE, and RMSE, to demonstrate the substantial
progress made. Using the Figshare Brain Tumor Image dataset, we
demonstrated that our proposed model is highly effective in accu-
rately diagnosing brain tumors. The classification accuracy for brain
tumors was 98.40% for Xception, 99.68% for ResNet50V4, 99.36% for
InceptionResNetV2, and 98.72% for DenseNet201. Further investiga-
tion revealed that ResNet50V2 outperforms other models and existing
methods in terms of precision. We hope that our developed model
can be implemented in clinical settings to facilitate faster and more
accurate diagnosis of brain tumors. Despite the architecture’s enhanced
precision, further advances in image processing and the proposed archi-
tecture could improve its suitability for this task. The absence of clearer
images and an improved DL architecture is the primary limitation of
this study, which hinders the achievement of even higher performance
results.

The following statements about what has been accomplished in the
paper can be made in light of the conclusion:

• Developed a novel DL approach for brain tumor classification
that integrates preprocessing, reconstruction of TL architectures,
and fine-tuning. Employed four TL algorithms, namely Xcep-
tion, ResNet50V2, InceptionResNetV2, and DenseNet201 in the

approach.
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• Conducted an extensive experiment using the Figshare MRI brain
tumor image dataset. Multiple performance metrics, such as pre-
cision, precision, recall, f1 score, confusion matrix, root mean
square error, mean absolute error, and mean squared error, were
used to evaluate the effectiveness of the suggested method.

• Found that ResNet50V2 provides better accuracy than other mod-
els and existing works for brain tumor classification.

• Identified the insufficiency of the work, which is the lack of more
clear images with improved DL architecture that resist getting
higher performance outcomes.

In the future, we intend to improve our proposed DL model by
dopting more advanced hybrid ensemble techniques with newly avail-
ble brain tumor datasets. Moreover, we desire to employ explainable
I techniques to provide greater insight into the decision-making pro-
ess of our DL model, thus improving the confidence and trust of
linicians and patients in diagnosis.
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